217 lines
7.1 KiB
Python

import datetime as dt
from datetime import date
import re
import numpy as np
import pytest
from pandas.compat.numpy import np_long
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
Timestamp,
date_range,
offsets,
)
import pandas._testing as tm
class TestDatetimeIndex:
def test_is_(self):
dti = date_range(start="1/1/2005", end="12/1/2005", freq="ME")
assert dti.is_(dti)
assert dti.is_(dti.view())
assert not dti.is_(dti.copy())
def test_time_overflow_for_32bit_machines(self):
# GH8943. On some machines NumPy defaults to np.int32 (for example,
# 32-bit Linux machines). In the function _generate_regular_range
# found in tseries/index.py, `periods` gets multiplied by `strides`
# (which has value 1e9) and since the max value for np.int32 is ~2e9,
# and since those machines won't promote np.int32 to np.int64, we get
# overflow.
periods = np_long(1000)
idx1 = date_range(start="2000", periods=periods, freq="s")
assert len(idx1) == periods
idx2 = date_range(end="2000", periods=periods, freq="s")
assert len(idx2) == periods
def test_nat(self):
assert DatetimeIndex([np.nan])[0] is pd.NaT
def test_week_of_month_frequency(self):
# GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise
d1 = date(2002, 9, 1)
d2 = date(2013, 10, 27)
d3 = date(2012, 9, 30)
idx1 = DatetimeIndex([d1, d2])
idx2 = DatetimeIndex([d3])
result_append = idx1.append(idx2)
expected = DatetimeIndex([d1, d2, d3])
tm.assert_index_equal(result_append, expected)
result_union = idx1.union(idx2)
expected = DatetimeIndex([d1, d3, d2])
tm.assert_index_equal(result_union, expected)
def test_append_nondatetimeindex(self):
rng = date_range("1/1/2000", periods=10)
idx = Index(["a", "b", "c", "d"])
result = rng.append(idx)
assert isinstance(result[0], Timestamp)
def test_misc_coverage(self):
rng = date_range("1/1/2000", periods=5)
result = rng.groupby(rng.day)
assert isinstance(next(iter(result.values()))[0], Timestamp)
# TODO: belongs in frame groupby tests?
def test_groupby_function_tuple_1677(self):
df = DataFrame(
np.random.default_rng(2).random(100),
index=date_range("1/1/2000", periods=100),
)
monthly_group = df.groupby(lambda x: (x.year, x.month))
result = monthly_group.mean()
assert isinstance(result.index[0], tuple)
def assert_index_parameters(self, index):
assert index.freq == "40960ns"
assert index.inferred_freq == "40960ns"
def test_ns_index(self):
nsamples = 400
ns = int(1e9 / 24414)
dtstart = np.datetime64("2012-09-20T00:00:00")
dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, "ns")
freq = ns * offsets.Nano()
index = DatetimeIndex(dt, freq=freq, name="time")
self.assert_index_parameters(index)
new_index = date_range(start=index[0], end=index[-1], freq=index.freq)
self.assert_index_parameters(new_index)
def test_asarray_tz_naive(self):
# This shouldn't produce a warning.
idx = date_range("2000", periods=2)
# M8[ns] by default
result = np.asarray(idx)
expected = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
# optionally, object
result = np.asarray(idx, dtype=object)
expected = np.array([Timestamp("2000-01-01"), Timestamp("2000-01-02")])
tm.assert_numpy_array_equal(result, expected)
def test_asarray_tz_aware(self):
tz = "US/Central"
idx = date_range("2000", periods=2, tz=tz)
expected = np.array(["2000-01-01T06", "2000-01-02T06"], dtype="M8[ns]")
result = np.asarray(idx, dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
# Old behavior with no warning
result = np.asarray(idx, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
# Future behavior with no warning
expected = np.array(
[Timestamp("2000-01-01", tz=tz), Timestamp("2000-01-02", tz=tz)]
)
result = np.asarray(idx, dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_CBH_deprecated(self):
msg = "'CBH' is deprecated and will be removed in a future version."
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = date_range(
dt.datetime(2022, 12, 11), dt.datetime(2022, 12, 13), freq="CBH"
)
result = DatetimeIndex(
[
"2022-12-12 09:00:00",
"2022-12-12 10:00:00",
"2022-12-12 11:00:00",
"2022-12-12 12:00:00",
"2022-12-12 13:00:00",
"2022-12-12 14:00:00",
"2022-12-12 15:00:00",
"2022-12-12 16:00:00",
],
dtype="datetime64[ns]",
freq="cbh",
)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"freq_depr, expected_values, expected_freq",
[
(
"AS-AUG",
["2021-08-01", "2022-08-01", "2023-08-01"],
"YS-AUG",
),
(
"1BAS-MAY",
["2021-05-03", "2022-05-02", "2023-05-01"],
"1BYS-MAY",
),
],
)
def test_AS_BAS_deprecated(self, freq_depr, expected_values, expected_freq):
# GH#55479
freq_msg = re.split("[0-9]*", freq_depr, maxsplit=1)[1]
msg = f"'{freq_msg}' is deprecated and will be removed in a future version."
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = date_range(
dt.datetime(2020, 12, 1), dt.datetime(2023, 12, 1), freq=freq_depr
)
result = DatetimeIndex(
expected_values,
dtype="datetime64[ns]",
freq=expected_freq,
)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"freq, expected_values, freq_depr",
[
("2BYE-MAR", ["2016-03-31"], "2BA-MAR"),
("2BYE-JUN", ["2016-06-30"], "2BY-JUN"),
("2BME", ["2016-02-29", "2016-04-29", "2016-06-30"], "2BM"),
("2BQE", ["2016-03-31"], "2BQ"),
("1BQE-MAR", ["2016-03-31", "2016-06-30"], "1BQ-MAR"),
],
)
def test_BM_BQ_BY_deprecated(self, freq, expected_values, freq_depr):
# GH#52064
msg = f"'{freq_depr[1:]}' is deprecated and will be removed "
f"in a future version, please use '{freq[1:]}' instead."
with tm.assert_produces_warning(FutureWarning, match=msg):
expected = date_range(start="2016-02-21", end="2016-08-21", freq=freq_depr)
result = DatetimeIndex(
data=expected_values,
dtype="datetime64[ns]",
freq=freq,
)
tm.assert_index_equal(result, expected)