Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,74 @@
"""Sorted Containers -- Sorted List, Sorted Dict, Sorted Set
Sorted Containers is an Apache2 licensed containers library, written in
pure-Python, and fast as C-extensions.
Python's standard library is great until you need a sorted collections
type. Many will attest that you can get really far without one, but the moment
you **really need** a sorted list, dict, or set, you're faced with a dozen
different implementations, most using C-extensions without great documentation
and benchmarking.
In Python, we can do better. And we can do it in pure-Python!
::
>>> from sortedcontainers import SortedList
>>> sl = SortedList(['e', 'a', 'c', 'd', 'b'])
>>> sl
SortedList(['a', 'b', 'c', 'd', 'e'])
>>> sl *= 1000000
>>> sl.count('c')
1000000
>>> sl[-3:]
['e', 'e', 'e']
>>> from sortedcontainers import SortedDict
>>> sd = SortedDict({'c': 3, 'a': 1, 'b': 2})
>>> sd
SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> sd.popitem(index=-1)
('c', 3)
>>> from sortedcontainers import SortedSet
>>> ss = SortedSet('abracadabra')
>>> ss
SortedSet(['a', 'b', 'c', 'd', 'r'])
>>> ss.bisect_left('c')
2
Sorted Containers takes all of the work out of Python sorted types - making
your deployment and use of Python easy. There's no need to install a C compiler
or pre-build and distribute custom extensions. Performance is a feature and
testing has 100% coverage with unit tests and hours of stress.
:copyright: (c) 2014-2019 by Grant Jenks.
:license: Apache 2.0, see LICENSE for more details.
"""
from .sortedlist import SortedList, SortedKeyList, SortedListWithKey
from .sortedset import SortedSet
from .sorteddict import (
SortedDict,
SortedKeysView,
SortedItemsView,
SortedValuesView,
)
__all__ = [
'SortedList',
'SortedKeyList',
'SortedListWithKey',
'SortedDict',
'SortedKeysView',
'SortedItemsView',
'SortedValuesView',
'SortedSet',
]
__title__ = 'sortedcontainers'
__version__ = '2.4.0'
__build__ = 0x020400
__author__ = 'Grant Jenks'
__license__ = 'Apache 2.0'
__copyright__ = '2014-2019, Grant Jenks'

View File

@ -0,0 +1,812 @@
"""Sorted Dict
==============
:doc:`Sorted Containers<index>` is an Apache2 licensed Python sorted
collections library, written in pure-Python, and fast as C-extensions. The
:doc:`introduction<introduction>` is the best way to get started.
Sorted dict implementations:
.. currentmodule:: sortedcontainers
* :class:`SortedDict`
* :class:`SortedKeysView`
* :class:`SortedItemsView`
* :class:`SortedValuesView`
"""
import sys
import warnings
from itertools import chain
from .sortedlist import SortedList, recursive_repr
from .sortedset import SortedSet
###############################################################################
# BEGIN Python 2/3 Shims
###############################################################################
try:
from collections.abc import (
ItemsView, KeysView, Mapping, ValuesView, Sequence
)
except ImportError:
from collections import ItemsView, KeysView, Mapping, ValuesView, Sequence
###############################################################################
# END Python 2/3 Shims
###############################################################################
class SortedDict(dict):
"""Sorted dict is a sorted mutable mapping.
Sorted dict keys are maintained in sorted order. The design of sorted dict
is simple: sorted dict inherits from dict to store items and maintains a
sorted list of keys.
Sorted dict keys must be hashable and comparable. The hash and total
ordering of keys must not change while they are stored in the sorted dict.
Mutable mapping methods:
* :func:`SortedDict.__getitem__` (inherited from dict)
* :func:`SortedDict.__setitem__`
* :func:`SortedDict.__delitem__`
* :func:`SortedDict.__iter__`
* :func:`SortedDict.__len__` (inherited from dict)
Methods for adding items:
* :func:`SortedDict.setdefault`
* :func:`SortedDict.update`
Methods for removing items:
* :func:`SortedDict.clear`
* :func:`SortedDict.pop`
* :func:`SortedDict.popitem`
Methods for looking up items:
* :func:`SortedDict.__contains__` (inherited from dict)
* :func:`SortedDict.get` (inherited from dict)
* :func:`SortedDict.peekitem`
Methods for views:
* :func:`SortedDict.keys`
* :func:`SortedDict.items`
* :func:`SortedDict.values`
Methods for miscellany:
* :func:`SortedDict.copy`
* :func:`SortedDict.fromkeys`
* :func:`SortedDict.__reversed__`
* :func:`SortedDict.__eq__` (inherited from dict)
* :func:`SortedDict.__ne__` (inherited from dict)
* :func:`SortedDict.__repr__`
* :func:`SortedDict._check`
Sorted list methods available (applies to keys):
* :func:`SortedList.bisect_left`
* :func:`SortedList.bisect_right`
* :func:`SortedList.count`
* :func:`SortedList.index`
* :func:`SortedList.irange`
* :func:`SortedList.islice`
* :func:`SortedList._reset`
Additional sorted list methods available, if key-function used:
* :func:`SortedKeyList.bisect_key_left`
* :func:`SortedKeyList.bisect_key_right`
* :func:`SortedKeyList.irange_key`
Sorted dicts may only be compared for equality and inequality.
"""
def __init__(self, *args, **kwargs):
"""Initialize sorted dict instance.
Optional key-function argument defines a callable that, like the `key`
argument to the built-in `sorted` function, extracts a comparison key
from each dictionary key. If no function is specified, the default
compares the dictionary keys directly. The key-function argument must
be provided as a positional argument and must come before all other
arguments.
Optional iterable argument provides an initial sequence of pairs to
initialize the sorted dict. Each pair in the sequence defines the key
and corresponding value. If a key is seen more than once, the last
value associated with it is stored in the new sorted dict.
Optional mapping argument provides an initial mapping of items to
initialize the sorted dict.
If keyword arguments are given, the keywords themselves, with their
associated values, are added as items to the dictionary. If a key is
specified both in the positional argument and as a keyword argument,
the value associated with the keyword is stored in the
sorted dict.
Sorted dict keys must be hashable, per the requirement for Python's
dictionaries. Keys (or the result of the key-function) must also be
comparable, per the requirement for sorted lists.
>>> d = {'alpha': 1, 'beta': 2}
>>> SortedDict([('alpha', 1), ('beta', 2)]) == d
True
>>> SortedDict({'alpha': 1, 'beta': 2}) == d
True
>>> SortedDict(alpha=1, beta=2) == d
True
"""
if args and (args[0] is None or callable(args[0])):
_key = self._key = args[0]
args = args[1:]
else:
_key = self._key = None
self._list = SortedList(key=_key)
# Reaching through ``self._list`` repeatedly adds unnecessary overhead
# so cache references to sorted list methods.
_list = self._list
self._list_add = _list.add
self._list_clear = _list.clear
self._list_iter = _list.__iter__
self._list_reversed = _list.__reversed__
self._list_pop = _list.pop
self._list_remove = _list.remove
self._list_update = _list.update
# Expose some sorted list methods publicly.
self.bisect_left = _list.bisect_left
self.bisect = _list.bisect_right
self.bisect_right = _list.bisect_right
self.index = _list.index
self.irange = _list.irange
self.islice = _list.islice
self._reset = _list._reset
if _key is not None:
self.bisect_key_left = _list.bisect_key_left
self.bisect_key_right = _list.bisect_key_right
self.bisect_key = _list.bisect_key
self.irange_key = _list.irange_key
self._update(*args, **kwargs)
@property
def key(self):
"""Function used to extract comparison key from keys.
Sorted dict compares keys directly when the key function is none.
"""
return self._key
@property
def iloc(self):
"""Cached reference of sorted keys view.
Deprecated in version 2 of Sorted Containers. Use
:func:`SortedDict.keys` instead.
"""
# pylint: disable=attribute-defined-outside-init
try:
return self._iloc
except AttributeError:
warnings.warn(
'sorted_dict.iloc is deprecated.'
' Use SortedDict.keys() instead.',
DeprecationWarning,
stacklevel=2,
)
_iloc = self._iloc = SortedKeysView(self)
return _iloc
def clear(self):
"""Remove all items from sorted dict.
Runtime complexity: `O(n)`
"""
dict.clear(self)
self._list_clear()
def __delitem__(self, key):
"""Remove item from sorted dict identified by `key`.
``sd.__delitem__(key)`` <==> ``del sd[key]``
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> del sd['b']
>>> sd
SortedDict({'a': 1, 'c': 3})
>>> del sd['z']
Traceback (most recent call last):
...
KeyError: 'z'
:param key: `key` for item lookup
:raises KeyError: if key not found
"""
dict.__delitem__(self, key)
self._list_remove(key)
def __iter__(self):
"""Return an iterator over the keys of the sorted dict.
``sd.__iter__()`` <==> ``iter(sd)``
Iterating the sorted dict while adding or deleting items may raise a
:exc:`RuntimeError` or fail to iterate over all keys.
"""
return self._list_iter()
def __reversed__(self):
"""Return a reverse iterator over the keys of the sorted dict.
``sd.__reversed__()`` <==> ``reversed(sd)``
Iterating the sorted dict while adding or deleting items may raise a
:exc:`RuntimeError` or fail to iterate over all keys.
"""
return self._list_reversed()
def __setitem__(self, key, value):
"""Store item in sorted dict with `key` and corresponding `value`.
``sd.__setitem__(key, value)`` <==> ``sd[key] = value``
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict()
>>> sd['c'] = 3
>>> sd['a'] = 1
>>> sd['b'] = 2
>>> sd
SortedDict({'a': 1, 'b': 2, 'c': 3})
:param key: key for item
:param value: value for item
"""
if key not in self:
self._list_add(key)
dict.__setitem__(self, key, value)
_setitem = __setitem__
def __or__(self, other):
if not isinstance(other, Mapping):
return NotImplemented
items = chain(self.items(), other.items())
return self.__class__(self._key, items)
def __ror__(self, other):
if not isinstance(other, Mapping):
return NotImplemented
items = chain(other.items(), self.items())
return self.__class__(self._key, items)
def __ior__(self, other):
self._update(other)
return self
def copy(self):
"""Return a shallow copy of the sorted dict.
Runtime complexity: `O(n)`
:return: new sorted dict
"""
return self.__class__(self._key, self.items())
__copy__ = copy
@classmethod
def fromkeys(cls, iterable, value=None):
"""Return a new sorted dict initailized from `iterable` and `value`.
Items in the sorted dict have keys from `iterable` and values equal to
`value`.
Runtime complexity: `O(n*log(n))`
:return: new sorted dict
"""
return cls((key, value) for key in iterable)
def keys(self):
"""Return new sorted keys view of the sorted dict's keys.
See :class:`SortedKeysView` for details.
:return: new sorted keys view
"""
return SortedKeysView(self)
def items(self):
"""Return new sorted items view of the sorted dict's items.
See :class:`SortedItemsView` for details.
:return: new sorted items view
"""
return SortedItemsView(self)
def values(self):
"""Return new sorted values view of the sorted dict's values.
See :class:`SortedValuesView` for details.
:return: new sorted values view
"""
return SortedValuesView(self)
if sys.hexversion < 0x03000000:
def __make_raise_attributeerror(original, alternate):
# pylint: disable=no-self-argument
message = (
'SortedDict.{original}() is not implemented.'
' Use SortedDict.{alternate}() instead.'
).format(original=original, alternate=alternate)
def method(self):
# pylint: disable=missing-docstring,unused-argument
raise AttributeError(message)
method.__name__ = original # pylint: disable=non-str-assignment-to-dunder-name
method.__doc__ = message
return property(method)
iteritems = __make_raise_attributeerror('iteritems', 'items')
iterkeys = __make_raise_attributeerror('iterkeys', 'keys')
itervalues = __make_raise_attributeerror('itervalues', 'values')
viewitems = __make_raise_attributeerror('viewitems', 'items')
viewkeys = __make_raise_attributeerror('viewkeys', 'keys')
viewvalues = __make_raise_attributeerror('viewvalues', 'values')
class _NotGiven(object):
# pylint: disable=too-few-public-methods
def __repr__(self):
return '<not-given>'
__not_given = _NotGiven()
def pop(self, key, default=__not_given):
"""Remove and return value for item identified by `key`.
If the `key` is not found then return `default` if given. If `default`
is not given then raise :exc:`KeyError`.
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> sd.pop('c')
3
>>> sd.pop('z', 26)
26
>>> sd.pop('y')
Traceback (most recent call last):
...
KeyError: 'y'
:param key: `key` for item
:param default: `default` value if key not found (optional)
:return: value for item
:raises KeyError: if `key` not found and `default` not given
"""
if key in self:
self._list_remove(key)
return dict.pop(self, key)
else:
if default is self.__not_given:
raise KeyError(key)
return default
def popitem(self, index=-1):
"""Remove and return ``(key, value)`` pair at `index` from sorted dict.
Optional argument `index` defaults to -1, the last item in the sorted
dict. Specify ``index=0`` for the first item in the sorted dict.
If the sorted dict is empty, raises :exc:`KeyError`.
If the `index` is out of range, raises :exc:`IndexError`.
Runtime complexity: `O(log(n))`
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> sd.popitem()
('c', 3)
>>> sd.popitem(0)
('a', 1)
>>> sd.popitem(100)
Traceback (most recent call last):
...
IndexError: list index out of range
:param int index: `index` of item (default -1)
:return: key and value pair
:raises KeyError: if sorted dict is empty
:raises IndexError: if `index` out of range
"""
if not self:
raise KeyError('popitem(): dictionary is empty')
key = self._list_pop(index)
value = dict.pop(self, key)
return (key, value)
def peekitem(self, index=-1):
"""Return ``(key, value)`` pair at `index` in sorted dict.
Optional argument `index` defaults to -1, the last item in the sorted
dict. Specify ``index=0`` for the first item in the sorted dict.
Unlike :func:`SortedDict.popitem`, the sorted dict is not modified.
If the `index` is out of range, raises :exc:`IndexError`.
Runtime complexity: `O(log(n))`
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> sd.peekitem()
('c', 3)
>>> sd.peekitem(0)
('a', 1)
>>> sd.peekitem(100)
Traceback (most recent call last):
...
IndexError: list index out of range
:param int index: index of item (default -1)
:return: key and value pair
:raises IndexError: if `index` out of range
"""
key = self._list[index]
return key, self[key]
def setdefault(self, key, default=None):
"""Return value for item identified by `key` in sorted dict.
If `key` is in the sorted dict then return its value. If `key` is not
in the sorted dict then insert `key` with value `default` and return
`default`.
Optional argument `default` defaults to none.
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict()
>>> sd.setdefault('a', 1)
1
>>> sd.setdefault('a', 10)
1
>>> sd
SortedDict({'a': 1})
:param key: key for item
:param default: value for item (default None)
:return: value for item identified by `key`
"""
if key in self:
return self[key]
dict.__setitem__(self, key, default)
self._list_add(key)
return default
def update(self, *args, **kwargs):
"""Update sorted dict with items from `args` and `kwargs`.
Overwrites existing items.
Optional arguments `args` and `kwargs` may be a mapping, an iterable of
pairs or keyword arguments. See :func:`SortedDict.__init__` for
details.
:param args: mapping or iterable of pairs
:param kwargs: keyword arguments mapping
"""
if not self:
dict.update(self, *args, **kwargs)
self._list_update(dict.__iter__(self))
return
if not kwargs and len(args) == 1 and isinstance(args[0], dict):
pairs = args[0]
else:
pairs = dict(*args, **kwargs)
if (10 * len(pairs)) > len(self):
dict.update(self, pairs)
self._list_clear()
self._list_update(dict.__iter__(self))
else:
for key in pairs:
self._setitem(key, pairs[key])
_update = update
def __reduce__(self):
"""Support for pickle.
The tricks played with caching references in
:func:`SortedDict.__init__` confuse pickle so customize the reducer.
"""
items = dict.copy(self)
return (type(self), (self._key, items))
@recursive_repr()
def __repr__(self):
"""Return string representation of sorted dict.
``sd.__repr__()`` <==> ``repr(sd)``
:return: string representation
"""
_key = self._key
type_name = type(self).__name__
key_arg = '' if _key is None else '{0!r}, '.format(_key)
item_format = '{0!r}: {1!r}'.format
items = ', '.join(item_format(key, self[key]) for key in self._list)
return '{0}({1}{{{2}}})'.format(type_name, key_arg, items)
def _check(self):
"""Check invariants of sorted dict.
Runtime complexity: `O(n)`
"""
_list = self._list
_list._check()
assert len(self) == len(_list)
assert all(key in self for key in _list)
def _view_delitem(self, index):
"""Remove item at `index` from sorted dict.
``view.__delitem__(index)`` <==> ``del view[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> view = sd.keys()
>>> del view[0]
>>> sd
SortedDict({'b': 2, 'c': 3})
>>> del view[-1]
>>> sd
SortedDict({'b': 2})
>>> del view[:]
>>> sd
SortedDict({})
:param index: integer or slice for indexing
:raises IndexError: if index out of range
"""
_mapping = self._mapping
_list = _mapping._list
dict_delitem = dict.__delitem__
if isinstance(index, slice):
keys = _list[index]
del _list[index]
for key in keys:
dict_delitem(_mapping, key)
else:
key = _list.pop(index)
dict_delitem(_mapping, key)
class SortedKeysView(KeysView, Sequence):
"""Sorted keys view is a dynamic view of the sorted dict's keys.
When the sorted dict's keys change, the view reflects those changes.
The keys view implements the set and sequence abstract base classes.
"""
__slots__ = ()
@classmethod
def _from_iterable(cls, it):
return SortedSet(it)
def __getitem__(self, index):
"""Lookup key at `index` in sorted keys views.
``skv.__getitem__(index)`` <==> ``skv[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> skv = sd.keys()
>>> skv[0]
'a'
>>> skv[-1]
'c'
>>> skv[:]
['a', 'b', 'c']
>>> skv[100]
Traceback (most recent call last):
...
IndexError: list index out of range
:param index: integer or slice for indexing
:return: key or list of keys
:raises IndexError: if index out of range
"""
return self._mapping._list[index]
__delitem__ = _view_delitem
class SortedItemsView(ItemsView, Sequence):
"""Sorted items view is a dynamic view of the sorted dict's items.
When the sorted dict's items change, the view reflects those changes.
The items view implements the set and sequence abstract base classes.
"""
__slots__ = ()
@classmethod
def _from_iterable(cls, it):
return SortedSet(it)
def __getitem__(self, index):
"""Lookup item at `index` in sorted items view.
``siv.__getitem__(index)`` <==> ``siv[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> siv = sd.items()
>>> siv[0]
('a', 1)
>>> siv[-1]
('c', 3)
>>> siv[:]
[('a', 1), ('b', 2), ('c', 3)]
>>> siv[100]
Traceback (most recent call last):
...
IndexError: list index out of range
:param index: integer or slice for indexing
:return: item or list of items
:raises IndexError: if index out of range
"""
_mapping = self._mapping
_mapping_list = _mapping._list
if isinstance(index, slice):
keys = _mapping_list[index]
return [(key, _mapping[key]) for key in keys]
key = _mapping_list[index]
return key, _mapping[key]
__delitem__ = _view_delitem
class SortedValuesView(ValuesView, Sequence):
"""Sorted values view is a dynamic view of the sorted dict's values.
When the sorted dict's values change, the view reflects those changes.
The values view implements the sequence abstract base class.
"""
__slots__ = ()
def __getitem__(self, index):
"""Lookup value at `index` in sorted values view.
``siv.__getitem__(index)`` <==> ``siv[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> sd = SortedDict({'a': 1, 'b': 2, 'c': 3})
>>> svv = sd.values()
>>> svv[0]
1
>>> svv[-1]
3
>>> svv[:]
[1, 2, 3]
>>> svv[100]
Traceback (most recent call last):
...
IndexError: list index out of range
:param index: integer or slice for indexing
:return: value or list of values
:raises IndexError: if index out of range
"""
_mapping = self._mapping
_mapping_list = _mapping._list
if isinstance(index, slice):
keys = _mapping_list[index]
return [_mapping[key] for key in keys]
key = _mapping_list[index]
return _mapping[key]
__delitem__ = _view_delitem

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,733 @@
"""Sorted Set
=============
:doc:`Sorted Containers<index>` is an Apache2 licensed Python sorted
collections library, written in pure-Python, and fast as C-extensions. The
:doc:`introduction<introduction>` is the best way to get started.
Sorted set implementations:
.. currentmodule:: sortedcontainers
* :class:`SortedSet`
"""
from itertools import chain
from operator import eq, ne, gt, ge, lt, le
from textwrap import dedent
from .sortedlist import SortedList, recursive_repr
###############################################################################
# BEGIN Python 2/3 Shims
###############################################################################
try:
from collections.abc import MutableSet, Sequence, Set
except ImportError:
from collections import MutableSet, Sequence, Set
###############################################################################
# END Python 2/3 Shims
###############################################################################
class SortedSet(MutableSet, Sequence):
"""Sorted set is a sorted mutable set.
Sorted set values are maintained in sorted order. The design of sorted set
is simple: sorted set uses a set for set-operations and maintains a sorted
list of values.
Sorted set values must be hashable and comparable. The hash and total
ordering of values must not change while they are stored in the sorted set.
Mutable set methods:
* :func:`SortedSet.__contains__`
* :func:`SortedSet.__iter__`
* :func:`SortedSet.__len__`
* :func:`SortedSet.add`
* :func:`SortedSet.discard`
Sequence methods:
* :func:`SortedSet.__getitem__`
* :func:`SortedSet.__delitem__`
* :func:`SortedSet.__reversed__`
Methods for removing values:
* :func:`SortedSet.clear`
* :func:`SortedSet.pop`
* :func:`SortedSet.remove`
Set-operation methods:
* :func:`SortedSet.difference`
* :func:`SortedSet.difference_update`
* :func:`SortedSet.intersection`
* :func:`SortedSet.intersection_update`
* :func:`SortedSet.symmetric_difference`
* :func:`SortedSet.symmetric_difference_update`
* :func:`SortedSet.union`
* :func:`SortedSet.update`
Methods for miscellany:
* :func:`SortedSet.copy`
* :func:`SortedSet.count`
* :func:`SortedSet.__repr__`
* :func:`SortedSet._check`
Sorted list methods available:
* :func:`SortedList.bisect_left`
* :func:`SortedList.bisect_right`
* :func:`SortedList.index`
* :func:`SortedList.irange`
* :func:`SortedList.islice`
* :func:`SortedList._reset`
Additional sorted list methods available, if key-function used:
* :func:`SortedKeyList.bisect_key_left`
* :func:`SortedKeyList.bisect_key_right`
* :func:`SortedKeyList.irange_key`
Sorted set comparisons use subset and superset relations. Two sorted sets
are equal if and only if every element of each sorted set is contained in
the other (each is a subset of the other). A sorted set is less than
another sorted set if and only if the first sorted set is a proper subset
of the second sorted set (is a subset, but is not equal). A sorted set is
greater than another sorted set if and only if the first sorted set is a
proper superset of the second sorted set (is a superset, but is not equal).
"""
def __init__(self, iterable=None, key=None):
"""Initialize sorted set instance.
Optional `iterable` argument provides an initial iterable of values to
initialize the sorted set.
Optional `key` argument defines a callable that, like the `key`
argument to Python's `sorted` function, extracts a comparison key from
each value. The default, none, compares values directly.
Runtime complexity: `O(n*log(n))`
>>> ss = SortedSet([3, 1, 2, 5, 4])
>>> ss
SortedSet([1, 2, 3, 4, 5])
>>> from operator import neg
>>> ss = SortedSet([3, 1, 2, 5, 4], neg)
>>> ss
SortedSet([5, 4, 3, 2, 1], key=<built-in function neg>)
:param iterable: initial values (optional)
:param key: function used to extract comparison key (optional)
"""
self._key = key
# SortedSet._fromset calls SortedSet.__init__ after initializing the
# _set attribute. So only create a new set if the _set attribute is not
# already present.
if not hasattr(self, '_set'):
self._set = set()
self._list = SortedList(self._set, key=key)
# Expose some set methods publicly.
_set = self._set
self.isdisjoint = _set.isdisjoint
self.issubset = _set.issubset
self.issuperset = _set.issuperset
# Expose some sorted list methods publicly.
_list = self._list
self.bisect_left = _list.bisect_left
self.bisect = _list.bisect
self.bisect_right = _list.bisect_right
self.index = _list.index
self.irange = _list.irange
self.islice = _list.islice
self._reset = _list._reset
if key is not None:
self.bisect_key_left = _list.bisect_key_left
self.bisect_key_right = _list.bisect_key_right
self.bisect_key = _list.bisect_key
self.irange_key = _list.irange_key
if iterable is not None:
self._update(iterable)
@classmethod
def _fromset(cls, values, key=None):
"""Initialize sorted set from existing set.
Used internally by set operations that return a new set.
"""
sorted_set = object.__new__(cls)
sorted_set._set = values
sorted_set.__init__(key=key)
return sorted_set
@property
def key(self):
"""Function used to extract comparison key from values.
Sorted set compares values directly when the key function is none.
"""
return self._key
def __contains__(self, value):
"""Return true if `value` is an element of the sorted set.
``ss.__contains__(value)`` <==> ``value in ss``
Runtime complexity: `O(1)`
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> 3 in ss
True
:param value: search for value in sorted set
:return: true if `value` in sorted set
"""
return value in self._set
def __getitem__(self, index):
"""Lookup value at `index` in sorted set.
``ss.__getitem__(index)`` <==> ``ss[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet('abcde')
>>> ss[2]
'c'
>>> ss[-1]
'e'
>>> ss[2:5]
['c', 'd', 'e']
:param index: integer or slice for indexing
:return: value or list of values
:raises IndexError: if index out of range
"""
return self._list[index]
def __delitem__(self, index):
"""Remove value at `index` from sorted set.
``ss.__delitem__(index)`` <==> ``del ss[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet('abcde')
>>> del ss[2]
>>> ss
SortedSet(['a', 'b', 'd', 'e'])
>>> del ss[:2]
>>> ss
SortedSet(['d', 'e'])
:param index: integer or slice for indexing
:raises IndexError: if index out of range
"""
_set = self._set
_list = self._list
if isinstance(index, slice):
values = _list[index]
_set.difference_update(values)
else:
value = _list[index]
_set.remove(value)
del _list[index]
def __make_cmp(set_op, symbol, doc):
"Make comparator method."
def comparer(self, other):
"Compare method for sorted set and set."
if isinstance(other, SortedSet):
return set_op(self._set, other._set)
elif isinstance(other, Set):
return set_op(self._set, other)
return NotImplemented
set_op_name = set_op.__name__
comparer.__name__ = '__{0}__'.format(set_op_name)
doc_str = """Return true if and only if sorted set is {0} `other`.
``ss.__{1}__(other)`` <==> ``ss {2} other``
Comparisons use subset and superset semantics as with sets.
Runtime complexity: `O(n)`
:param other: `other` set
:return: true if sorted set is {0} `other`
"""
comparer.__doc__ = dedent(doc_str.format(doc, set_op_name, symbol))
return comparer
__eq__ = __make_cmp(eq, '==', 'equal to')
__ne__ = __make_cmp(ne, '!=', 'not equal to')
__lt__ = __make_cmp(lt, '<', 'a proper subset of')
__gt__ = __make_cmp(gt, '>', 'a proper superset of')
__le__ = __make_cmp(le, '<=', 'a subset of')
__ge__ = __make_cmp(ge, '>=', 'a superset of')
__make_cmp = staticmethod(__make_cmp)
def __len__(self):
"""Return the size of the sorted set.
``ss.__len__()`` <==> ``len(ss)``
:return: size of sorted set
"""
return len(self._set)
def __iter__(self):
"""Return an iterator over the sorted set.
``ss.__iter__()`` <==> ``iter(ss)``
Iterating the sorted set while adding or deleting values may raise a
:exc:`RuntimeError` or fail to iterate over all values.
"""
return iter(self._list)
def __reversed__(self):
"""Return a reverse iterator over the sorted set.
``ss.__reversed__()`` <==> ``reversed(ss)``
Iterating the sorted set while adding or deleting values may raise a
:exc:`RuntimeError` or fail to iterate over all values.
"""
return reversed(self._list)
def add(self, value):
"""Add `value` to sorted set.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet()
>>> ss.add(3)
>>> ss.add(1)
>>> ss.add(2)
>>> ss
SortedSet([1, 2, 3])
:param value: value to add to sorted set
"""
_set = self._set
if value not in _set:
_set.add(value)
self._list.add(value)
_add = add
def clear(self):
"""Remove all values from sorted set.
Runtime complexity: `O(n)`
"""
self._set.clear()
self._list.clear()
def copy(self):
"""Return a shallow copy of the sorted set.
Runtime complexity: `O(n)`
:return: new sorted set
"""
return self._fromset(set(self._set), key=self._key)
__copy__ = copy
def count(self, value):
"""Return number of occurrences of `value` in the sorted set.
Runtime complexity: `O(1)`
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.count(3)
1
:param value: value to count in sorted set
:return: count
"""
return 1 if value in self._set else 0
def discard(self, value):
"""Remove `value` from sorted set if it is a member.
If `value` is not a member, do nothing.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.discard(5)
>>> ss.discard(0)
>>> ss == set([1, 2, 3, 4])
True
:param value: `value` to discard from sorted set
"""
_set = self._set
if value in _set:
_set.remove(value)
self._list.remove(value)
_discard = discard
def pop(self, index=-1):
"""Remove and return value at `index` in sorted set.
Raise :exc:`IndexError` if the sorted set is empty or index is out of
range.
Negative indices are supported.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet('abcde')
>>> ss.pop()
'e'
>>> ss.pop(2)
'c'
>>> ss
SortedSet(['a', 'b', 'd'])
:param int index: index of value (default -1)
:return: value
:raises IndexError: if index is out of range
"""
# pylint: disable=arguments-differ
value = self._list.pop(index)
self._set.remove(value)
return value
def remove(self, value):
"""Remove `value` from sorted set; `value` must be a member.
If `value` is not a member, raise :exc:`KeyError`.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.remove(5)
>>> ss == set([1, 2, 3, 4])
True
>>> ss.remove(0)
Traceback (most recent call last):
...
KeyError: 0
:param value: `value` to remove from sorted set
:raises KeyError: if `value` is not in sorted set
"""
self._set.remove(value)
self._list.remove(value)
def difference(self, *iterables):
"""Return the difference of two or more sets as a new sorted set.
The `difference` method also corresponds to operator ``-``.
``ss.__sub__(iterable)`` <==> ``ss - iterable``
The difference is all values that are in this sorted set but not the
other `iterables`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.difference([4, 5, 6, 7])
SortedSet([1, 2, 3])
:param iterables: iterable arguments
:return: new sorted set
"""
diff = self._set.difference(*iterables)
return self._fromset(diff, key=self._key)
__sub__ = difference
def difference_update(self, *iterables):
"""Remove all values of `iterables` from this sorted set.
The `difference_update` method also corresponds to operator ``-=``.
``ss.__isub__(iterable)`` <==> ``ss -= iterable``
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.difference_update([4, 5, 6, 7])
>>> ss
SortedSet([1, 2, 3])
:param iterables: iterable arguments
:return: itself
"""
_set = self._set
_list = self._list
values = set(chain(*iterables))
if (4 * len(values)) > len(_set):
_set.difference_update(values)
_list.clear()
_list.update(_set)
else:
_discard = self._discard
for value in values:
_discard(value)
return self
__isub__ = difference_update
def intersection(self, *iterables):
"""Return the intersection of two or more sets as a new sorted set.
The `intersection` method also corresponds to operator ``&``.
``ss.__and__(iterable)`` <==> ``ss & iterable``
The intersection is all values that are in this sorted set and each of
the other `iterables`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.intersection([4, 5, 6, 7])
SortedSet([4, 5])
:param iterables: iterable arguments
:return: new sorted set
"""
intersect = self._set.intersection(*iterables)
return self._fromset(intersect, key=self._key)
__and__ = intersection
__rand__ = __and__
def intersection_update(self, *iterables):
"""Update the sorted set with the intersection of `iterables`.
The `intersection_update` method also corresponds to operator ``&=``.
``ss.__iand__(iterable)`` <==> ``ss &= iterable``
Keep only values found in itself and all `iterables`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.intersection_update([4, 5, 6, 7])
>>> ss
SortedSet([4, 5])
:param iterables: iterable arguments
:return: itself
"""
_set = self._set
_list = self._list
_set.intersection_update(*iterables)
_list.clear()
_list.update(_set)
return self
__iand__ = intersection_update
def symmetric_difference(self, other):
"""Return the symmetric difference with `other` as a new sorted set.
The `symmetric_difference` method also corresponds to operator ``^``.
``ss.__xor__(other)`` <==> ``ss ^ other``
The symmetric difference is all values tha are in exactly one of the
sets.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.symmetric_difference([4, 5, 6, 7])
SortedSet([1, 2, 3, 6, 7])
:param other: `other` iterable
:return: new sorted set
"""
diff = self._set.symmetric_difference(other)
return self._fromset(diff, key=self._key)
__xor__ = symmetric_difference
__rxor__ = __xor__
def symmetric_difference_update(self, other):
"""Update the sorted set with the symmetric difference with `other`.
The `symmetric_difference_update` method also corresponds to operator
``^=``.
``ss.__ixor__(other)`` <==> ``ss ^= other``
Keep only values found in exactly one of itself and `other`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.symmetric_difference_update([4, 5, 6, 7])
>>> ss
SortedSet([1, 2, 3, 6, 7])
:param other: `other` iterable
:return: itself
"""
_set = self._set
_list = self._list
_set.symmetric_difference_update(other)
_list.clear()
_list.update(_set)
return self
__ixor__ = symmetric_difference_update
def union(self, *iterables):
"""Return new sorted set with values from itself and all `iterables`.
The `union` method also corresponds to operator ``|``.
``ss.__or__(iterable)`` <==> ``ss | iterable``
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.union([4, 5, 6, 7])
SortedSet([1, 2, 3, 4, 5, 6, 7])
:param iterables: iterable arguments
:return: new sorted set
"""
return self.__class__(chain(iter(self), *iterables), key=self._key)
__or__ = union
__ror__ = __or__
def update(self, *iterables):
"""Update the sorted set adding values from all `iterables`.
The `update` method also corresponds to operator ``|=``.
``ss.__ior__(iterable)`` <==> ``ss |= iterable``
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.update([4, 5, 6, 7])
>>> ss
SortedSet([1, 2, 3, 4, 5, 6, 7])
:param iterables: iterable arguments
:return: itself
"""
_set = self._set
_list = self._list
values = set(chain(*iterables))
if (4 * len(values)) > len(_set):
_list = self._list
_set.update(values)
_list.clear()
_list.update(_set)
else:
_add = self._add
for value in values:
_add(value)
return self
__ior__ = update
_update = update
def __reduce__(self):
"""Support for pickle.
The tricks played with exposing methods in :func:`SortedSet.__init__`
confuse pickle so customize the reducer.
"""
return (type(self), (self._set, self._key))
@recursive_repr()
def __repr__(self):
"""Return string representation of sorted set.
``ss.__repr__()`` <==> ``repr(ss)``
:return: string representation
"""
_key = self._key
key = '' if _key is None else ', key={0!r}'.format(_key)
type_name = type(self).__name__
return '{0}({1!r}{2})'.format(type_name, list(self), key)
def _check(self):
"""Check invariants of sorted set.
Runtime complexity: `O(n)`
"""
_set = self._set
_list = self._list
_list._check()
assert len(_set) == len(_list)
assert all(value in _set for value in _list)