Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,72 @@
import itertools
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
notna,
)
def create_series():
return [
Series(dtype=np.float64, name="a"),
Series([np.nan] * 5),
Series([1.0] * 5),
Series(range(5, 0, -1)),
Series(range(5)),
Series([np.nan, 1.0, np.nan, 1.0, 1.0]),
Series([np.nan, 1.0, np.nan, 2.0, 3.0]),
Series([np.nan, 1.0, np.nan, 3.0, 2.0]),
]
def create_dataframes():
return [
DataFrame(columns=["a", "a"]),
DataFrame(np.arange(15).reshape((5, 3)), columns=["a", "a", 99]),
] + [DataFrame(s) for s in create_series()]
def is_constant(x):
values = x.values.ravel("K")
return len(set(values[notna(values)])) == 1
@pytest.fixture(
params=(
obj
for obj in itertools.chain(create_series(), create_dataframes())
if is_constant(obj)
),
)
def consistent_data(request):
return request.param
@pytest.fixture(params=create_series())
def series_data(request):
return request.param
@pytest.fixture(params=itertools.chain(create_series(), create_dataframes()))
def all_data(request):
"""
Test:
- Empty Series / DataFrame
- All NaN
- All consistent value
- Monotonically decreasing
- Monotonically increasing
- Monotonically consistent with NaNs
- Monotonically increasing with NaNs
- Monotonically decreasing with NaNs
"""
return request.param
@pytest.fixture(params=[0, 2])
def min_periods(request):
return request.param

View File

@ -0,0 +1,243 @@
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
concat,
)
import pandas._testing as tm
def create_mock_weights(obj, com, adjust, ignore_na):
if isinstance(obj, DataFrame):
if not len(obj.columns):
return DataFrame(index=obj.index, columns=obj.columns)
w = concat(
[
create_mock_series_weights(
obj.iloc[:, i], com=com, adjust=adjust, ignore_na=ignore_na
)
for i in range(len(obj.columns))
],
axis=1,
)
w.index = obj.index
w.columns = obj.columns
return w
else:
return create_mock_series_weights(obj, com, adjust, ignore_na)
def create_mock_series_weights(s, com, adjust, ignore_na):
w = Series(np.nan, index=s.index, name=s.name)
alpha = 1.0 / (1.0 + com)
if adjust:
count = 0
for i in range(len(s)):
if s.iat[i] == s.iat[i]:
w.iat[i] = pow(1.0 / (1.0 - alpha), count)
count += 1
elif not ignore_na:
count += 1
else:
sum_wts = 0.0
prev_i = -1
count = 0
for i in range(len(s)):
if s.iat[i] == s.iat[i]:
if prev_i == -1:
w.iat[i] = 1.0
else:
w.iat[i] = alpha * sum_wts / pow(1.0 - alpha, count - prev_i)
sum_wts += w.iat[i]
prev_i = count
count += 1
elif not ignore_na:
count += 1
return w
def test_ewm_consistency_mean(all_data, adjust, ignore_na, min_periods):
com = 3.0
result = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean()
weights = create_mock_weights(all_data, com=com, adjust=adjust, ignore_na=ignore_na)
expected = all_data.multiply(weights).cumsum().divide(weights.cumsum()).ffill()
expected[
all_data.expanding().count() < (max(min_periods, 1) if min_periods else 1)
] = np.nan
tm.assert_equal(result, expected.astype("float64"))
def test_ewm_consistency_consistent(consistent_data, adjust, ignore_na, min_periods):
com = 3.0
count_x = consistent_data.expanding().count()
mean_x = consistent_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean()
# check that correlation of a series with itself is either 1 or NaN
corr_x_x = consistent_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).corr(consistent_data)
exp = (
consistent_data.max()
if isinstance(consistent_data, Series)
else consistent_data.max().max()
)
# check mean of constant series
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = exp
tm.assert_equal(mean_x, expected)
# check correlation of constant series with itself is NaN
expected[:] = np.nan
tm.assert_equal(corr_x_x, expected)
def test_ewm_consistency_var_debiasing_factors(
all_data, adjust, ignore_na, min_periods
):
com = 3.0
# check variance debiasing factors
var_unbiased_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=False)
var_biased_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=True)
weights = create_mock_weights(all_data, com=com, adjust=adjust, ignore_na=ignore_na)
cum_sum = weights.cumsum().ffill()
cum_sum_sq = (weights * weights).cumsum().ffill()
numerator = cum_sum * cum_sum
denominator = numerator - cum_sum_sq
denominator[denominator <= 0.0] = np.nan
var_debiasing_factors_x = numerator / denominator
tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)
@pytest.mark.parametrize("bias", [True, False])
def test_moments_consistency_var(all_data, adjust, ignore_na, min_periods, bias):
com = 3.0
mean_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean()
var_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=bias)
assert not (var_x < 0).any().any()
if bias:
# check that biased var(x) == mean(x^2) - mean(x)^2
mean_x2 = (
(all_data * all_data)
.ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na)
.mean()
)
tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x))
@pytest.mark.parametrize("bias", [True, False])
def test_moments_consistency_var_constant(
consistent_data, adjust, ignore_na, min_periods, bias
):
com = 3.0
count_x = consistent_data.expanding(min_periods=min_periods).count()
var_x = consistent_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=bias)
# check that variance of constant series is identically 0
assert not (var_x > 0).any().any()
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = 0.0
if not bias:
expected[count_x < 2] = np.nan
tm.assert_equal(var_x, expected)
@pytest.mark.parametrize("bias", [True, False])
def test_ewm_consistency_std(all_data, adjust, ignore_na, min_periods, bias):
com = 3.0
var_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=bias)
assert not (var_x < 0).any().any()
std_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).std(bias=bias)
assert not (std_x < 0).any().any()
# check that var(x) == std(x)^2
tm.assert_equal(var_x, std_x * std_x)
cov_x_x = all_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).cov(all_data, bias=bias)
assert not (cov_x_x < 0).any().any()
# check that var(x) == cov(x, x)
tm.assert_equal(var_x, cov_x_x)
@pytest.mark.parametrize("bias", [True, False])
def test_ewm_consistency_series_cov_corr(
series_data, adjust, ignore_na, min_periods, bias
):
com = 3.0
var_x_plus_y = (
(series_data + series_data)
.ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na)
.var(bias=bias)
)
var_x = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=bias)
var_y = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).var(bias=bias)
cov_x_y = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).cov(series_data, bias=bias)
# check that cov(x, y) == (var(x+y) - var(x) -
# var(y)) / 2
tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))
# check that corr(x, y) == cov(x, y) / (std(x) *
# std(y))
corr_x_y = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).corr(series_data)
std_x = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).std(bias=bias)
std_y = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).std(bias=bias)
tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
if bias:
# check that biased cov(x, y) == mean(x*y) -
# mean(x)*mean(y)
mean_x = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean()
mean_y = series_data.ewm(
com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na
).mean()
mean_x_times_y = (
(series_data * series_data)
.ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na)
.mean()
)
tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))

View File

@ -0,0 +1,144 @@
import numpy as np
import pytest
from pandas import Series
import pandas._testing as tm
def no_nans(x):
return x.notna().all().all()
def all_na(x):
return x.isnull().all().all()
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum])
def test_expanding_apply_consistency_sum_nans(request, all_data, min_periods, f):
if f is np.sum:
if not no_nans(all_data) and not (
all_na(all_data) and not all_data.empty and min_periods > 0
):
request.applymarker(
pytest.mark.xfail(reason="np.sum has different behavior with NaNs")
)
expanding_f_result = all_data.expanding(min_periods=min_periods).sum()
expanding_apply_f_result = all_data.expanding(min_periods=min_periods).apply(
func=f, raw=True
)
tm.assert_equal(expanding_f_result, expanding_apply_f_result)
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var(all_data, min_periods, ddof):
var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
if ddof == 0:
# check that biased var(x) == mean(x^2) - mean(x)^2
mean_x2 = (all_data * all_data).expanding(min_periods=min_periods).mean()
mean_x = all_data.expanding(min_periods=min_periods).mean()
tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x))
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var_constant(consistent_data, min_periods, ddof):
count_x = consistent_data.expanding(min_periods=min_periods).count()
var_x = consistent_data.expanding(min_periods=min_periods).var(ddof=ddof)
# check that variance of constant series is identically 0
assert not (var_x > 0).any().any()
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = 0.0
if ddof == 1:
expected[count_x < 2] = np.nan
tm.assert_equal(var_x, expected)
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_var_std_cov(all_data, min_periods, ddof):
var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
std_x = all_data.expanding(min_periods=min_periods).std(ddof=ddof)
assert not (std_x < 0).any().any()
# check that var(x) == std(x)^2
tm.assert_equal(var_x, std_x * std_x)
cov_x_x = all_data.expanding(min_periods=min_periods).cov(all_data, ddof=ddof)
assert not (cov_x_x < 0).any().any()
# check that var(x) == cov(x, x)
tm.assert_equal(var_x, cov_x_x)
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_series_cov_corr(series_data, min_periods, ddof):
var_x_plus_y = (
(series_data + series_data).expanding(min_periods=min_periods).var(ddof=ddof)
)
var_x = series_data.expanding(min_periods=min_periods).var(ddof=ddof)
var_y = series_data.expanding(min_periods=min_periods).var(ddof=ddof)
cov_x_y = series_data.expanding(min_periods=min_periods).cov(series_data, ddof=ddof)
# check that cov(x, y) == (var(x+y) - var(x) -
# var(y)) / 2
tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))
# check that corr(x, y) == cov(x, y) / (std(x) *
# std(y))
corr_x_y = series_data.expanding(min_periods=min_periods).corr(series_data)
std_x = series_data.expanding(min_periods=min_periods).std(ddof=ddof)
std_y = series_data.expanding(min_periods=min_periods).std(ddof=ddof)
tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
if ddof == 0:
# check that biased cov(x, y) == mean(x*y) -
# mean(x)*mean(y)
mean_x = series_data.expanding(min_periods=min_periods).mean()
mean_y = series_data.expanding(min_periods=min_periods).mean()
mean_x_times_y = (
(series_data * series_data).expanding(min_periods=min_periods).mean()
)
tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
def test_expanding_consistency_mean(all_data, min_periods):
result = all_data.expanding(min_periods=min_periods).mean()
expected = (
all_data.expanding(min_periods=min_periods).sum()
/ all_data.expanding(min_periods=min_periods).count()
)
tm.assert_equal(result, expected.astype("float64"))
def test_expanding_consistency_constant(consistent_data, min_periods):
count_x = consistent_data.expanding().count()
mean_x = consistent_data.expanding(min_periods=min_periods).mean()
# check that correlation of a series with itself is either 1 or NaN
corr_x_x = consistent_data.expanding(min_periods=min_periods).corr(consistent_data)
exp = (
consistent_data.max()
if isinstance(consistent_data, Series)
else consistent_data.max().max()
)
# check mean of constant series
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = exp
tm.assert_equal(mean_x, expected)
# check correlation of constant series with itself is NaN
expected[:] = np.nan
tm.assert_equal(corr_x_x, expected)
def test_expanding_consistency_var_debiasing_factors(all_data, min_periods):
# check variance debiasing factors
var_unbiased_x = all_data.expanding(min_periods=min_periods).var()
var_biased_x = all_data.expanding(min_periods=min_periods).var(ddof=0)
var_debiasing_factors_x = all_data.expanding().count() / (
all_data.expanding().count() - 1.0
).replace(0.0, np.nan)
tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)

View File

@ -0,0 +1,244 @@
import numpy as np
import pytest
from pandas import Series
import pandas._testing as tm
def no_nans(x):
return x.notna().all().all()
def all_na(x):
return x.isnull().all().all()
@pytest.fixture(params=[(1, 0), (5, 1)])
def rolling_consistency_cases(request):
"""window, min_periods"""
return request.param
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum])
def test_rolling_apply_consistency_sum(
request, all_data, rolling_consistency_cases, center, f
):
window, min_periods = rolling_consistency_cases
if f is np.sum:
if not no_nans(all_data) and not (
all_na(all_data) and not all_data.empty and min_periods > 0
):
request.applymarker(
pytest.mark.xfail(reason="np.sum has different behavior with NaNs")
)
rolling_f_result = all_data.rolling(
window=window, min_periods=min_periods, center=center
).sum()
rolling_apply_f_result = all_data.rolling(
window=window, min_periods=min_periods, center=center
).apply(func=f, raw=True)
tm.assert_equal(rolling_f_result, rolling_apply_f_result)
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var(all_data, rolling_consistency_cases, center, ddof):
window, min_periods = rolling_consistency_cases
var_x = all_data.rolling(window=window, min_periods=min_periods, center=center).var(
ddof=ddof
)
assert not (var_x < 0).any().any()
if ddof == 0:
# check that biased var(x) == mean(x^2) - mean(x)^2
mean_x = all_data.rolling(
window=window, min_periods=min_periods, center=center
).mean()
mean_x2 = (
(all_data * all_data)
.rolling(window=window, min_periods=min_periods, center=center)
.mean()
)
tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x))
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var_constant(
consistent_data, rolling_consistency_cases, center, ddof
):
window, min_periods = rolling_consistency_cases
count_x = consistent_data.rolling(
window=window, min_periods=min_periods, center=center
).count()
var_x = consistent_data.rolling(
window=window, min_periods=min_periods, center=center
).var(ddof=ddof)
# check that variance of constant series is identically 0
assert not (var_x > 0).any().any()
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = 0.0
if ddof == 1:
expected[count_x < 2] = np.nan
tm.assert_equal(var_x, expected)
@pytest.mark.parametrize("ddof", [0, 1])
def test_rolling_consistency_var_std_cov(
all_data, rolling_consistency_cases, center, ddof
):
window, min_periods = rolling_consistency_cases
var_x = all_data.rolling(window=window, min_periods=min_periods, center=center).var(
ddof=ddof
)
assert not (var_x < 0).any().any()
std_x = all_data.rolling(window=window, min_periods=min_periods, center=center).std(
ddof=ddof
)
assert not (std_x < 0).any().any()
# check that var(x) == std(x)^2
tm.assert_equal(var_x, std_x * std_x)
cov_x_x = all_data.rolling(
window=window, min_periods=min_periods, center=center
).cov(all_data, ddof=ddof)
assert not (cov_x_x < 0).any().any()
# check that var(x) == cov(x, x)
tm.assert_equal(var_x, cov_x_x)
@pytest.mark.parametrize("ddof", [0, 1])
def test_rolling_consistency_series_cov_corr(
series_data, rolling_consistency_cases, center, ddof
):
window, min_periods = rolling_consistency_cases
var_x_plus_y = (
(series_data + series_data)
.rolling(window=window, min_periods=min_periods, center=center)
.var(ddof=ddof)
)
var_x = series_data.rolling(
window=window, min_periods=min_periods, center=center
).var(ddof=ddof)
var_y = series_data.rolling(
window=window, min_periods=min_periods, center=center
).var(ddof=ddof)
cov_x_y = series_data.rolling(
window=window, min_periods=min_periods, center=center
).cov(series_data, ddof=ddof)
# check that cov(x, y) == (var(x+y) - var(x) -
# var(y)) / 2
tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))
# check that corr(x, y) == cov(x, y) / (std(x) *
# std(y))
corr_x_y = series_data.rolling(
window=window, min_periods=min_periods, center=center
).corr(series_data)
std_x = series_data.rolling(
window=window, min_periods=min_periods, center=center
).std(ddof=ddof)
std_y = series_data.rolling(
window=window, min_periods=min_periods, center=center
).std(ddof=ddof)
tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
if ddof == 0:
# check that biased cov(x, y) == mean(x*y) -
# mean(x)*mean(y)
mean_x = series_data.rolling(
window=window, min_periods=min_periods, center=center
).mean()
mean_y = series_data.rolling(
window=window, min_periods=min_periods, center=center
).mean()
mean_x_times_y = (
(series_data * series_data)
.rolling(window=window, min_periods=min_periods, center=center)
.mean()
)
tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
def test_rolling_consistency_mean(all_data, rolling_consistency_cases, center):
window, min_periods = rolling_consistency_cases
result = all_data.rolling(
window=window, min_periods=min_periods, center=center
).mean()
expected = (
all_data.rolling(window=window, min_periods=min_periods, center=center)
.sum()
.divide(
all_data.rolling(
window=window, min_periods=min_periods, center=center
).count()
)
)
tm.assert_equal(result, expected.astype("float64"))
def test_rolling_consistency_constant(
consistent_data, rolling_consistency_cases, center
):
window, min_periods = rolling_consistency_cases
count_x = consistent_data.rolling(
window=window, min_periods=min_periods, center=center
).count()
mean_x = consistent_data.rolling(
window=window, min_periods=min_periods, center=center
).mean()
# check that correlation of a series with itself is either 1 or NaN
corr_x_x = consistent_data.rolling(
window=window, min_periods=min_periods, center=center
).corr(consistent_data)
exp = (
consistent_data.max()
if isinstance(consistent_data, Series)
else consistent_data.max().max()
)
# check mean of constant series
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = exp
tm.assert_equal(mean_x, expected)
# check correlation of constant series with itself is NaN
expected[:] = np.nan
tm.assert_equal(corr_x_x, expected)
def test_rolling_consistency_var_debiasing_factors(
all_data, rolling_consistency_cases, center
):
window, min_periods = rolling_consistency_cases
# check variance debiasing factors
var_unbiased_x = all_data.rolling(
window=window, min_periods=min_periods, center=center
).var()
var_biased_x = all_data.rolling(
window=window, min_periods=min_periods, center=center
).var(ddof=0)
var_debiasing_factors_x = (
all_data.rolling(window=window, min_periods=min_periods, center=center)
.count()
.divide(
(
all_data.rolling(
window=window, min_periods=min_periods, center=center
).count()
- 1.0
).replace(0.0, np.nan)
)
)
tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)