Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@@ -0,0 +1,185 @@
import math
import numpy as np
import pytest
import pandas as pd
from pandas import (
Series,
date_range,
isna,
)
import pandas._testing as tm
class TestSeriesCov:
def test_cov(self, datetime_series):
# full overlap
tm.assert_almost_equal(
datetime_series.cov(datetime_series), datetime_series.std() ** 2
)
# partial overlap
tm.assert_almost_equal(
datetime_series[:15].cov(datetime_series[5:]),
datetime_series[5:15].std() ** 2,
)
# No overlap
assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.cov(cp))
# min_periods
assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12))
ts1 = datetime_series[:15].reindex(datetime_series.index)
ts2 = datetime_series[5:].reindex(datetime_series.index)
assert isna(ts1.cov(ts2, min_periods=12))
@pytest.mark.parametrize("test_ddof", [None, 0, 1, 2, 3])
@pytest.mark.parametrize("dtype", ["float64", "Float64"])
def test_cov_ddof(self, test_ddof, dtype):
# GH#34611
np_array1 = np.random.default_rng(2).random(10)
np_array2 = np.random.default_rng(2).random(10)
s1 = Series(np_array1, dtype=dtype)
s2 = Series(np_array2, dtype=dtype)
result = s1.cov(s2, ddof=test_ddof)
expected = np.cov(np_array1, np_array2, ddof=test_ddof)[0][1]
assert math.isclose(expected, result)
class TestSeriesCorr:
@pytest.mark.parametrize("dtype", ["float64", "Float64"])
def test_corr(self, datetime_series, dtype):
stats = pytest.importorskip("scipy.stats")
datetime_series = datetime_series.astype(dtype)
# full overlap
tm.assert_almost_equal(datetime_series.corr(datetime_series), 1)
# partial overlap
tm.assert_almost_equal(datetime_series[:15].corr(datetime_series[5:]), 1)
assert isna(datetime_series[:15].corr(datetime_series[5:], min_periods=12))
ts1 = datetime_series[:15].reindex(datetime_series.index)
ts2 = datetime_series[5:].reindex(datetime_series.index)
assert isna(ts1.corr(ts2, min_periods=12))
# No overlap
assert np.isnan(datetime_series[::2].corr(datetime_series[1::2]))
# all NA
cp = datetime_series[:10].copy()
cp[:] = np.nan
assert isna(cp.corr(cp))
A = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
B = A.copy()
result = A.corr(B)
expected, _ = stats.pearsonr(A, B)
tm.assert_almost_equal(result, expected)
def test_corr_rank(self):
stats = pytest.importorskip("scipy.stats")
# kendall and spearman
A = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
)
B = A.copy()
A[-5:] = A[:5].copy()
result = A.corr(B, method="kendall")
expected = stats.kendalltau(A, B)[0]
tm.assert_almost_equal(result, expected)
result = A.corr(B, method="spearman")
expected = stats.spearmanr(A, B)[0]
tm.assert_almost_equal(result, expected)
# results from R
A = Series(
[
-0.89926396,
0.94209606,
-1.03289164,
-0.95445587,
0.76910310,
-0.06430576,
-2.09704447,
0.40660407,
-0.89926396,
0.94209606,
]
)
B = Series(
[
-1.01270225,
-0.62210117,
-1.56895827,
0.59592943,
-0.01680292,
1.17258718,
-1.06009347,
-0.10222060,
-0.89076239,
0.89372375,
]
)
kexp = 0.4319297
sexp = 0.5853767
tm.assert_almost_equal(A.corr(B, method="kendall"), kexp)
tm.assert_almost_equal(A.corr(B, method="spearman"), sexp)
def test_corr_invalid_method(self):
# GH PR #22298
s1 = Series(np.random.default_rng(2).standard_normal(10))
s2 = Series(np.random.default_rng(2).standard_normal(10))
msg = "method must be either 'pearson', 'spearman', 'kendall', or a callable, "
with pytest.raises(ValueError, match=msg):
s1.corr(s2, method="____")
def test_corr_callable_method(self, datetime_series):
# simple correlation example
# returns 1 if exact equality, 0 otherwise
my_corr = lambda a, b: 1.0 if (a == b).all() else 0.0
# simple example
s1 = Series([1, 2, 3, 4, 5])
s2 = Series([5, 4, 3, 2, 1])
expected = 0
tm.assert_almost_equal(s1.corr(s2, method=my_corr), expected)
# full overlap
tm.assert_almost_equal(
datetime_series.corr(datetime_series, method=my_corr), 1.0
)
# partial overlap
tm.assert_almost_equal(
datetime_series[:15].corr(datetime_series[5:], method=my_corr), 1.0
)
# No overlap
assert np.isnan(
datetime_series[::2].corr(datetime_series[1::2], method=my_corr)
)
# dataframe example
df = pd.DataFrame([s1, s2])
expected = pd.DataFrame([{0: 1.0, 1: 0}, {0: 0, 1: 1.0}])
tm.assert_almost_equal(df.transpose().corr(method=my_corr), expected)