Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,50 @@
from collections.abc import Generator
from contextlib import contextmanager
import pathlib
import tempfile
import pytest
from pandas.io.pytables import HDFStore
tables = pytest.importorskip("tables")
# set these parameters so we don't have file sharing
tables.parameters.MAX_NUMEXPR_THREADS = 1
tables.parameters.MAX_BLOSC_THREADS = 1
tables.parameters.MAX_THREADS = 1
def safe_close(store):
try:
if store is not None:
store.close()
except OSError:
pass
# contextmanager to ensure the file cleanup
@contextmanager
def ensure_clean_store(
path, mode="a", complevel=None, complib=None, fletcher32=False
) -> Generator[HDFStore, None, None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmp_path = pathlib.Path(tmpdirname, path)
with HDFStore(
tmp_path,
mode=mode,
complevel=complevel,
complib=complib,
fletcher32=fletcher32,
) as store:
yield store
def _maybe_remove(store, key):
"""
For tests using tables, try removing the table to be sure there is
no content from previous tests using the same table name.
"""
try:
store.remove(key)
except (ValueError, KeyError):
pass

View File

@ -0,0 +1,9 @@
import uuid
import pytest
@pytest.fixture
def setup_path():
"""Fixture for setup path"""
return f"tmp.__{uuid.uuid4()}__.h5"

View File

@ -0,0 +1,986 @@
import datetime
from datetime import timedelta
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Index,
Series,
_testing as tm,
concat,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
pytestmark = pytest.mark.single_cpu
tables = pytest.importorskip("tables")
@pytest.mark.filterwarnings("ignore::tables.NaturalNameWarning")
def test_append(setup_path):
with ensure_clean_store(setup_path) as store:
# this is allowed by almost always don't want to do it
# tables.NaturalNameWarning):
df = DataFrame(
np.random.default_rng(2).standard_normal((20, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=20, freq="B"),
)
_maybe_remove(store, "df1")
store.append("df1", df[:10])
store.append("df1", df[10:])
tm.assert_frame_equal(store["df1"], df)
_maybe_remove(store, "df2")
store.put("df2", df[:10], format="table")
store.append("df2", df[10:])
tm.assert_frame_equal(store["df2"], df)
_maybe_remove(store, "df3")
store.append("/df3", df[:10])
store.append("/df3", df[10:])
tm.assert_frame_equal(store["df3"], df)
# this is allowed by almost always don't want to do it
# tables.NaturalNameWarning
_maybe_remove(store, "/df3 foo")
store.append("/df3 foo", df[:10])
store.append("/df3 foo", df[10:])
tm.assert_frame_equal(store["df3 foo"], df)
# dtype issues - mizxed type in a single object column
df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]])
df["mixed_column"] = "testing"
df.loc[2, "mixed_column"] = np.nan
_maybe_remove(store, "df")
store.append("df", df)
tm.assert_frame_equal(store["df"], df)
# uints - test storage of uints
uint_data = DataFrame(
{
"u08": Series(
np.random.default_rng(2).integers(0, high=255, size=5),
dtype=np.uint8,
),
"u16": Series(
np.random.default_rng(2).integers(0, high=65535, size=5),
dtype=np.uint16,
),
"u32": Series(
np.random.default_rng(2).integers(0, high=2**30, size=5),
dtype=np.uint32,
),
"u64": Series(
[2**58, 2**59, 2**60, 2**61, 2**62],
dtype=np.uint64,
),
},
index=np.arange(5),
)
_maybe_remove(store, "uints")
store.append("uints", uint_data)
tm.assert_frame_equal(store["uints"], uint_data, check_index_type=True)
# uints - test storage of uints in indexable columns
_maybe_remove(store, "uints")
# 64-bit indices not yet supported
store.append("uints", uint_data, data_columns=["u08", "u16", "u32"])
tm.assert_frame_equal(store["uints"], uint_data, check_index_type=True)
def test_append_series(setup_path):
with ensure_clean_store(setup_path) as store:
# basic
ss = Series(range(20), dtype=np.float64, index=[f"i_{i}" for i in range(20)])
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
ns = Series(np.arange(100))
store.append("ss", ss)
result = store["ss"]
tm.assert_series_equal(result, ss)
assert result.name is None
store.append("ts", ts)
result = store["ts"]
tm.assert_series_equal(result, ts)
assert result.name is None
ns.name = "foo"
store.append("ns", ns)
result = store["ns"]
tm.assert_series_equal(result, ns)
assert result.name == ns.name
# select on the values
expected = ns[ns > 60]
result = store.select("ns", "foo>60")
tm.assert_series_equal(result, expected)
# select on the index and values
expected = ns[(ns > 70) & (ns.index < 90)]
result = store.select("ns", "foo>70 and index<90")
tm.assert_series_equal(result, expected, check_index_type=True)
# multi-index
mi = DataFrame(np.random.default_rng(2).standard_normal((5, 1)), columns=["A"])
mi["B"] = np.arange(len(mi))
mi["C"] = "foo"
mi.loc[3:5, "C"] = "bar"
mi.set_index(["C", "B"], inplace=True)
s = mi.stack(future_stack=True)
s.index = s.index.droplevel(2)
store.append("mi", s)
tm.assert_series_equal(store["mi"], s, check_index_type=True)
def test_append_some_nans(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
{
"A": Series(np.random.default_rng(2).standard_normal(20)).astype(
"int32"
),
"A1": np.random.default_rng(2).standard_normal(20),
"A2": np.random.default_rng(2).standard_normal(20),
"B": "foo",
"C": "bar",
"D": Timestamp("2001-01-01").as_unit("ns"),
"E": Timestamp("2001-01-02").as_unit("ns"),
},
index=np.arange(20),
)
# some nans
_maybe_remove(store, "df1")
df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan
store.append("df1", df[:10])
store.append("df1", df[10:])
tm.assert_frame_equal(store["df1"], df, check_index_type=True)
# first column
df1 = df.copy()
df1["A1"] = np.nan
_maybe_remove(store, "df1")
store.append("df1", df1[:10])
store.append("df1", df1[10:])
tm.assert_frame_equal(store["df1"], df1, check_index_type=True)
# 2nd column
df2 = df.copy()
df2["A2"] = np.nan
_maybe_remove(store, "df2")
store.append("df2", df2[:10])
store.append("df2", df2[10:])
tm.assert_frame_equal(store["df2"], df2, check_index_type=True)
# datetimes
df3 = df.copy()
df3["E"] = np.nan
_maybe_remove(store, "df3")
store.append("df3", df3[:10])
store.append("df3", df3[10:])
tm.assert_frame_equal(store["df3"], df3, check_index_type=True)
def test_append_all_nans(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
{
"A1": np.random.default_rng(2).standard_normal(20),
"A2": np.random.default_rng(2).standard_normal(20),
},
index=np.arange(20),
)
df.loc[0:15, :] = np.nan
# nan some entire rows (dropna=True)
_maybe_remove(store, "df")
store.append("df", df[:10], dropna=True)
store.append("df", df[10:], dropna=True)
tm.assert_frame_equal(store["df"], df[-4:], check_index_type=True)
# nan some entire rows (dropna=False)
_maybe_remove(store, "df2")
store.append("df2", df[:10], dropna=False)
store.append("df2", df[10:], dropna=False)
tm.assert_frame_equal(store["df2"], df, check_index_type=True)
# tests the option io.hdf.dropna_table
with pd.option_context("io.hdf.dropna_table", False):
_maybe_remove(store, "df3")
store.append("df3", df[:10])
store.append("df3", df[10:])
tm.assert_frame_equal(store["df3"], df)
with pd.option_context("io.hdf.dropna_table", True):
_maybe_remove(store, "df4")
store.append("df4", df[:10])
store.append("df4", df[10:])
tm.assert_frame_equal(store["df4"], df[-4:])
# nan some entire rows (string are still written!)
df = DataFrame(
{
"A1": np.random.default_rng(2).standard_normal(20),
"A2": np.random.default_rng(2).standard_normal(20),
"B": "foo",
"C": "bar",
},
index=np.arange(20),
)
df.loc[0:15, :] = np.nan
_maybe_remove(store, "df")
store.append("df", df[:10], dropna=True)
store.append("df", df[10:], dropna=True)
tm.assert_frame_equal(store["df"], df, check_index_type=True)
_maybe_remove(store, "df2")
store.append("df2", df[:10], dropna=False)
store.append("df2", df[10:], dropna=False)
tm.assert_frame_equal(store["df2"], df, check_index_type=True)
# nan some entire rows (but since we have dates they are still
# written!)
df = DataFrame(
{
"A1": np.random.default_rng(2).standard_normal(20),
"A2": np.random.default_rng(2).standard_normal(20),
"B": "foo",
"C": "bar",
"D": Timestamp("2001-01-01").as_unit("ns"),
"E": Timestamp("2001-01-02").as_unit("ns"),
},
index=np.arange(20),
)
df.loc[0:15, :] = np.nan
_maybe_remove(store, "df")
store.append("df", df[:10], dropna=True)
store.append("df", df[10:], dropna=True)
tm.assert_frame_equal(store["df"], df, check_index_type=True)
_maybe_remove(store, "df2")
store.append("df2", df[:10], dropna=False)
store.append("df2", df[10:], dropna=False)
tm.assert_frame_equal(store["df2"], df, check_index_type=True)
def test_append_frame_column_oriented(setup_path):
with ensure_clean_store(setup_path) as store:
# column oriented
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df.index = df.index._with_freq(None) # freq doesn't round-trip
_maybe_remove(store, "df1")
store.append("df1", df.iloc[:, :2], axes=["columns"])
store.append("df1", df.iloc[:, 2:])
tm.assert_frame_equal(store["df1"], df)
result = store.select("df1", "columns=A")
expected = df.reindex(columns=["A"])
tm.assert_frame_equal(expected, result)
# selection on the non-indexable
result = store.select("df1", ("columns=A", "index=df.index[0:4]"))
expected = df.reindex(columns=["A"], index=df.index[0:4])
tm.assert_frame_equal(expected, result)
# this isn't supported
msg = re.escape(
"passing a filterable condition to a non-table indexer "
"[Filter: Not Initialized]"
)
with pytest.raises(TypeError, match=msg):
store.select("df1", "columns=A and index>df.index[4]")
def test_append_with_different_block_ordering(setup_path):
# GH 4096; using same frames, but different block orderings
with ensure_clean_store(setup_path) as store:
for i in range(10):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB")
)
df["index"] = range(10)
df["index"] += i * 10
df["int64"] = Series([1] * len(df), dtype="int64")
df["int16"] = Series([1] * len(df), dtype="int16")
if i % 2 == 0:
del df["int64"]
df["int64"] = Series([1] * len(df), dtype="int64")
if i % 3 == 0:
a = df.pop("A")
df["A"] = a
df.set_index("index", inplace=True)
store.append("df", df)
# test a different ordering but with more fields (like invalid
# combinations)
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 2)),
columns=list("AB"),
dtype="float64",
)
df["int64"] = Series([1] * len(df), dtype="int64")
df["int16"] = Series([1] * len(df), dtype="int16")
store.append("df", df)
# store additional fields in different blocks
df["int16_2"] = Series([1] * len(df), dtype="int16")
msg = re.escape(
"cannot match existing table structure for [int16] on appending data"
)
with pytest.raises(ValueError, match=msg):
store.append("df", df)
# store multiple additional fields in different blocks
df["float_3"] = Series([1.0] * len(df), dtype="float64")
msg = re.escape(
"cannot match existing table structure for [A,B] on appending data"
)
with pytest.raises(ValueError, match=msg):
store.append("df", df)
def test_append_with_strings(setup_path):
with ensure_clean_store(setup_path) as store:
def check_col(key, name, size):
assert (
getattr(store.get_storer(key).table.description, name).itemsize == size
)
# avoid truncation on elements
df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]])
store.append("df_big", df)
tm.assert_frame_equal(store.select("df_big"), df)
check_col("df_big", "values_block_1", 15)
# appending smaller string ok
df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]])
store.append("df_big", df2)
expected = concat([df, df2])
tm.assert_frame_equal(store.select("df_big"), expected)
check_col("df_big", "values_block_1", 15)
# avoid truncation on elements
df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]])
store.append("df_big2", df, min_itemsize={"values": 50})
tm.assert_frame_equal(store.select("df_big2"), df)
check_col("df_big2", "values_block_1", 50)
# bigger string on next append
store.append("df_new", df)
df_new = DataFrame([[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]])
msg = (
r"Trying to store a string with len \[26\] in "
r"\[values_block_1\] column but\n"
r"this column has a limit of \[15\]!\n"
"Consider using min_itemsize to preset the sizes on these "
"columns"
)
with pytest.raises(ValueError, match=msg):
store.append("df_new", df_new)
# min_itemsize on Series index (GH 11412)
df = DataFrame(
{
"A": [0.0, 1.0, 2.0, 3.0, 4.0],
"B": [0.0, 1.0, 0.0, 1.0, 0.0],
"C": Index(["foo1", "foo2", "foo3", "foo4", "foo5"], dtype=object),
"D": date_range("20130101", periods=5),
}
).set_index("C")
store.append("ss", df["B"], min_itemsize={"index": 4})
tm.assert_series_equal(store.select("ss"), df["B"])
# same as above, with data_columns=True
store.append("ss2", df["B"], data_columns=True, min_itemsize={"index": 4})
tm.assert_series_equal(store.select("ss2"), df["B"])
# min_itemsize in index without appending (GH 10381)
store.put("ss3", df, format="table", min_itemsize={"index": 6})
# just make sure there is a longer string:
df2 = df.copy().reset_index().assign(C="longer").set_index("C")
store.append("ss3", df2)
tm.assert_frame_equal(store.select("ss3"), concat([df, df2]))
# same as above, with a Series
store.put("ss4", df["B"], format="table", min_itemsize={"index": 6})
store.append("ss4", df2["B"])
tm.assert_series_equal(store.select("ss4"), concat([df["B"], df2["B"]]))
# with nans
_maybe_remove(store, "df")
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df["string"] = "foo"
df.loc[df.index[1:4], "string"] = np.nan
df["string2"] = "bar"
df.loc[df.index[4:8], "string2"] = np.nan
df["string3"] = "bah"
df.loc[df.index[1:], "string3"] = np.nan
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
with ensure_clean_store(setup_path) as store:
df = DataFrame({"A": "foo", "B": "bar"}, index=range(10))
# a min_itemsize that creates a data_column
_maybe_remove(store, "df")
store.append("df", df, min_itemsize={"A": 200})
check_col("df", "A", 200)
assert store.get_storer("df").data_columns == ["A"]
# a min_itemsize that creates a data_column2
_maybe_remove(store, "df")
store.append("df", df, data_columns=["B"], min_itemsize={"A": 200})
check_col("df", "A", 200)
assert store.get_storer("df").data_columns == ["B", "A"]
# a min_itemsize that creates a data_column2
_maybe_remove(store, "df")
store.append("df", df, data_columns=["B"], min_itemsize={"values": 200})
check_col("df", "B", 200)
check_col("df", "values_block_0", 200)
assert store.get_storer("df").data_columns == ["B"]
# infer the .typ on subsequent appends
_maybe_remove(store, "df")
store.append("df", df[:5], min_itemsize=200)
store.append("df", df[5:], min_itemsize=200)
tm.assert_frame_equal(store["df"], df)
# invalid min_itemsize keys
df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"])
_maybe_remove(store, "df")
msg = re.escape(
"min_itemsize has the key [foo] which is not an axis or data_column"
)
with pytest.raises(ValueError, match=msg):
store.append("df", df, min_itemsize={"foo": 20, "foobar": 20})
def test_append_with_empty_string(setup_path):
with ensure_clean_store(setup_path) as store:
# with all empty strings (GH 12242)
df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]})
store.append("df", df[:-1], min_itemsize={"x": 1})
store.append("df", df[-1:], min_itemsize={"x": 1})
tm.assert_frame_equal(store.select("df"), df)
def test_append_with_data_columns(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df.iloc[0, df.columns.get_loc("B")] = 1.0
_maybe_remove(store, "df")
store.append("df", df[:2], data_columns=["B"])
store.append("df", df[2:])
tm.assert_frame_equal(store["df"], df)
# check that we have indices created
assert store._handle.root.df.table.cols.index.is_indexed is True
assert store._handle.root.df.table.cols.B.is_indexed is True
# data column searching
result = store.select("df", "B>0")
expected = df[df.B > 0]
tm.assert_frame_equal(result, expected)
# data column searching (with an indexable and a data_columns)
result = store.select("df", "B>0 and index>df.index[3]")
df_new = df.reindex(index=df.index[4:])
expected = df_new[df_new.B > 0]
tm.assert_frame_equal(result, expected)
# data column selection with a string data_column
df_new = df.copy()
df_new["string"] = "foo"
df_new.loc[df_new.index[1:4], "string"] = np.nan
df_new.loc[df_new.index[5:6], "string"] = "bar"
_maybe_remove(store, "df")
store.append("df", df_new, data_columns=["string"])
result = store.select("df", "string='foo'")
expected = df_new[df_new.string == "foo"]
tm.assert_frame_equal(result, expected)
# using min_itemsize and a data column
def check_col(key, name, size):
assert (
getattr(store.get_storer(key).table.description, name).itemsize == size
)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
store.append("df", df_new, data_columns=["string"], min_itemsize={"string": 30})
check_col("df", "string", 30)
_maybe_remove(store, "df")
store.append("df", df_new, data_columns=["string"], min_itemsize=30)
check_col("df", "string", 30)
_maybe_remove(store, "df")
store.append("df", df_new, data_columns=["string"], min_itemsize={"values": 30})
check_col("df", "string", 30)
with ensure_clean_store(setup_path) as store:
df_new["string2"] = "foobarbah"
df_new["string_block1"] = "foobarbah1"
df_new["string_block2"] = "foobarbah2"
_maybe_remove(store, "df")
store.append(
"df",
df_new,
data_columns=["string", "string2"],
min_itemsize={"string": 30, "string2": 40, "values": 50},
)
check_col("df", "string", 30)
check_col("df", "string2", 40)
check_col("df", "values_block_1", 50)
with ensure_clean_store(setup_path) as store:
# multiple data columns
df_new = df.copy()
df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0
df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0
df_new["string"] = "foo"
sl = df_new.columns.get_loc("string")
df_new.iloc[1:4, sl] = np.nan
df_new.iloc[5:6, sl] = "bar"
df_new["string2"] = "foo"
sl = df_new.columns.get_loc("string2")
df_new.iloc[2:5, sl] = np.nan
df_new.iloc[7:8, sl] = "bar"
_maybe_remove(store, "df")
store.append("df", df_new, data_columns=["A", "B", "string", "string2"])
result = store.select("df", "string='foo' and string2='foo' and A>0 and B<0")
expected = df_new[
(df_new.string == "foo")
& (df_new.string2 == "foo")
& (df_new.A > 0)
& (df_new.B < 0)
]
tm.assert_frame_equal(result, expected, check_freq=False)
# FIXME: 2020-05-07 freq check randomly fails in the CI
# yield an empty frame
result = store.select("df", "string='foo' and string2='cool'")
expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")]
tm.assert_frame_equal(result, expected)
with ensure_clean_store(setup_path) as store:
# doc example
df_dc = df.copy()
df_dc["string"] = "foo"
df_dc.loc[df_dc.index[4:6], "string"] = np.nan
df_dc.loc[df_dc.index[7:9], "string"] = "bar"
df_dc["string2"] = "cool"
df_dc["datetime"] = Timestamp("20010102").as_unit("ns")
df_dc.loc[df_dc.index[3:5], ["A", "B", "datetime"]] = np.nan
_maybe_remove(store, "df_dc")
store.append(
"df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"]
)
result = store.select("df_dc", "B>0")
expected = df_dc[df_dc.B > 0]
tm.assert_frame_equal(result, expected)
result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"])
expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")]
tm.assert_frame_equal(result, expected, check_freq=False)
# FIXME: 2020-12-07 intermittent build failures here with freq of
# None instead of BDay(4)
with ensure_clean_store(setup_path) as store:
# doc example part 2
index = date_range("1/1/2000", periods=8)
df_dc = DataFrame(
np.random.default_rng(2).standard_normal((8, 3)),
index=index,
columns=["A", "B", "C"],
)
df_dc["string"] = "foo"
df_dc.loc[df_dc.index[4:6], "string"] = np.nan
df_dc.loc[df_dc.index[7:9], "string"] = "bar"
df_dc[["B", "C"]] = df_dc[["B", "C"]].abs()
df_dc["string2"] = "cool"
# on-disk operations
store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"])
result = store.select("df_dc", "B>0")
expected = df_dc[df_dc.B > 0]
tm.assert_frame_equal(result, expected)
result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"'])
expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")]
tm.assert_frame_equal(result, expected)
def test_append_hierarchical(tmp_path, setup_path, multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
df.columns.name = None
with ensure_clean_store(setup_path) as store:
store.append("mi", df)
result = store.select("mi")
tm.assert_frame_equal(result, df)
# GH 3748
result = store.select("mi", columns=["A", "B"])
expected = df.reindex(columns=["A", "B"])
tm.assert_frame_equal(result, expected)
path = tmp_path / "test.hdf"
df.to_hdf(path, key="df", format="table")
result = read_hdf(path, "df", columns=["A", "B"])
expected = df.reindex(columns=["A", "B"])
tm.assert_frame_equal(result, expected)
def test_append_misc(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
store.append("df", df, chunksize=1)
result = store.select("df")
tm.assert_frame_equal(result, df)
store.append("df1", df, expectedrows=10)
result = store.select("df1")
tm.assert_frame_equal(result, df)
@pytest.mark.parametrize("chunksize", [10, 200, 1000])
def test_append_misc_chunksize(setup_path, chunksize):
# more chunksize in append tests
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df["string"] = "foo"
df["float322"] = 1.0
df["float322"] = df["float322"].astype("float32")
df["bool"] = df["float322"] > 0
df["time1"] = Timestamp("20130101").as_unit("ns")
df["time2"] = Timestamp("20130102").as_unit("ns")
with ensure_clean_store(setup_path, mode="w") as store:
store.append("obj", df, chunksize=chunksize)
result = store.select("obj")
tm.assert_frame_equal(result, df)
def test_append_misc_empty_frame(setup_path):
# empty frame, GH4273
with ensure_clean_store(setup_path) as store:
# 0 len
df_empty = DataFrame(columns=list("ABC"))
store.append("df", df_empty)
with pytest.raises(KeyError, match="'No object named df in the file'"):
store.select("df")
# repeated append of 0/non-zero frames
df = DataFrame(np.random.default_rng(2).random((10, 3)), columns=list("ABC"))
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)
store.append("df", df_empty)
tm.assert_frame_equal(store.select("df"), df)
# store
df = DataFrame(columns=list("ABC"))
store.put("df2", df)
tm.assert_frame_equal(store.select("df2"), df)
# TODO(ArrayManager) currently we rely on falling back to BlockManager, but
# the conversion from AM->BM converts the invalid object dtype column into
# a datetime64 column no longer raising an error
@td.skip_array_manager_not_yet_implemented
def test_append_raise(setup_path):
with ensure_clean_store(setup_path) as store:
# test append with invalid input to get good error messages
# list in column
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df["invalid"] = [["a"]] * len(df)
assert df.dtypes["invalid"] == np.object_
msg = re.escape(
"""Cannot serialize the column [invalid]
because its data contents are not [string] but [mixed] object dtype"""
)
with pytest.raises(TypeError, match=msg):
store.append("df", df)
# multiple invalid columns
df["invalid2"] = [["a"]] * len(df)
df["invalid3"] = [["a"]] * len(df)
with pytest.raises(TypeError, match=msg):
store.append("df", df)
# datetime with embedded nans as object
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
s = Series(datetime.datetime(2001, 1, 2), index=df.index)
s = s.astype(object)
s[0:5] = np.nan
df["invalid"] = s
assert df.dtypes["invalid"] == np.object_
msg = "too many timezones in this block, create separate data columns"
with pytest.raises(TypeError, match=msg):
store.append("df", df)
# directly ndarray
msg = "value must be None, Series, or DataFrame"
with pytest.raises(TypeError, match=msg):
store.append("df", np.arange(10))
# series directly
msg = re.escape(
"cannot properly create the storer for: "
"[group->df,value-><class 'pandas.core.series.Series'>]"
)
with pytest.raises(TypeError, match=msg):
store.append("df", Series(np.arange(10)))
# appending an incompatible table
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
store.append("df", df)
df["foo"] = "foo"
msg = re.escape(
"invalid combination of [non_index_axes] on appending data "
"[(1, ['A', 'B', 'C', 'D', 'foo'])] vs current table "
"[(1, ['A', 'B', 'C', 'D'])]"
)
with pytest.raises(ValueError, match=msg):
store.append("df", df)
# incompatible type (GH 41897)
_maybe_remove(store, "df")
df["foo"] = Timestamp("20130101")
store.append("df", df)
df["foo"] = "bar"
msg = re.escape(
"invalid combination of [values_axes] on appending data "
"[name->values_block_1,cname->values_block_1,"
"dtype->bytes24,kind->string,shape->(1, 30)] "
"vs current table "
"[name->values_block_1,cname->values_block_1,"
"dtype->datetime64[s],kind->datetime64[s],shape->None]"
)
with pytest.raises(ValueError, match=msg):
store.append("df", df)
def test_append_with_timedelta(setup_path):
# GH 3577
# append timedelta
ts = Timestamp("20130101").as_unit("ns")
df = DataFrame(
{
"A": ts,
"B": [ts + timedelta(days=i, seconds=10) for i in range(10)],
}
)
df["C"] = df["A"] - df["B"]
df.loc[3:5, "C"] = np.nan
with ensure_clean_store(setup_path) as store:
# table
_maybe_remove(store, "df")
store.append("df", df, data_columns=True)
result = store.select("df")
tm.assert_frame_equal(result, df)
result = store.select("df", where="C<100000")
tm.assert_frame_equal(result, df)
result = store.select("df", where="C<pd.Timedelta('-3D')")
tm.assert_frame_equal(result, df.iloc[3:])
result = store.select("df", "C<'-3D'")
tm.assert_frame_equal(result, df.iloc[3:])
# a bit hacky here as we don't really deal with the NaT properly
result = store.select("df", "C<'-500000s'")
result = result.dropna(subset=["C"])
tm.assert_frame_equal(result, df.iloc[6:])
result = store.select("df", "C<'-3.5D'")
result = result.iloc[1:]
tm.assert_frame_equal(result, df.iloc[4:])
# fixed
_maybe_remove(store, "df2")
store.put("df2", df)
result = store.select("df2")
tm.assert_frame_equal(result, df)
def test_append_to_multiple(setup_path):
df1 = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df2 = df1.copy().rename(columns="{}_2".format)
df2["foo"] = "bar"
df = concat([df1, df2], axis=1)
with ensure_clean_store(setup_path) as store:
# exceptions
msg = "append_to_multiple requires a selector that is in passed dict"
with pytest.raises(ValueError, match=msg):
store.append_to_multiple(
{"df1": ["A", "B"], "df2": None}, df, selector="df3"
)
with pytest.raises(ValueError, match=msg):
store.append_to_multiple({"df1": None, "df2": None}, df, selector="df3")
msg = (
"append_to_multiple must have a dictionary specified as the way to "
"split the value"
)
with pytest.raises(ValueError, match=msg):
store.append_to_multiple("df1", df, "df1")
# regular operation
store.append_to_multiple({"df1": ["A", "B"], "df2": None}, df, selector="df1")
result = store.select_as_multiple(
["df1", "df2"], where=["A>0", "B>0"], selector="df1"
)
expected = df[(df.A > 0) & (df.B > 0)]
tm.assert_frame_equal(result, expected)
def test_append_to_multiple_dropna(setup_path):
df1 = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df2 = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
).rename(columns="{}_2".format)
df1.iloc[1, df1.columns.get_indexer(["A", "B"])] = np.nan
df = concat([df1, df2], axis=1)
with ensure_clean_store(setup_path) as store:
# dropna=True should guarantee rows are synchronized
store.append_to_multiple(
{"df1": ["A", "B"], "df2": None}, df, selector="df1", dropna=True
)
result = store.select_as_multiple(["df1", "df2"])
expected = df.dropna()
tm.assert_frame_equal(result, expected, check_index_type=True)
tm.assert_index_equal(store.select("df1").index, store.select("df2").index)
def test_append_to_multiple_dropna_false(setup_path):
df1 = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df2 = df1.copy().rename(columns="{}_2".format)
df1.iloc[1, df1.columns.get_indexer(["A", "B"])] = np.nan
df = concat([df1, df2], axis=1)
with ensure_clean_store(setup_path) as store, pd.option_context(
"io.hdf.dropna_table", True
):
# dropna=False shouldn't synchronize row indexes
store.append_to_multiple(
{"df1a": ["A", "B"], "df2a": None}, df, selector="df1a", dropna=False
)
msg = "all tables must have exactly the same nrows!"
with pytest.raises(ValueError, match=msg):
store.select_as_multiple(["df1a", "df2a"])
assert not store.select("df1a").index.equals(store.select("df2a").index)
def test_append_to_multiple_min_itemsize(setup_path):
# GH 11238
df = DataFrame(
{
"IX": np.arange(1, 21),
"Num": np.arange(1, 21),
"BigNum": np.arange(1, 21) * 88,
"Str": ["a" for _ in range(20)],
"LongStr": ["abcde" for _ in range(20)],
}
)
expected = df.iloc[[0]]
with ensure_clean_store(setup_path) as store:
store.append_to_multiple(
{
"index": ["IX"],
"nums": ["Num", "BigNum"],
"strs": ["Str", "LongStr"],
},
df.iloc[[0]],
"index",
min_itemsize={"Str": 10, "LongStr": 100, "Num": 2},
)
result = store.select_as_multiple(["index", "nums", "strs"])
tm.assert_frame_equal(result, expected, check_index_type=True)

View File

@ -0,0 +1,214 @@
import numpy as np
import pytest
from pandas import (
Categorical,
DataFrame,
Series,
_testing as tm,
concat,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
pytestmark = pytest.mark.single_cpu
def test_categorical(setup_path):
with ensure_clean_store(setup_path) as store:
# Basic
_maybe_remove(store, "s")
s = Series(
Categorical(
["a", "b", "b", "a", "a", "c"],
categories=["a", "b", "c", "d"],
ordered=False,
)
)
store.append("s", s, format="table")
result = store.select("s")
tm.assert_series_equal(s, result)
_maybe_remove(store, "s_ordered")
s = Series(
Categorical(
["a", "b", "b", "a", "a", "c"],
categories=["a", "b", "c", "d"],
ordered=True,
)
)
store.append("s_ordered", s, format="table")
result = store.select("s_ordered")
tm.assert_series_equal(s, result)
_maybe_remove(store, "df")
df = DataFrame({"s": s, "vals": [1, 2, 3, 4, 5, 6]})
store.append("df", df, format="table")
result = store.select("df")
tm.assert_frame_equal(result, df)
# Dtypes
_maybe_remove(store, "si")
s = Series([1, 1, 2, 2, 3, 4, 5]).astype("category")
store.append("si", s)
result = store.select("si")
tm.assert_series_equal(result, s)
_maybe_remove(store, "si2")
s = Series([1, 1, np.nan, 2, 3, 4, 5]).astype("category")
store.append("si2", s)
result = store.select("si2")
tm.assert_series_equal(result, s)
# Multiple
_maybe_remove(store, "df2")
df2 = df.copy()
df2["s2"] = Series(list("abcdefg")).astype("category")
store.append("df2", df2)
result = store.select("df2")
tm.assert_frame_equal(result, df2)
# Make sure the metadata is OK
info = store.info()
assert "/df2 " in info
# df2._mgr.blocks[0] and df2._mgr.blocks[2] are Categorical
assert "/df2/meta/values_block_0/meta" in info
assert "/df2/meta/values_block_2/meta" in info
# unordered
_maybe_remove(store, "s2")
s = Series(
Categorical(
["a", "b", "b", "a", "a", "c"],
categories=["a", "b", "c", "d"],
ordered=False,
)
)
store.append("s2", s, format="table")
result = store.select("s2")
tm.assert_series_equal(result, s)
# Query
_maybe_remove(store, "df3")
store.append("df3", df, data_columns=["s"])
expected = df[df.s.isin(["b", "c"])]
result = store.select("df3", where=['s in ["b","c"]'])
tm.assert_frame_equal(result, expected)
expected = df[df.s.isin(["b", "c"])]
result = store.select("df3", where=['s = ["b","c"]'])
tm.assert_frame_equal(result, expected)
expected = df[df.s.isin(["d"])]
result = store.select("df3", where=['s in ["d"]'])
tm.assert_frame_equal(result, expected)
expected = df[df.s.isin(["f"])]
result = store.select("df3", where=['s in ["f"]'])
tm.assert_frame_equal(result, expected)
# Appending with same categories is ok
store.append("df3", df)
df = concat([df, df])
expected = df[df.s.isin(["b", "c"])]
result = store.select("df3", where=['s in ["b","c"]'])
tm.assert_frame_equal(result, expected)
# Appending must have the same categories
df3 = df.copy()
df3["s"] = df3["s"].cat.remove_unused_categories()
msg = "cannot append a categorical with different categories to the existing"
with pytest.raises(ValueError, match=msg):
store.append("df3", df3)
# Remove, and make sure meta data is removed (its a recursive
# removal so should be).
result = store.select("df3/meta/s/meta")
assert result is not None
store.remove("df3")
with pytest.raises(
KeyError, match="'No object named df3/meta/s/meta in the file'"
):
store.select("df3/meta/s/meta")
def test_categorical_conversion(tmp_path, setup_path):
# GH13322
# Check that read_hdf with categorical columns doesn't return rows if
# where criteria isn't met.
obsids = ["ESP_012345_6789", "ESP_987654_3210"]
imgids = ["APF00006np", "APF0001imm"]
data = [4.3, 9.8]
# Test without categories
df = DataFrame({"obsids": obsids, "imgids": imgids, "data": data})
# We are expecting an empty DataFrame matching types of df
expected = df.iloc[[], :]
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table", data_columns=True)
result = read_hdf(path, "df", where="obsids=B")
tm.assert_frame_equal(result, expected)
# Test with categories
df.obsids = df.obsids.astype("category")
df.imgids = df.imgids.astype("category")
# We are expecting an empty DataFrame matching types of df
expected = df.iloc[[], :]
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table", data_columns=True)
result = read_hdf(path, "df", where="obsids=B")
tm.assert_frame_equal(result, expected)
def test_categorical_nan_only_columns(tmp_path, setup_path):
# GH18413
# Check that read_hdf with categorical columns with NaN-only values can
# be read back.
df = DataFrame(
{
"a": ["a", "b", "c", np.nan],
"b": [np.nan, np.nan, np.nan, np.nan],
"c": [1, 2, 3, 4],
"d": Series([None] * 4, dtype=object),
}
)
df["a"] = df.a.astype("category")
df["b"] = df.b.astype("category")
df["d"] = df.b.astype("category")
expected = df
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table", data_columns=True)
result = read_hdf(path, "df")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"where, df, expected",
[
('col=="q"', DataFrame({"col": ["a", "b", "s"]}), DataFrame({"col": []})),
('col=="a"', DataFrame({"col": ["a", "b", "s"]}), DataFrame({"col": ["a"]})),
],
)
def test_convert_value(
tmp_path, setup_path, where: str, df: DataFrame, expected: DataFrame
):
# GH39420
# Check that read_hdf with categorical columns can filter by where condition.
df.col = df.col.astype("category")
max_widths = {"col": 1}
categorical_values = sorted(df.col.unique())
expected.col = expected.col.astype("category")
expected.col = expected.col.cat.set_categories(categorical_values)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table", min_itemsize=max_widths)
result = read_hdf(path, where=where)
tm.assert_frame_equal(result, expected)

View File

@ -0,0 +1,75 @@
import pytest
import pandas as pd
import pandas._testing as tm
tables = pytest.importorskip("tables")
@pytest.fixture
def pytables_hdf5_file(tmp_path):
"""
Use PyTables to create a simple HDF5 file.
"""
table_schema = {
"c0": tables.Time64Col(pos=0),
"c1": tables.StringCol(5, pos=1),
"c2": tables.Int64Col(pos=2),
}
t0 = 1_561_105_000.0
testsamples = [
{"c0": t0, "c1": "aaaaa", "c2": 1},
{"c0": t0 + 1, "c1": "bbbbb", "c2": 2},
{"c0": t0 + 2, "c1": "ccccc", "c2": 10**5},
{"c0": t0 + 3, "c1": "ddddd", "c2": 4_294_967_295},
]
objname = "pandas_test_timeseries"
path = tmp_path / "written_with_pytables.h5"
with tables.open_file(path, mode="w") as f:
t = f.create_table("/", name=objname, description=table_schema)
for sample in testsamples:
for key, value in sample.items():
t.row[key] = value
t.row.append()
yield path, objname, pd.DataFrame(testsamples)
class TestReadPyTablesHDF5:
"""
A group of tests which covers reading HDF5 files written by plain PyTables
(not written by pandas).
Was introduced for regression-testing issue 11188.
"""
def test_read_complete(self, pytables_hdf5_file):
path, objname, df = pytables_hdf5_file
result = pd.read_hdf(path, key=objname)
expected = df
tm.assert_frame_equal(result, expected, check_index_type=True)
def test_read_with_start(self, pytables_hdf5_file):
path, objname, df = pytables_hdf5_file
# This is a regression test for pandas-dev/pandas/issues/11188
result = pd.read_hdf(path, key=objname, start=1)
expected = df[1:].reset_index(drop=True)
tm.assert_frame_equal(result, expected, check_index_type=True)
def test_read_with_stop(self, pytables_hdf5_file):
path, objname, df = pytables_hdf5_file
# This is a regression test for pandas-dev/pandas/issues/11188
result = pd.read_hdf(path, key=objname, stop=1)
expected = df[:1].reset_index(drop=True)
tm.assert_frame_equal(result, expected, check_index_type=True)
def test_read_with_startstop(self, pytables_hdf5_file):
path, objname, df = pytables_hdf5_file
# This is a regression test for pandas-dev/pandas/issues/11188
result = pd.read_hdf(path, key=objname, start=1, stop=2)
expected = df[1:2].reset_index(drop=True)
tm.assert_frame_equal(result, expected, check_index_type=True)

View File

@ -0,0 +1,195 @@
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
from pandas.tests.io.pytables.common import ensure_clean_store
from pandas.io.pytables import read_hdf
def test_complex_fixed(tmp_path, setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex64),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex128),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_table(tmp_path, setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex64),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table")
reread = read_hdf(path, key="df")
tm.assert_frame_equal(df, reread)
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex128),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table", mode="w")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_mixed_fixed(tmp_path, setup_path):
complex64 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64
)
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
)
df = DataFrame(
{
"A": [1, 2, 3, 4],
"B": ["a", "b", "c", "d"],
"C": complex64,
"D": complex128,
"E": [1.0, 2.0, 3.0, 4.0],
},
index=list("abcd"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_mixed_table(tmp_path, setup_path):
complex64 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64
)
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
)
df = DataFrame(
{
"A": [1, 2, 3, 4],
"B": ["a", "b", "c", "d"],
"C": complex64,
"D": complex128,
"E": [1.0, 2.0, 3.0, 4.0],
},
index=list("abcd"),
)
with ensure_clean_store(setup_path) as store:
store.append("df", df, data_columns=["A", "B"])
result = store.select("df", where="A>2")
tm.assert_frame_equal(df.loc[df.A > 2], result)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_across_dimensions_fixed(tmp_path, setup_path):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list("abcd"))
df = DataFrame({"A": s, "B": s})
objs = [s, df]
comps = [tm.assert_series_equal, tm.assert_frame_equal]
for obj, comp in zip(objs, comps):
path = tmp_path / setup_path
obj.to_hdf(path, key="obj", format="fixed")
reread = read_hdf(path, "obj")
comp(obj, reread)
def test_complex_across_dimensions(tmp_path, setup_path):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list("abcd"))
df = DataFrame({"A": s, "B": s})
path = tmp_path / setup_path
df.to_hdf(path, key="obj", format="table")
reread = read_hdf(path, "obj")
tm.assert_frame_equal(df, reread)
def test_complex_indexing_error(setup_path):
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
)
df = DataFrame(
{"A": [1, 2, 3, 4], "B": ["a", "b", "c", "d"], "C": complex128},
index=list("abcd"),
)
msg = (
"Columns containing complex values can be stored "
"but cannot be indexed when using table format. "
"Either use fixed format, set index=False, "
"or do not include the columns containing complex "
"values to data_columns when initializing the table."
)
with ensure_clean_store(setup_path) as store:
with pytest.raises(TypeError, match=msg):
store.append("df", df, data_columns=["C"])
def test_complex_series_error(tmp_path, setup_path):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list("abcd"))
msg = (
"Columns containing complex values can be stored "
"but cannot be indexed when using table format. "
"Either use fixed format, set index=False, "
"or do not include the columns containing complex "
"values to data_columns when initializing the table."
)
path = tmp_path / setup_path
with pytest.raises(TypeError, match=msg):
s.to_hdf(path, key="obj", format="t")
path = tmp_path / setup_path
s.to_hdf(path, key="obj", format="t", index=False)
reread = read_hdf(path, "obj")
tm.assert_series_equal(s, reread)
def test_complex_append(setup_path):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(100).astype(np.complex128),
"b": np.random.default_rng(2).standard_normal(100),
}
)
with ensure_clean_store(setup_path) as store:
store.append("df", df, data_columns=["b"])
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(pd.concat([df, df], axis=0), result)

View File

@ -0,0 +1,251 @@
import datetime
from io import BytesIO
import re
import numpy as np
import pytest
from pandas import (
CategoricalIndex,
DataFrame,
HDFStore,
Index,
MultiIndex,
_testing as tm,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import ensure_clean_store
from pandas.io.pytables import (
Term,
_maybe_adjust_name,
)
pytestmark = pytest.mark.single_cpu
def test_pass_spec_to_storer(setup_path):
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
with ensure_clean_store(setup_path) as store:
store.put("df", df)
msg = (
"cannot pass a column specification when reading a Fixed format "
"store. this store must be selected in its entirety"
)
with pytest.raises(TypeError, match=msg):
store.select("df", columns=["A"])
msg = (
"cannot pass a where specification when reading from a Fixed "
"format store. this store must be selected in its entirety"
)
with pytest.raises(TypeError, match=msg):
store.select("df", where=[("columns=A")])
def test_table_index_incompatible_dtypes(setup_path):
df1 = DataFrame({"a": [1, 2, 3]})
df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3))
with ensure_clean_store(setup_path) as store:
store.put("frame", df1, format="table")
msg = re.escape("incompatible kind in col [integer - datetime64[ns]]")
with pytest.raises(TypeError, match=msg):
store.put("frame", df2, format="table", append=True)
def test_unimplemented_dtypes_table_columns(setup_path):
with ensure_clean_store(setup_path) as store:
dtypes = [("date", datetime.date(2001, 1, 2))]
# currently not supported dtypes ####
for n, f in dtypes:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df[n] = f
msg = re.escape(f"[{n}] is not implemented as a table column")
with pytest.raises(TypeError, match=msg):
store.append(f"df1_{n}", df)
# frame
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df["obj1"] = "foo"
df["obj2"] = "bar"
df["datetime1"] = datetime.date(2001, 1, 2)
df = df._consolidate()
with ensure_clean_store(setup_path) as store:
# this fails because we have a date in the object block......
msg = re.escape(
"""Cannot serialize the column [datetime1]
because its data contents are not [string] but [date] object dtype"""
)
with pytest.raises(TypeError, match=msg):
store.append("df_unimplemented", df)
def test_invalid_terms(tmp_path, setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df["string"] = "foo"
df.loc[df.index[0:4], "string"] = "bar"
store.put("df", df, format="table")
# some invalid terms
msg = re.escape("__init__() missing 1 required positional argument: 'where'")
with pytest.raises(TypeError, match=msg):
Term()
# more invalid
msg = re.escape(
"cannot process expression [df.index[3]], "
"[2000-01-06 00:00:00] is not a valid condition"
)
with pytest.raises(ValueError, match=msg):
store.select("df", "df.index[3]")
msg = "invalid syntax"
with pytest.raises(SyntaxError, match=msg):
store.select("df", "index>")
# from the docs
path = tmp_path / setup_path
dfq = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=list("ABCD"),
index=date_range("20130101", periods=10),
)
dfq.to_hdf(path, key="dfq", format="table", data_columns=True)
# check ok
read_hdf(path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']")
read_hdf(path, "dfq", where="A>0 or C>0")
# catch the invalid reference
path = tmp_path / setup_path
dfq = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=list("ABCD"),
index=date_range("20130101", periods=10),
)
dfq.to_hdf(path, key="dfq", format="table")
msg = (
r"The passed where expression: A>0 or C>0\n\s*"
r"contains an invalid variable reference\n\s*"
r"all of the variable references must be a reference to\n\s*"
r"an axis \(e.g. 'index' or 'columns'\), or a data_column\n\s*"
r"The currently defined references are: index,columns\n"
)
with pytest.raises(ValueError, match=msg):
read_hdf(path, "dfq", where="A>0 or C>0")
def test_append_with_diff_col_name_types_raises_value_error(setup_path):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)))
df2 = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
df3 = DataFrame({(1, 2): np.random.default_rng(2).standard_normal(10)})
df4 = DataFrame({("1", 2): np.random.default_rng(2).standard_normal(10)})
df5 = DataFrame({("1", 2, object): np.random.default_rng(2).standard_normal(10)})
with ensure_clean_store(setup_path) as store:
name = "df_diff_valerror"
store.append(name, df)
for d in (df2, df3, df4, df5):
msg = re.escape(
"cannot match existing table structure for [0] on appending data"
)
with pytest.raises(ValueError, match=msg):
store.append(name, d)
def test_invalid_complib(setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
with tm.ensure_clean(setup_path) as path:
msg = r"complib only supports \[.*\] compression."
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, key="df", complib="foolib")
@pytest.mark.parametrize(
"idx",
[
date_range("2019", freq="D", periods=3, tz="UTC"),
CategoricalIndex(list("abc")),
],
)
def test_to_hdf_multiindex_extension_dtype(idx, tmp_path, setup_path):
# GH 7775
mi = MultiIndex.from_arrays([idx, idx])
df = DataFrame(0, index=mi, columns=["a"])
path = tmp_path / setup_path
with pytest.raises(NotImplementedError, match="Saving a MultiIndex"):
df.to_hdf(path, key="df")
def test_unsuppored_hdf_file_error(datapath):
# GH 9539
data_path = datapath("io", "data", "legacy_hdf/incompatible_dataset.h5")
message = (
r"Dataset\(s\) incompatible with Pandas data types, "
"not table, or no datasets found in HDF5 file."
)
with pytest.raises(ValueError, match=message):
read_hdf(data_path)
def test_read_hdf_errors(setup_path, tmp_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
msg = r"File [\S]* does not exist"
with pytest.raises(OSError, match=msg):
read_hdf(path, "key")
df.to_hdf(path, key="df")
store = HDFStore(path, mode="r")
store.close()
msg = "The HDFStore must be open for reading."
with pytest.raises(OSError, match=msg):
read_hdf(store, "df")
def test_read_hdf_generic_buffer_errors():
msg = "Support for generic buffers has not been implemented."
with pytest.raises(NotImplementedError, match=msg):
read_hdf(BytesIO(b""), "df")
@pytest.mark.parametrize("bad_version", [(1, 2), (1,), [], "12", "123"])
def test_maybe_adjust_name_bad_version_raises(bad_version):
msg = "Version is incorrect, expected sequence of 3 integers"
with pytest.raises(ValueError, match=msg):
_maybe_adjust_name("values_block_0", version=bad_version)

View File

@ -0,0 +1,495 @@
import os
import numpy as np
import pytest
from pandas.compat import (
PY311,
is_ci_environment,
is_platform_linux,
is_platform_little_endian,
)
from pandas.errors import (
ClosedFileError,
PossibleDataLossError,
)
from pandas import (
DataFrame,
HDFStore,
Index,
Series,
_testing as tm,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
tables,
)
from pandas.io import pytables
from pandas.io.pytables import Term
pytestmark = pytest.mark.single_cpu
@pytest.mark.parametrize("mode", ["r", "r+", "a", "w"])
def test_mode(setup_path, tmp_path, mode):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
msg = r"[\S]* does not exist"
path = tmp_path / setup_path
# constructor
if mode in ["r", "r+"]:
with pytest.raises(OSError, match=msg):
HDFStore(path, mode=mode)
else:
with HDFStore(path, mode=mode) as store:
assert store._handle.mode == mode
path = tmp_path / setup_path
# context
if mode in ["r", "r+"]:
with pytest.raises(OSError, match=msg):
with HDFStore(path, mode=mode) as store:
pass
else:
with HDFStore(path, mode=mode) as store:
assert store._handle.mode == mode
path = tmp_path / setup_path
# conv write
if mode in ["r", "r+"]:
with pytest.raises(OSError, match=msg):
df.to_hdf(path, key="df", mode=mode)
df.to_hdf(path, key="df", mode="w")
else:
df.to_hdf(path, key="df", mode=mode)
# conv read
if mode in ["w"]:
msg = (
"mode w is not allowed while performing a read. "
r"Allowed modes are r, r\+ and a."
)
with pytest.raises(ValueError, match=msg):
read_hdf(path, "df", mode=mode)
else:
result = read_hdf(path, "df", mode=mode)
tm.assert_frame_equal(result, df)
def test_default_mode(tmp_path, setup_path):
# read_hdf uses default mode
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w")
result = read_hdf(path, "df")
tm.assert_frame_equal(result, df)
def test_reopen_handle(tmp_path, setup_path):
path = tmp_path / setup_path
store = HDFStore(path, mode="a")
store["a"] = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
msg = (
r"Re-opening the file \[[\S]*\] with mode \[a\] will delete the "
"current file!"
)
# invalid mode change
with pytest.raises(PossibleDataLossError, match=msg):
store.open("w")
store.close()
assert not store.is_open
# truncation ok here
store.open("w")
assert store.is_open
assert len(store) == 0
store.close()
assert not store.is_open
store = HDFStore(path, mode="a")
store["a"] = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
# reopen as read
store.open("r")
assert store.is_open
assert len(store) == 1
assert store._mode == "r"
store.close()
assert not store.is_open
# reopen as append
store.open("a")
assert store.is_open
assert len(store) == 1
assert store._mode == "a"
store.close()
assert not store.is_open
# reopen as append (again)
store.open("a")
assert store.is_open
assert len(store) == 1
assert store._mode == "a"
store.close()
assert not store.is_open
def test_open_args(setup_path):
with tm.ensure_clean(setup_path) as path:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
# create an in memory store
store = HDFStore(
path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0
)
store["df"] = df
store.append("df2", df)
tm.assert_frame_equal(store["df"], df)
tm.assert_frame_equal(store["df2"], df)
store.close()
# the file should not have actually been written
assert not os.path.exists(path)
def test_flush(setup_path):
with ensure_clean_store(setup_path) as store:
store["a"] = Series(range(5))
store.flush()
store.flush(fsync=True)
def test_complibs_default_settings(tmp_path, setup_path):
# GH15943
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
# Set complevel and check if complib is automatically set to
# default value
tmpfile = tmp_path / setup_path
df.to_hdf(tmpfile, key="df", complevel=9)
result = read_hdf(tmpfile, "df")
tm.assert_frame_equal(result, df)
with tables.open_file(tmpfile, mode="r") as h5file:
for node in h5file.walk_nodes(where="/df", classname="Leaf"):
assert node.filters.complevel == 9
assert node.filters.complib == "zlib"
# Set complib and check to see if compression is disabled
tmpfile = tmp_path / setup_path
df.to_hdf(tmpfile, key="df", complib="zlib")
result = read_hdf(tmpfile, "df")
tm.assert_frame_equal(result, df)
with tables.open_file(tmpfile, mode="r") as h5file:
for node in h5file.walk_nodes(where="/df", classname="Leaf"):
assert node.filters.complevel == 0
assert node.filters.complib is None
# Check if not setting complib or complevel results in no compression
tmpfile = tmp_path / setup_path
df.to_hdf(tmpfile, key="df")
result = read_hdf(tmpfile, "df")
tm.assert_frame_equal(result, df)
with tables.open_file(tmpfile, mode="r") as h5file:
for node in h5file.walk_nodes(where="/df", classname="Leaf"):
assert node.filters.complevel == 0
assert node.filters.complib is None
def test_complibs_default_settings_override(tmp_path, setup_path):
# Check if file-defaults can be overridden on a per table basis
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
tmpfile = tmp_path / setup_path
store = HDFStore(tmpfile)
store.append("dfc", df, complevel=9, complib="blosc")
store.append("df", df)
store.close()
with tables.open_file(tmpfile, mode="r") as h5file:
for node in h5file.walk_nodes(where="/df", classname="Leaf"):
assert node.filters.complevel == 0
assert node.filters.complib is None
for node in h5file.walk_nodes(where="/dfc", classname="Leaf"):
assert node.filters.complevel == 9
assert node.filters.complib == "blosc"
@pytest.mark.parametrize("lvl", range(10))
@pytest.mark.parametrize("lib", tables.filters.all_complibs)
@pytest.mark.filterwarnings("ignore:object name is not a valid")
@pytest.mark.skipif(
not PY311 and is_ci_environment() and is_platform_linux(),
reason="Segfaulting in a CI environment"
# with xfail, would sometimes raise UnicodeDecodeError
# invalid state byte
)
def test_complibs(tmp_path, lvl, lib, request):
# GH14478
if PY311 and is_platform_linux() and lib == "blosc2" and lvl != 0:
request.applymarker(
pytest.mark.xfail(reason=f"Fails for {lib} on Linux and PY > 3.11")
)
df = DataFrame(
np.ones((30, 4)), columns=list("ABCD"), index=np.arange(30).astype(np.str_)
)
# Remove lzo if its not available on this platform
if not tables.which_lib_version("lzo"):
pytest.skip("lzo not available")
# Remove bzip2 if its not available on this platform
if not tables.which_lib_version("bzip2"):
pytest.skip("bzip2 not available")
tmpfile = tmp_path / f"{lvl}_{lib}.h5"
gname = f"{lvl}_{lib}"
# Write and read file to see if data is consistent
df.to_hdf(tmpfile, key=gname, complib=lib, complevel=lvl)
result = read_hdf(tmpfile, gname)
tm.assert_frame_equal(result, df)
# Open file and check metadata for correct amount of compression
with tables.open_file(tmpfile, mode="r") as h5table:
for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"):
assert node.filters.complevel == lvl
if lvl == 0:
assert node.filters.complib is None
else:
assert node.filters.complib == lib
@pytest.mark.skipif(
not is_platform_little_endian(), reason="reason platform is not little endian"
)
def test_encoding(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame({"A": "foo", "B": "bar"}, index=range(5))
df.loc[2, "A"] = np.nan
df.loc[3, "B"] = np.nan
_maybe_remove(store, "df")
store.append("df", df, encoding="ascii")
tm.assert_frame_equal(store["df"], df)
expected = df.reindex(columns=["A"])
result = store.select("df", Term("columns=A", encoding="ascii"))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"val",
[
[b"E\xc9, 17", b"", b"a", b"b", b"c"],
[b"E\xc9, 17", b"a", b"b", b"c"],
[b"EE, 17", b"", b"a", b"b", b"c"],
[b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"],
[b"", b"a", b"b", b"c"],
[b"\xf8\xfc", b"a", b"b", b"c"],
[b"A\xf8\xfc", b"", b"a", b"b", b"c"],
[np.nan, b"", b"b", b"c"],
[b"A\xf8\xfc", np.nan, b"", b"b", b"c"],
],
)
@pytest.mark.parametrize("dtype", ["category", object])
def test_latin_encoding(tmp_path, setup_path, dtype, val):
enc = "latin-1"
nan_rep = ""
key = "data"
val = [x.decode(enc) if isinstance(x, bytes) else x for x in val]
ser = Series(val, dtype=dtype)
store = tmp_path / setup_path
ser.to_hdf(store, key=key, format="table", encoding=enc, nan_rep=nan_rep)
retr = read_hdf(store, key)
# TODO:(3.0): once Categorical replace deprecation is enforced,
# we may be able to re-simplify the construction of s_nan
if dtype == "category":
if nan_rep in ser.cat.categories:
s_nan = ser.cat.remove_categories([nan_rep])
else:
s_nan = ser
else:
s_nan = ser.replace(nan_rep, np.nan)
tm.assert_series_equal(s_nan, retr)
def test_multiple_open_close(tmp_path, setup_path):
# gh-4409: open & close multiple times
path = tmp_path / setup_path
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df.to_hdf(path, key="df", mode="w", format="table")
# single
store = HDFStore(path)
assert "CLOSED" not in store.info()
assert store.is_open
store.close()
assert "CLOSED" in store.info()
assert not store.is_open
path = tmp_path / setup_path
if pytables._table_file_open_policy_is_strict:
# multiples
store1 = HDFStore(path)
msg = (
r"The file [\S]* is already opened\. Please close it before "
r"reopening in write mode\."
)
with pytest.raises(ValueError, match=msg):
HDFStore(path)
store1.close()
else:
# multiples
store1 = HDFStore(path)
store2 = HDFStore(path)
assert "CLOSED" not in store1.info()
assert "CLOSED" not in store2.info()
assert store1.is_open
assert store2.is_open
store1.close()
assert "CLOSED" in store1.info()
assert not store1.is_open
assert "CLOSED" not in store2.info()
assert store2.is_open
store2.close()
assert "CLOSED" in store1.info()
assert "CLOSED" in store2.info()
assert not store1.is_open
assert not store2.is_open
# nested close
store = HDFStore(path, mode="w")
store.append("df", df)
store2 = HDFStore(path)
store2.append("df2", df)
store2.close()
assert "CLOSED" in store2.info()
assert not store2.is_open
store.close()
assert "CLOSED" in store.info()
assert not store.is_open
# double closing
store = HDFStore(path, mode="w")
store.append("df", df)
store2 = HDFStore(path)
store.close()
assert "CLOSED" in store.info()
assert not store.is_open
store2.close()
assert "CLOSED" in store2.info()
assert not store2.is_open
# ops on a closed store
path = tmp_path / setup_path
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df.to_hdf(path, key="df", mode="w", format="table")
store = HDFStore(path)
store.close()
msg = r"[\S]* file is not open!"
with pytest.raises(ClosedFileError, match=msg):
store.keys()
with pytest.raises(ClosedFileError, match=msg):
"df" in store
with pytest.raises(ClosedFileError, match=msg):
len(store)
with pytest.raises(ClosedFileError, match=msg):
store["df"]
with pytest.raises(ClosedFileError, match=msg):
store.select("df")
with pytest.raises(ClosedFileError, match=msg):
store.get("df")
with pytest.raises(ClosedFileError, match=msg):
store.append("df2", df)
with pytest.raises(ClosedFileError, match=msg):
store.put("df3", df)
with pytest.raises(ClosedFileError, match=msg):
store.get_storer("df2")
with pytest.raises(ClosedFileError, match=msg):
store.remove("df2")
with pytest.raises(ClosedFileError, match=msg):
store.select("df")
msg = "'HDFStore' object has no attribute 'df'"
with pytest.raises(AttributeError, match=msg):
store.df
def test_fspath():
with tm.ensure_clean("foo.h5") as path:
with HDFStore(path) as store:
assert os.fspath(store) == str(path)

View File

@ -0,0 +1,87 @@
import numpy as np
import pytest
from pandas import (
DataFrame,
HDFStore,
Index,
Series,
date_range,
)
from pandas.tests.io.pytables.common import (
ensure_clean_store,
tables,
)
pytestmark = pytest.mark.single_cpu
def test_keys(setup_path):
with ensure_clean_store(setup_path) as store:
store["a"] = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
store["b"] = Series(
range(10), dtype="float64", index=[f"i_{i}" for i in range(10)]
)
store["c"] = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
assert len(store) == 3
expected = {"/a", "/b", "/c"}
assert set(store.keys()) == expected
assert set(store) == expected
def test_non_pandas_keys(tmp_path, setup_path):
class Table1(tables.IsDescription):
value1 = tables.Float32Col()
class Table2(tables.IsDescription):
value2 = tables.Float32Col()
class Table3(tables.IsDescription):
value3 = tables.Float32Col()
path = tmp_path / setup_path
with tables.open_file(path, mode="w") as h5file:
group = h5file.create_group("/", "group")
h5file.create_table(group, "table1", Table1, "Table 1")
h5file.create_table(group, "table2", Table2, "Table 2")
h5file.create_table(group, "table3", Table3, "Table 3")
with HDFStore(path) as store:
assert len(store.keys(include="native")) == 3
expected = {"/group/table1", "/group/table2", "/group/table3"}
assert set(store.keys(include="native")) == expected
assert set(store.keys(include="pandas")) == set()
for name in expected:
df = store.get(name)
assert len(df.columns) == 1
def test_keys_illegal_include_keyword_value(setup_path):
with ensure_clean_store(setup_path) as store:
with pytest.raises(
ValueError,
match="`include` should be either 'pandas' or 'native' but is 'illegal'",
):
store.keys(include="illegal")
def test_keys_ignore_hdf_softlink(setup_path):
# GH 20523
# Puts a softlink into HDF file and rereads
with ensure_clean_store(setup_path) as store:
df = DataFrame({"A": range(5), "B": range(5)})
store.put("df", df)
assert store.keys() == ["/df"]
store._handle.create_soft_link(store._handle.root, "symlink", "df")
# Should ignore the softlink
assert store.keys() == ["/df"]

View File

@ -0,0 +1,374 @@
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
import pandas as pd
from pandas import (
DataFrame,
HDFStore,
Index,
MultiIndex,
Series,
_testing as tm,
concat,
date_range,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
from pandas.util import _test_decorators as td
pytestmark = pytest.mark.single_cpu
def test_format_type(tmp_path, setup_path):
df = DataFrame({"A": [1, 2]})
with HDFStore(tmp_path / setup_path) as store:
store.put("a", df, format="fixed")
store.put("b", df, format="table")
assert store.get_storer("a").format_type == "fixed"
assert store.get_storer("b").format_type == "table"
def test_format_kwarg_in_constructor(tmp_path, setup_path):
# GH 13291
msg = "format is not a defined argument for HDFStore"
with pytest.raises(ValueError, match=msg):
HDFStore(tmp_path / setup_path, format="table")
def test_api_default_format(tmp_path, setup_path):
# default_format option
with ensure_clean_store(setup_path) as store:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
with pd.option_context("io.hdf.default_format", "fixed"):
_maybe_remove(store, "df")
store.put("df", df)
assert not store.get_storer("df").is_table
msg = "Can only append to Tables"
with pytest.raises(ValueError, match=msg):
store.append("df2", df)
with pd.option_context("io.hdf.default_format", "table"):
_maybe_remove(store, "df")
store.put("df", df)
assert store.get_storer("df").is_table
_maybe_remove(store, "df2")
store.append("df2", df)
assert store.get_storer("df").is_table
path = tmp_path / setup_path
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
with pd.option_context("io.hdf.default_format", "fixed"):
df.to_hdf(path, key="df")
with HDFStore(path) as store:
assert not store.get_storer("df").is_table
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, key="df2", append=True)
with pd.option_context("io.hdf.default_format", "table"):
df.to_hdf(path, key="df3")
with HDFStore(path) as store:
assert store.get_storer("df3").is_table
df.to_hdf(path, key="df4", append=True)
with HDFStore(path) as store:
assert store.get_storer("df4").is_table
def test_put(setup_path):
with ensure_clean_store(setup_path) as store:
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
df = DataFrame(
np.random.default_rng(2).standard_normal((20, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=20, freq="B"),
)
store["a"] = ts
store["b"] = df[:10]
store["foo/bar/bah"] = df[:10]
store["foo"] = df[:10]
store["/foo"] = df[:10]
store.put("c", df[:10], format="table")
# not OK, not a table
msg = "Can only append to Tables"
with pytest.raises(ValueError, match=msg):
store.put("b", df[10:], append=True)
# node does not currently exist, test _is_table_type returns False
# in this case
_maybe_remove(store, "f")
with pytest.raises(ValueError, match=msg):
store.put("f", df[10:], append=True)
# can't put to a table (use append instead)
with pytest.raises(ValueError, match=msg):
store.put("c", df[10:], append=True)
# overwrite table
store.put("c", df[:10], format="table", append=False)
tm.assert_frame_equal(df[:10], store["c"])
def test_put_string_index(setup_path):
with ensure_clean_store(setup_path) as store:
index = Index([f"I am a very long string index: {i}" for i in range(20)])
s = Series(np.arange(20), index=index)
df = DataFrame({"A": s, "B": s})
store["a"] = s
tm.assert_series_equal(store["a"], s)
store["b"] = df
tm.assert_frame_equal(store["b"], df)
# mixed length
index = Index(
["abcdefghijklmnopqrstuvwxyz1234567890"]
+ [f"I am a very long string index: {i}" for i in range(20)]
)
s = Series(np.arange(21), index=index)
df = DataFrame({"A": s, "B": s})
store["a"] = s
tm.assert_series_equal(store["a"], s)
store["b"] = df
tm.assert_frame_equal(store["b"], df)
def test_put_compression(setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
store.put("c", df, format="table", complib="zlib")
tm.assert_frame_equal(store["c"], df)
# can't compress if format='fixed'
msg = "Compression not supported on Fixed format stores"
with pytest.raises(ValueError, match=msg):
store.put("b", df, format="fixed", complib="zlib")
@td.skip_if_windows
def test_put_compression_blosc(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
with ensure_clean_store(setup_path) as store:
# can't compress if format='fixed'
msg = "Compression not supported on Fixed format stores"
with pytest.raises(ValueError, match=msg):
store.put("b", df, format="fixed", complib="blosc")
store.put("c", df, format="table", complib="blosc")
tm.assert_frame_equal(store["c"], df)
def test_put_mixed_type(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df["obj1"] = "foo"
df["obj2"] = "bar"
df["bool1"] = df["A"] > 0
df["bool2"] = df["B"] > 0
df["bool3"] = True
df["int1"] = 1
df["int2"] = 2
df["timestamp1"] = Timestamp("20010102").as_unit("ns")
df["timestamp2"] = Timestamp("20010103").as_unit("ns")
df["datetime1"] = Timestamp("20010102").as_unit("ns")
df["datetime2"] = Timestamp("20010103").as_unit("ns")
df.loc[df.index[3:6], ["obj1"]] = np.nan
df = df._consolidate()
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
with tm.assert_produces_warning(pd.errors.PerformanceWarning):
store.put("df", df)
expected = store.get("df")
tm.assert_frame_equal(expected, df)
@pytest.mark.parametrize("format", ["table", "fixed"])
@pytest.mark.parametrize(
"index",
[
Index([str(i) for i in range(10)]),
Index(np.arange(10, dtype=float)),
Index(np.arange(10)),
date_range("2020-01-01", periods=10),
pd.period_range("2020-01-01", periods=10),
],
)
def test_store_index_types(setup_path, format, index):
# GH5386
# test storing various index types
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 2)),
columns=list("AB"),
index=index,
)
_maybe_remove(store, "df")
store.put("df", df, format=format)
tm.assert_frame_equal(df, store["df"])
def test_column_multiindex(setup_path):
# GH 4710
# recreate multi-indexes properly
index = MultiIndex.from_tuples(
[("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"]
)
df = DataFrame(np.arange(12).reshape(3, 4), columns=index)
expected = df.set_axis(df.index.to_numpy())
with ensure_clean_store(setup_path) as store:
store.put("df", df)
tm.assert_frame_equal(
store["df"], expected, check_index_type=True, check_column_type=True
)
store.put("df1", df, format="table")
tm.assert_frame_equal(
store["df1"], expected, check_index_type=True, check_column_type=True
)
msg = re.escape("cannot use a multi-index on axis [1] with data_columns ['A']")
with pytest.raises(ValueError, match=msg):
store.put("df2", df, format="table", data_columns=["A"])
msg = re.escape("cannot use a multi-index on axis [1] with data_columns True")
with pytest.raises(ValueError, match=msg):
store.put("df3", df, format="table", data_columns=True)
# appending multi-column on existing table (see GH 6167)
with ensure_clean_store(setup_path) as store:
store.append("df2", df)
store.append("df2", df)
tm.assert_frame_equal(store["df2"], concat((df, df)))
# non_index_axes name
df = DataFrame(np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo"))
expected = df.set_axis(df.index.to_numpy())
with ensure_clean_store(setup_path) as store:
store.put("df1", df, format="table")
tm.assert_frame_equal(
store["df1"], expected, check_index_type=True, check_column_type=True
)
def test_store_multiindex(setup_path):
# validate multi-index names
# GH 5527
with ensure_clean_store(setup_path) as store:
def make_index(names=None):
dti = date_range("2013-12-01", "2013-12-02")
mi = MultiIndex.from_product([dti, range(2), range(3)], names=names)
return mi
# no names
_maybe_remove(store, "df")
df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index())
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)
# partial names
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", None, None]),
)
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)
# series
_maybe_remove(store, "ser")
ser = Series(np.zeros(12), index=make_index(["date", None, None]))
store.append("ser", ser)
xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"]))
tm.assert_series_equal(store.select("ser"), xp)
# dup with column
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", "a", "t"]),
)
msg = "duplicate names/columns in the multi-index when storing as a table"
with pytest.raises(ValueError, match=msg):
store.append("df", df)
# dup within level
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", "date", "date"]),
)
with pytest.raises(ValueError, match=msg):
store.append("df", df)
# fully names
_maybe_remove(store, "df")
df = DataFrame(
np.zeros((12, 2)),
columns=["a", "b"],
index=make_index(["date", "s", "t"]),
)
store.append("df", df)
tm.assert_frame_equal(store.select("df"), df)
@pytest.mark.parametrize("format", ["fixed", "table"])
def test_store_periodindex(tmp_path, setup_path, format):
# GH 7796
# test of PeriodIndex in HDFStore
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 1)),
index=pd.period_range("20220101", freq="M", periods=5),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w", format=format)
expected = pd.read_hdf(path, "df")
tm.assert_frame_equal(df, expected)

View File

@ -0,0 +1,14 @@
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
@td.skip_if_installed("tables")
def test_pytables_raises():
df = pd.DataFrame({"A": [1, 2]})
with pytest.raises(ImportError, match="tables"):
with tm.ensure_clean("foo.h5") as path:
df.to_hdf(path, key="df")

View File

@ -0,0 +1,412 @@
from contextlib import closing
from pathlib import Path
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows
import pandas as pd
from pandas import (
DataFrame,
HDFStore,
Index,
Series,
_testing as tm,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
from pandas.util import _test_decorators as td
from pandas.io.pytables import TableIterator
pytestmark = pytest.mark.single_cpu
def test_read_missing_key_close_store(tmp_path, setup_path):
# GH 25766
path = tmp_path / setup_path
df = DataFrame({"a": range(2), "b": range(2)})
df.to_hdf(path, key="k1")
with pytest.raises(KeyError, match="'No object named k2 in the file'"):
read_hdf(path, "k2")
# smoke test to test that file is properly closed after
# read with KeyError before another write
df.to_hdf(path, key="k2")
def test_read_index_error_close_store(tmp_path, setup_path):
# GH 25766
path = tmp_path / setup_path
df = DataFrame({"A": [], "B": []}, index=[])
df.to_hdf(path, key="k1")
with pytest.raises(IndexError, match=r"list index out of range"):
read_hdf(path, "k1", stop=0)
# smoke test to test that file is properly closed after
# read with IndexError before another write
df.to_hdf(path, key="k1")
def test_read_missing_key_opened_store(tmp_path, setup_path):
# GH 28699
path = tmp_path / setup_path
df = DataFrame({"a": range(2), "b": range(2)})
df.to_hdf(path, key="k1")
with HDFStore(path, "r") as store:
with pytest.raises(KeyError, match="'No object named k2 in the file'"):
read_hdf(store, "k2")
# Test that the file is still open after a KeyError and that we can
# still read from it.
read_hdf(store, "k1")
def test_read_column(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
# GH 17912
# HDFStore.select_column should raise a KeyError
# exception if the key is not a valid store
with pytest.raises(KeyError, match="No object named df in the file"):
store.select_column("df", "index")
store.append("df", df)
# error
with pytest.raises(
KeyError, match=re.escape("'column [foo] not found in the table'")
):
store.select_column("df", "foo")
msg = re.escape("select_column() got an unexpected keyword argument 'where'")
with pytest.raises(TypeError, match=msg):
store.select_column("df", "index", where=["index>5"])
# valid
result = store.select_column("df", "index")
tm.assert_almost_equal(result.values, Series(df.index).values)
assert isinstance(result, Series)
# not a data indexable column
msg = re.escape(
"column [values_block_0] can not be extracted individually; "
"it is not data indexable"
)
with pytest.raises(ValueError, match=msg):
store.select_column("df", "values_block_0")
# a data column
df2 = df.copy()
df2["string"] = "foo"
store.append("df2", df2, data_columns=["string"])
result = store.select_column("df2", "string")
tm.assert_almost_equal(result.values, df2["string"].values)
# a data column with NaNs, result excludes the NaNs
df3 = df.copy()
df3["string"] = "foo"
df3.loc[df3.index[4:6], "string"] = np.nan
store.append("df3", df3, data_columns=["string"])
result = store.select_column("df3", "string")
tm.assert_almost_equal(result.values, df3["string"].values)
# start/stop
result = store.select_column("df3", "string", start=2)
tm.assert_almost_equal(result.values, df3["string"].values[2:])
result = store.select_column("df3", "string", start=-2)
tm.assert_almost_equal(result.values, df3["string"].values[-2:])
result = store.select_column("df3", "string", stop=2)
tm.assert_almost_equal(result.values, df3["string"].values[:2])
result = store.select_column("df3", "string", stop=-2)
tm.assert_almost_equal(result.values, df3["string"].values[:-2])
result = store.select_column("df3", "string", start=2, stop=-2)
tm.assert_almost_equal(result.values, df3["string"].values[2:-2])
result = store.select_column("df3", "string", start=-2, stop=2)
tm.assert_almost_equal(result.values, df3["string"].values[-2:2])
# GH 10392 - make sure column name is preserved
df4 = DataFrame({"A": np.random.default_rng(2).standard_normal(10), "B": "foo"})
store.append("df4", df4, data_columns=True)
expected = df4["B"]
result = store.select_column("df4", "B")
tm.assert_series_equal(result, expected)
def test_pytables_native_read(datapath):
with ensure_clean_store(
datapath("io", "data", "legacy_hdf/pytables_native.h5"), mode="r"
) as store:
d2 = store["detector/readout"]
assert isinstance(d2, DataFrame)
@pytest.mark.skipif(is_platform_windows(), reason="native2 read fails oddly on windows")
def test_pytables_native2_read(datapath):
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "pytables_native2.h5"), mode="r"
) as store:
str(store)
d1 = store["detector"]
assert isinstance(d1, DataFrame)
def test_legacy_table_fixed_format_read_py2(datapath):
# GH 24510
# legacy table with fixed format written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_py2.h5"), mode="r"
) as store:
result = store.select("df")
expected = DataFrame(
[[1, 2, 3, "D"]],
columns=["A", "B", "C", "D"],
index=Index(["ABC"], name="INDEX_NAME"),
)
tm.assert_frame_equal(expected, result)
def test_legacy_table_fixed_format_read_datetime_py2(datapath):
# GH 31750
# legacy table with fixed format and datetime64 column written in Python 2
expected = DataFrame(
[[Timestamp("2020-02-06T18:00")]],
columns=["A"],
index=Index(["date"]),
dtype="M8[ns]",
)
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_datetime_py2.h5"),
mode="r",
) as store:
result = store.select("df")
tm.assert_frame_equal(expected, result)
def test_legacy_table_read_py2(datapath):
# issue: 24925
# legacy table written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_py2.h5"), mode="r"
) as store:
result = store.select("table")
expected = DataFrame({"a": ["a", "b"], "b": [2, 3]})
tm.assert_frame_equal(expected, result)
def test_read_hdf_open_store(tmp_path, setup_path):
# GH10330
# No check for non-string path_or-buf, and no test of open store
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
df.index.name = "letters"
df = df.set_index(keys="E", append=True)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w")
direct = read_hdf(path, "df")
with HDFStore(path, mode="r") as store:
indirect = read_hdf(store, "df")
tm.assert_frame_equal(direct, indirect)
assert store.is_open
def test_read_hdf_index_not_view(tmp_path, setup_path):
# GH 37441
# Ensure that the index of the DataFrame is not a view
# into the original recarray that pytables reads in
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=[0, 1, 2, 3],
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w", format="table")
df2 = read_hdf(path, "df")
assert df2.index._data.base is None
tm.assert_frame_equal(df, df2)
def test_read_hdf_iterator(tmp_path, setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
df.index.name = "letters"
df = df.set_index(keys="E", append=True)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w", format="t")
direct = read_hdf(path, "df")
iterator = read_hdf(path, "df", iterator=True)
with closing(iterator.store):
assert isinstance(iterator, TableIterator)
indirect = next(iterator.__iter__())
tm.assert_frame_equal(direct, indirect)
def test_read_nokey(tmp_path, setup_path):
# GH10443
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
# Categorical dtype not supported for "fixed" format. So no need
# to test with that dtype in the dataframe here.
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="a")
reread = read_hdf(path)
tm.assert_frame_equal(df, reread)
df.to_hdf(path, key="df2", mode="a")
msg = "key must be provided when HDF5 file contains multiple datasets."
with pytest.raises(ValueError, match=msg):
read_hdf(path)
def test_read_nokey_table(tmp_path, setup_path):
# GH13231
df = DataFrame({"i": range(5), "c": Series(list("abacd"), dtype="category")})
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="a", format="table")
reread = read_hdf(path)
tm.assert_frame_equal(df, reread)
df.to_hdf(path, key="df2", mode="a", format="table")
msg = "key must be provided when HDF5 file contains multiple datasets."
with pytest.raises(ValueError, match=msg):
read_hdf(path)
def test_read_nokey_empty(tmp_path, setup_path):
path = tmp_path / setup_path
store = HDFStore(path)
store.close()
msg = re.escape(
"Dataset(s) incompatible with Pandas data types, not table, or no "
"datasets found in HDF5 file."
)
with pytest.raises(ValueError, match=msg):
read_hdf(path)
def test_read_from_pathlib_path(tmp_path, setup_path):
# GH11773
expected = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
filename = tmp_path / setup_path
path_obj = Path(filename)
expected.to_hdf(path_obj, key="df", mode="a")
actual = read_hdf(path_obj, key="df")
tm.assert_frame_equal(expected, actual)
@td.skip_if_no("py.path")
def test_read_from_py_localpath(tmp_path, setup_path):
# GH11773
from py.path import local as LocalPath
expected = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
filename = tmp_path / setup_path
path_obj = LocalPath(filename)
expected.to_hdf(path_obj, key="df", mode="a")
actual = read_hdf(path_obj, key="df")
tm.assert_frame_equal(expected, actual)
@pytest.mark.parametrize("format", ["fixed", "table"])
def test_read_hdf_series_mode_r(tmp_path, format, setup_path):
# GH 16583
# Tests that reading a Series saved to an HDF file
# still works if a mode='r' argument is supplied
series = Series(range(10), dtype=np.float64)
path = tmp_path / setup_path
series.to_hdf(path, key="data", format=format)
result = read_hdf(path, key="data", mode="r")
tm.assert_series_equal(result, series)
@pytest.mark.filterwarnings(r"ignore:Period with BDay freq is deprecated:FutureWarning")
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_read_py2_hdf_file_in_py3(datapath):
# GH 16781
# tests reading a PeriodIndex DataFrame written in Python2 in Python3
# the file was generated in Python 2.7 like so:
#
# df = DataFrame([1.,2,3], index=pd.PeriodIndex(
# ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B'))
# df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p')
expected = DataFrame(
[1.0, 2, 3],
index=pd.PeriodIndex(["2015-01-01", "2015-01-02", "2015-01-05"], freq="B"),
)
with ensure_clean_store(
datapath(
"io", "data", "legacy_hdf", "periodindex_0.20.1_x86_64_darwin_2.7.13.h5"
),
mode="r",
) as store:
result = store["p"]
tm.assert_frame_equal(result, expected)
def test_read_infer_string(tmp_path, setup_path):
# GH#54431
pytest.importorskip("pyarrow")
df = DataFrame({"a": ["a", "b", None]})
path = tmp_path / setup_path
df.to_hdf(path, key="data", format="table")
with pd.option_context("future.infer_string", True):
result = read_hdf(path, key="data", mode="r")
expected = DataFrame(
{"a": ["a", "b", None]},
dtype="string[pyarrow_numpy]",
columns=Index(["a"], dtype="string[pyarrow_numpy]"),
)
tm.assert_frame_equal(result, expected)

View File

@ -0,0 +1,92 @@
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
Series,
_testing as tm,
date_range,
errors,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
pytestmark = pytest.mark.single_cpu
def test_retain_index_attributes(setup_path, unit):
# GH 3499, losing frequency info on index recreation
dti = date_range("2000-1-1", periods=3, freq="h", unit=unit)
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "data")
store.put("data", df, format="table")
result = store.get("data")
tm.assert_frame_equal(df, result)
for attr in ["freq", "tz", "name"]:
for idx in ["index", "columns"]:
assert getattr(getattr(df, idx), attr, None) == getattr(
getattr(result, idx), attr, None
)
dti2 = date_range("2002-1-1", periods=3, freq="D", unit=unit)
# try to append a table with a different frequency
with tm.assert_produces_warning(errors.AttributeConflictWarning):
df2 = DataFrame({"A": Series(range(3), index=dti2)})
store.append("data", df2)
assert store.get_storer("data").info["index"]["freq"] is None
# this is ok
_maybe_remove(store, "df2")
dti3 = DatetimeIndex(
["2001-01-01", "2001-01-02", "2002-01-01"], dtype=f"M8[{unit}]"
)
df2 = DataFrame(
{
"A": Series(
range(3),
index=dti3,
)
}
)
store.append("df2", df2)
dti4 = date_range("2002-1-1", periods=3, freq="D", unit=unit)
df3 = DataFrame({"A": Series(range(3), index=dti4)})
store.append("df2", df3)
def test_retain_index_attributes2(tmp_path, setup_path):
path = tmp_path / setup_path
with tm.assert_produces_warning(errors.AttributeConflictWarning):
df = DataFrame(
{"A": Series(range(3), index=date_range("2000-1-1", periods=3, freq="h"))}
)
df.to_hdf(path, key="data", mode="w", append=True)
df2 = DataFrame(
{"A": Series(range(3), index=date_range("2002-1-1", periods=3, freq="D"))}
)
df2.to_hdf(path, key="data", append=True)
idx = date_range("2000-1-1", periods=3, freq="h")
idx.name = "foo"
df = DataFrame({"A": Series(range(3), index=idx)})
df.to_hdf(path, key="data", mode="w", append=True)
assert read_hdf(path, key="data").index.name == "foo"
with tm.assert_produces_warning(errors.AttributeConflictWarning):
idx2 = date_range("2001-1-1", periods=3, freq="h")
idx2.name = "bar"
df2 = DataFrame({"A": Series(range(3), index=idx2)})
df2.to_hdf(path, key="data", append=True)
assert read_hdf(path, "data").index.name is None

View File

@ -0,0 +1,578 @@
import datetime
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
Series,
_testing as tm,
bdate_range,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
from pandas.util import _test_decorators as td
pytestmark = pytest.mark.single_cpu
def test_conv_read_write():
with tm.ensure_clean() as path:
def roundtrip(key, obj, **kwargs):
obj.to_hdf(path, key=key, **kwargs)
return read_hdf(path, key)
o = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
tm.assert_series_equal(o, roundtrip("series", o))
o = Series(range(10), dtype="float64", index=[f"i_{i}" for i in range(10)])
tm.assert_series_equal(o, roundtrip("string_series", o))
o = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
tm.assert_frame_equal(o, roundtrip("frame", o))
# table
df = DataFrame({"A": range(5), "B": range(5)})
df.to_hdf(path, key="table", append=True)
result = read_hdf(path, "table", where=["index>2"])
tm.assert_frame_equal(df[df.index > 2], result)
def test_long_strings(setup_path):
# GH6166
data = ["a" * 50] * 10
df = DataFrame({"a": data}, index=data)
with ensure_clean_store(setup_path) as store:
store.append("df", df, data_columns=["a"])
result = store.select("df")
tm.assert_frame_equal(df, result)
def test_api(tmp_path, setup_path):
# GH4584
# API issue when to_hdf doesn't accept append AND format args
path = tmp_path / setup_path
df = DataFrame(range(20))
df.iloc[:10].to_hdf(path, key="df", append=True, format="table")
df.iloc[10:].to_hdf(path, key="df", append=True, format="table")
tm.assert_frame_equal(read_hdf(path, "df"), df)
# append to False
df.iloc[:10].to_hdf(path, key="df", append=False, format="table")
df.iloc[10:].to_hdf(path, key="df", append=True, format="table")
tm.assert_frame_equal(read_hdf(path, "df"), df)
def test_api_append(tmp_path, setup_path):
path = tmp_path / setup_path
df = DataFrame(range(20))
df.iloc[:10].to_hdf(path, key="df", append=True)
df.iloc[10:].to_hdf(path, key="df", append=True, format="table")
tm.assert_frame_equal(read_hdf(path, "df"), df)
# append to False
df.iloc[:10].to_hdf(path, key="df", append=False, format="table")
df.iloc[10:].to_hdf(path, key="df", append=True)
tm.assert_frame_equal(read_hdf(path, "df"), df)
def test_api_2(tmp_path, setup_path):
path = tmp_path / setup_path
df = DataFrame(range(20))
df.to_hdf(path, key="df", append=False, format="fixed")
tm.assert_frame_equal(read_hdf(path, "df"), df)
df.to_hdf(path, key="df", append=False, format="f")
tm.assert_frame_equal(read_hdf(path, "df"), df)
df.to_hdf(path, key="df", append=False)
tm.assert_frame_equal(read_hdf(path, "df"), df)
df.to_hdf(path, key="df")
tm.assert_frame_equal(read_hdf(path, "df"), df)
with ensure_clean_store(setup_path) as store:
df = DataFrame(range(20))
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=True, format="table")
store.append("df", df.iloc[10:], append=True, format="table")
tm.assert_frame_equal(store.select("df"), df)
# append to False
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=False, format="table")
store.append("df", df.iloc[10:], append=True, format="table")
tm.assert_frame_equal(store.select("df"), df)
# formats
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=False, format="table")
store.append("df", df.iloc[10:], append=True, format="table")
tm.assert_frame_equal(store.select("df"), df)
_maybe_remove(store, "df")
store.append("df", df.iloc[:10], append=False, format="table")
store.append("df", df.iloc[10:], append=True, format=None)
tm.assert_frame_equal(store.select("df"), df)
def test_api_invalid(tmp_path, setup_path):
path = tmp_path / setup_path
# Invalid.
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
msg = "Can only append to Tables"
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, key="df", append=True, format="f")
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, key="df", append=True, format="fixed")
msg = r"invalid HDFStore format specified \[foo\]"
with pytest.raises(TypeError, match=msg):
df.to_hdf(path, key="df", append=True, format="foo")
with pytest.raises(TypeError, match=msg):
df.to_hdf(path, key="df", append=False, format="foo")
# File path doesn't exist
path = ""
msg = f"File {path} does not exist"
with pytest.raises(FileNotFoundError, match=msg):
read_hdf(path, "df")
def test_get(setup_path):
with ensure_clean_store(setup_path) as store:
store["a"] = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
left = store.get("a")
right = store["a"]
tm.assert_series_equal(left, right)
left = store.get("/a")
right = store["/a"]
tm.assert_series_equal(left, right)
with pytest.raises(KeyError, match="'No object named b in the file'"):
store.get("b")
def test_put_integer(setup_path):
# non-date, non-string index
df = DataFrame(np.random.default_rng(2).standard_normal((50, 100)))
_check_roundtrip(df, tm.assert_frame_equal, setup_path)
def test_table_values_dtypes_roundtrip(setup_path):
with ensure_clean_store(setup_path) as store:
df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8")
store.append("df_f8", df1)
tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes)
df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8")
store.append("df_i8", df2)
tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes)
# incompatible dtype
msg = re.escape(
"invalid combination of [values_axes] on appending data "
"[name->values_block_0,cname->values_block_0,"
"dtype->float64,kind->float,shape->(1, 3)] vs "
"current table [name->values_block_0,"
"cname->values_block_0,dtype->int64,kind->integer,"
"shape->None]"
)
with pytest.raises(ValueError, match=msg):
store.append("df_i8", df1)
# check creation/storage/retrieval of float32 (a bit hacky to
# actually create them thought)
df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"])
store.append("df_f4", df1)
tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes)
assert df1.dtypes.iloc[0] == "float32"
# check with mixed dtypes
df1 = DataFrame(
{
c: Series(np.random.default_rng(2).integers(5), dtype=c)
for c in ["float32", "float64", "int32", "int64", "int16", "int8"]
}
)
df1["string"] = "foo"
df1["float322"] = 1.0
df1["float322"] = df1["float322"].astype("float32")
df1["bool"] = df1["float32"] > 0
df1["time1"] = Timestamp("20130101")
df1["time2"] = Timestamp("20130102")
store.append("df_mixed_dtypes1", df1)
result = store.select("df_mixed_dtypes1").dtypes.value_counts()
result.index = [str(i) for i in result.index]
expected = Series(
{
"float32": 2,
"float64": 1,
"int32": 1,
"bool": 1,
"int16": 1,
"int8": 1,
"int64": 1,
"object": 1,
"datetime64[ns]": 2,
},
name="count",
)
result = result.sort_index()
expected = expected.sort_index()
tm.assert_series_equal(result, expected)
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
def test_series(setup_path):
s = Series(range(10), dtype="float64", index=[f"i_{i}" for i in range(10)])
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
_check_roundtrip(ts, tm.assert_series_equal, path=setup_path)
ts2 = Series(ts.index, Index(ts.index, dtype=object))
_check_roundtrip(ts2, tm.assert_series_equal, path=setup_path)
ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object))
_check_roundtrip(
ts3, tm.assert_series_equal, path=setup_path, check_index_type=False
)
def test_float_index(setup_path):
# GH #454
index = np.random.default_rng(2).standard_normal(10)
s = Series(np.random.default_rng(2).standard_normal(10), index=index)
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
def test_tuple_index(setup_path):
# GH #492
col = np.arange(10)
idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)]
data = np.random.default_rng(2).standard_normal(30).reshape((3, 10))
DF = DataFrame(data, index=idx, columns=col)
with tm.assert_produces_warning(pd.errors.PerformanceWarning):
_check_roundtrip(DF, tm.assert_frame_equal, path=setup_path)
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
def test_index_types(setup_path):
values = np.random.default_rng(2).standard_normal(2)
func = lambda lhs, rhs: tm.assert_series_equal(lhs, rhs, check_index_type=True)
ser = Series(values, [0, "y"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [datetime.datetime.today(), 0])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, ["y", 0])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [datetime.date.today(), "a"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [0, "y"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [datetime.datetime.today(), 0])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, ["y", 0])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [datetime.date.today(), "a"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [1.23, "b"])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [1, 1.53])
_check_roundtrip(ser, func, path=setup_path)
ser = Series(values, [1, 5])
_check_roundtrip(ser, func, path=setup_path)
dti = DatetimeIndex(["2012-01-01", "2012-01-02"], dtype="M8[ns]")
ser = Series(values, index=dti)
_check_roundtrip(ser, func, path=setup_path)
ser.index = ser.index.as_unit("s")
_check_roundtrip(ser, func, path=setup_path)
def test_timeseries_preepoch(setup_path, request):
dr = bdate_range("1/1/1940", "1/1/1960")
ts = Series(np.random.default_rng(2).standard_normal(len(dr)), index=dr)
try:
_check_roundtrip(ts, tm.assert_series_equal, path=setup_path)
except OverflowError:
if is_platform_windows():
request.applymarker(
pytest.mark.xfail("known failure on some windows platforms")
)
raise
@pytest.mark.parametrize(
"compression", [False, pytest.param(True, marks=td.skip_if_windows)]
)
def test_frame(compression, setup_path):
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
# put in some random NAs
df.iloc[0, 0] = np.nan
df.iloc[5, 3] = np.nan
_check_roundtrip_table(
df, tm.assert_frame_equal, path=setup_path, compression=compression
)
_check_roundtrip(
df, tm.assert_frame_equal, path=setup_path, compression=compression
)
tdf = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
_check_roundtrip(
tdf, tm.assert_frame_equal, path=setup_path, compression=compression
)
with ensure_clean_store(setup_path) as store:
# not consolidated
df["foo"] = np.random.default_rng(2).standard_normal(len(df))
store["df"] = df
recons = store["df"]
assert recons._mgr.is_consolidated()
# empty
_check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path)
def test_empty_series_frame(setup_path):
s0 = Series(dtype=object)
s1 = Series(name="myseries", dtype=object)
df0 = DataFrame()
df1 = DataFrame(index=["a", "b", "c"])
df2 = DataFrame(columns=["d", "e", "f"])
_check_roundtrip(s0, tm.assert_series_equal, path=setup_path)
_check_roundtrip(s1, tm.assert_series_equal, path=setup_path)
_check_roundtrip(df0, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(df1, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(df2, tm.assert_frame_equal, path=setup_path)
@pytest.mark.parametrize("dtype", [np.int64, np.float64, object, "m8[ns]", "M8[ns]"])
def test_empty_series(dtype, setup_path):
s = Series(dtype=dtype)
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
def test_can_serialize_dates(setup_path):
rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")]
frame = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 4)), index=rng
)
_check_roundtrip(frame, tm.assert_frame_equal, path=setup_path)
def test_store_hierarchical(setup_path, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
_check_roundtrip(frame, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path)
# check that the names are stored
with ensure_clean_store(setup_path) as store:
store["frame"] = frame
recons = store["frame"]
tm.assert_frame_equal(recons, frame)
@pytest.mark.parametrize(
"compression", [False, pytest.param(True, marks=td.skip_if_windows)]
)
def test_store_mixed(compression, setup_path):
def _make_one():
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df["obj1"] = "foo"
df["obj2"] = "bar"
df["bool1"] = df["A"] > 0
df["bool2"] = df["B"] > 0
df["int1"] = 1
df["int2"] = 2
return df._consolidate()
df1 = _make_one()
df2 = _make_one()
_check_roundtrip(df1, tm.assert_frame_equal, path=setup_path)
_check_roundtrip(df2, tm.assert_frame_equal, path=setup_path)
with ensure_clean_store(setup_path) as store:
store["obj"] = df1
tm.assert_frame_equal(store["obj"], df1)
store["obj"] = df2
tm.assert_frame_equal(store["obj"], df2)
# check that can store Series of all of these types
_check_roundtrip(
df1["obj1"],
tm.assert_series_equal,
path=setup_path,
compression=compression,
)
_check_roundtrip(
df1["bool1"],
tm.assert_series_equal,
path=setup_path,
compression=compression,
)
_check_roundtrip(
df1["int1"],
tm.assert_series_equal,
path=setup_path,
compression=compression,
)
def _check_roundtrip(obj, comparator, path, compression=False, **kwargs):
options = {}
if compression:
options["complib"] = "blosc"
with ensure_clean_store(path, "w", **options) as store:
store["obj"] = obj
retrieved = store["obj"]
comparator(retrieved, obj, **kwargs)
def _check_roundtrip_table(obj, comparator, path, compression=False):
options = {}
if compression:
options["complib"] = "blosc"
with ensure_clean_store(path, "w", **options) as store:
store.put("obj", obj, format="table")
retrieved = store["obj"]
comparator(retrieved, obj)
def test_unicode_index(setup_path):
unicode_values = ["\u03c3", "\u03c3\u03c3"]
s = Series(
np.random.default_rng(2).standard_normal(len(unicode_values)),
unicode_values,
)
_check_roundtrip(s, tm.assert_series_equal, path=setup_path)
def test_unicode_longer_encoded(setup_path):
# GH 11234
char = "\u0394"
df = DataFrame({"A": [char]})
with ensure_clean_store(setup_path) as store:
store.put("df", df, format="table", encoding="utf-8")
result = store.get("df")
tm.assert_frame_equal(result, df)
df = DataFrame({"A": ["a", char], "B": ["b", "b"]})
with ensure_clean_store(setup_path) as store:
store.put("df", df, format="table", encoding="utf-8")
result = store.get("df")
tm.assert_frame_equal(result, df)
def test_store_datetime_mixed(setup_path):
df = DataFrame({"a": [1, 2, 3], "b": [1.0, 2.0, 3.0], "c": ["a", "b", "c"]})
ts = Series(
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
)
df["d"] = ts.index[:3]
_check_roundtrip(df, tm.assert_frame_equal, path=setup_path)
def test_round_trip_equals(tmp_path, setup_path):
# GH 9330
df = DataFrame({"B": [1, 2], "A": ["x", "y"]})
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table")
other = read_hdf(path, "df")
tm.assert_frame_equal(df, other)
assert df.equals(other)
assert other.equals(df)
def test_infer_string_columns(tmp_path, setup_path):
# GH#
pytest.importorskip("pyarrow")
path = tmp_path / setup_path
with pd.option_context("future.infer_string", True):
df = DataFrame(1, columns=list("ABCD"), index=list(range(10))).set_index(
["A", "B"]
)
expected = df.copy()
df.to_hdf(path, key="df", format="table")
result = read_hdf(path, "df")
tm.assert_frame_equal(result, expected)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,52 @@
import numpy as np
import pytest
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
from pandas.io.pytables import (
HDFStore,
read_hdf,
)
pytest.importorskip("tables")
class TestHDFStoreSubclass:
# GH 33748
def test_supported_for_subclass_dataframe(self, tmp_path):
data = {"a": [1, 2], "b": [3, 4]}
sdf = tm.SubclassedDataFrame(data, dtype=np.intp)
expected = DataFrame(data, dtype=np.intp)
path = tmp_path / "temp.h5"
sdf.to_hdf(path, key="df")
result = read_hdf(path, "df")
tm.assert_frame_equal(result, expected)
path = tmp_path / "temp.h5"
with HDFStore(path) as store:
store.put("df", sdf)
result = read_hdf(path, "df")
tm.assert_frame_equal(result, expected)
def test_supported_for_subclass_series(self, tmp_path):
data = [1, 2, 3]
sser = tm.SubclassedSeries(data, dtype=np.intp)
expected = Series(data, dtype=np.intp)
path = tmp_path / "temp.h5"
sser.to_hdf(path, key="ser")
result = read_hdf(path, "ser")
tm.assert_series_equal(result, expected)
path = tmp_path / "temp.h5"
with HDFStore(path) as store:
store.put("ser", sser)
result = read_hdf(path, "ser")
tm.assert_series_equal(result, expected)

View File

@ -0,0 +1,72 @@
import datetime
import numpy as np
import pytest
from pandas import (
DataFrame,
DatetimeIndex,
Series,
_testing as tm,
date_range,
period_range,
)
from pandas.tests.io.pytables.common import ensure_clean_store
pytestmark = pytest.mark.single_cpu
@pytest.mark.parametrize("unit", ["us", "ns"])
def test_store_datetime_fractional_secs(setup_path, unit):
dt = datetime.datetime(2012, 1, 2, 3, 4, 5, 123456)
dti = DatetimeIndex([dt], dtype=f"M8[{unit}]")
series = Series([0], index=dti)
with ensure_clean_store(setup_path) as store:
store["a"] = series
assert store["a"].index[0] == dt
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_tseries_indices_series(setup_path):
with ensure_clean_store(setup_path) as store:
idx = date_range("2020-01-01", periods=10)
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
store["a"] = ser
result = store["a"]
tm.assert_series_equal(result, ser)
assert result.index.freq == ser.index.freq
tm.assert_class_equal(result.index, ser.index, obj="series index")
idx = period_range("2020-01-01", periods=10, freq="D")
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx)
store["a"] = ser
result = store["a"]
tm.assert_series_equal(result, ser)
assert result.index.freq == ser.index.freq
tm.assert_class_equal(result.index, ser.index, obj="series index")
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_tseries_indices_frame(setup_path):
with ensure_clean_store(setup_path) as store:
idx = date_range("2020-01-01", periods=10)
df = DataFrame(
np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx
)
store["a"] = df
result = store["a"]
tm.assert_frame_equal(result, df)
assert result.index.freq == df.index.freq
tm.assert_class_equal(result.index, df.index, obj="dataframe index")
idx = period_range("2020-01-01", periods=10, freq="D")
df = DataFrame(np.random.default_rng(2).standard_normal((len(idx), 3)), idx)
store["a"] = df
result = store["a"]
tm.assert_frame_equal(result, df)
assert result.index.freq == df.index.freq
tm.assert_class_equal(result.index, df.index, obj="dataframe index")

View File

@ -0,0 +1,378 @@
from datetime import (
date,
timedelta,
)
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
def _compare_with_tz(a, b):
tm.assert_frame_equal(a, b)
# compare the zones on each element
for c in a.columns:
for i in a.index:
a_e = a.loc[i, c]
b_e = b.loc[i, c]
if not (a_e == b_e and a_e.tz == b_e.tz):
raise AssertionError(f"invalid tz comparison [{a_e}] [{b_e}]")
# use maybe_get_tz instead of dateutil.tz.gettz to handle the windows
# filename issues.
gettz_dateutil = lambda x: maybe_get_tz("dateutil/" + x)
gettz_pytz = lambda x: x
@pytest.mark.parametrize("gettz", [gettz_dateutil, gettz_pytz])
def test_append_with_timezones(setup_path, gettz):
# as columns
# Single-tzinfo, no DST transition
df_est = DataFrame(
{
"A": [
Timestamp("20130102 2:00:00", tz=gettz("US/Eastern")).as_unit("ns")
+ timedelta(hours=1) * i
for i in range(5)
]
}
)
# frame with all columns having same tzinfo, but different sides
# of DST transition
df_crosses_dst = DataFrame(
{
"A": Timestamp("20130102", tz=gettz("US/Eastern")).as_unit("ns"),
"B": Timestamp("20130603", tz=gettz("US/Eastern")).as_unit("ns"),
},
index=range(5),
)
df_mixed_tz = DataFrame(
{
"A": Timestamp("20130102", tz=gettz("US/Eastern")).as_unit("ns"),
"B": Timestamp("20130102", tz=gettz("EET")).as_unit("ns"),
},
index=range(5),
)
df_different_tz = DataFrame(
{
"A": Timestamp("20130102", tz=gettz("US/Eastern")).as_unit("ns"),
"B": Timestamp("20130102", tz=gettz("CET")).as_unit("ns"),
},
index=range(5),
)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df_tz")
store.append("df_tz", df_est, data_columns=["A"])
result = store["df_tz"]
_compare_with_tz(result, df_est)
tm.assert_frame_equal(result, df_est)
# select with tz aware
expected = df_est[df_est.A >= df_est.A[3]]
result = store.select("df_tz", where="A>=df_est.A[3]")
_compare_with_tz(result, expected)
# ensure we include dates in DST and STD time here.
_maybe_remove(store, "df_tz")
store.append("df_tz", df_crosses_dst)
result = store["df_tz"]
_compare_with_tz(result, df_crosses_dst)
tm.assert_frame_equal(result, df_crosses_dst)
msg = (
r"invalid info for \[values_block_1\] for \[tz\], "
r"existing_value \[(dateutil/.*)?(US/Eastern|America/New_York)\] "
r"conflicts with new value \[(dateutil/.*)?EET\]"
)
with pytest.raises(ValueError, match=msg):
store.append("df_tz", df_mixed_tz)
# this is ok
_maybe_remove(store, "df_tz")
store.append("df_tz", df_mixed_tz, data_columns=["A", "B"])
result = store["df_tz"]
_compare_with_tz(result, df_mixed_tz)
tm.assert_frame_equal(result, df_mixed_tz)
# can't append with diff timezone
msg = (
r"invalid info for \[B\] for \[tz\], "
r"existing_value \[(dateutil/.*)?EET\] "
r"conflicts with new value \[(dateutil/.*)?CET\]"
)
with pytest.raises(ValueError, match=msg):
store.append("df_tz", df_different_tz)
@pytest.mark.parametrize("gettz", [gettz_dateutil, gettz_pytz])
def test_append_with_timezones_as_index(setup_path, gettz):
# GH#4098 example
dti = date_range("2000-1-1", periods=3, freq="h", tz=gettz("US/Eastern"))
dti = dti._with_freq(None) # freq doesn't round-trip
df = DataFrame({"A": Series(range(3), index=dti)})
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
store.put("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
_maybe_remove(store, "df")
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
def test_roundtrip_tz_aware_index(setup_path, unit):
# GH 17618
ts = Timestamp("2000-01-01 01:00:00", tz="US/Eastern")
dti = DatetimeIndex([ts]).as_unit(unit)
df = DataFrame(data=[0], index=dti)
with ensure_clean_store(setup_path) as store:
store.put("frame", df, format="fixed")
recons = store["frame"]
tm.assert_frame_equal(recons, df)
value = recons.index[0]._value
denom = {"ns": 1, "us": 1000, "ms": 10**6, "s": 10**9}[unit]
assert value == 946706400000000000 // denom
def test_store_index_name_with_tz(setup_path):
# GH 13884
df = DataFrame({"A": [1, 2]})
df.index = DatetimeIndex([1234567890123456787, 1234567890123456788])
df.index = df.index.tz_localize("UTC")
df.index.name = "foo"
with ensure_clean_store(setup_path) as store:
store.put("frame", df, format="table")
recons = store["frame"]
tm.assert_frame_equal(recons, df)
def test_tseries_select_index_column(setup_path):
# GH7777
# selecting a UTC datetimeindex column did
# not preserve UTC tzinfo set before storing
# check that no tz still works
rng = date_range("1/1/2000", "1/30/2000")
frame = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 4)), index=rng
)
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range("1/1/2000", "1/30/2000", tz="UTC")
frame = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 4)), index=rng
)
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
frame = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 4)), index=rng
)
with ensure_clean_store(setup_path) as store:
store.append("frame", frame)
result = store.select_column("frame", "index")
assert rng.tz == result.dt.tz
def test_timezones_fixed_format_frame_non_empty(setup_path):
with ensure_clean_store(setup_path) as store:
# index
rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern")
rng = rng._with_freq(None) # freq doesn't round-trip
df = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 4)), index=rng
)
store["df"] = df
result = store["df"]
tm.assert_frame_equal(result, df)
# as data
# GH11411
_maybe_remove(store, "df")
df = DataFrame(
{
"A": rng,
"B": rng.tz_convert("UTC").tz_localize(None),
"C": rng.tz_convert("CET"),
"D": range(len(rng)),
},
index=rng,
)
store["df"] = df
result = store["df"]
tm.assert_frame_equal(result, df)
def test_timezones_fixed_format_empty(setup_path, tz_aware_fixture, frame_or_series):
# GH 20594
dtype = pd.DatetimeTZDtype(tz=tz_aware_fixture)
obj = Series(dtype=dtype, name="A")
if frame_or_series is DataFrame:
obj = obj.to_frame()
with ensure_clean_store(setup_path) as store:
store["obj"] = obj
result = store["obj"]
tm.assert_equal(result, obj)
def test_timezones_fixed_format_series_nonempty(setup_path, tz_aware_fixture):
# GH 20594
dtype = pd.DatetimeTZDtype(tz=tz_aware_fixture)
with ensure_clean_store(setup_path) as store:
s = Series([0], dtype=dtype)
store["s"] = s
result = store["s"]
tm.assert_series_equal(result, s)
def test_fixed_offset_tz(setup_path):
rng = date_range("1/1/2000 00:00:00-07:00", "1/30/2000 00:00:00-07:00")
frame = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 4)), index=rng
)
with ensure_clean_store(setup_path) as store:
store["frame"] = frame
recons = store["frame"]
tm.assert_index_equal(recons.index, rng)
assert rng.tz == recons.index.tz
@td.skip_if_windows
def test_store_timezone(setup_path):
# GH2852
# issue storing datetime.date with a timezone as it resets when read
# back in a new timezone
# original method
with ensure_clean_store(setup_path) as store:
today = date(2013, 9, 10)
df = DataFrame([1, 2, 3], index=[today, today, today])
store["obj1"] = df
result = store["obj1"]
tm.assert_frame_equal(result, df)
# with tz setting
with ensure_clean_store(setup_path) as store:
with tm.set_timezone("EST5EDT"):
today = date(2013, 9, 10)
df = DataFrame([1, 2, 3], index=[today, today, today])
store["obj1"] = df
with tm.set_timezone("CST6CDT"):
result = store["obj1"]
tm.assert_frame_equal(result, df)
def test_legacy_datetimetz_object(datapath):
# legacy from < 0.17.0
# 8260
expected = DataFrame(
{
"A": Timestamp("20130102", tz="US/Eastern").as_unit("ns"),
"B": Timestamp("20130603", tz="CET").as_unit("ns"),
},
index=range(5),
)
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "datetimetz_object.h5"), mode="r"
) as store:
result = store["df"]
tm.assert_frame_equal(result, expected)
def test_dst_transitions(setup_path):
# make sure we are not failing on transitions
with ensure_clean_store(setup_path) as store:
times = date_range(
"2013-10-26 23:00",
"2013-10-27 01:00",
tz="Europe/London",
freq="h",
ambiguous="infer",
)
times = times._with_freq(None) # freq doesn't round-trip
for i in [times, times + pd.Timedelta("10min")]:
_maybe_remove(store, "df")
df = DataFrame({"A": range(len(i)), "B": i}, index=i)
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(result, df)
def test_read_with_where_tz_aware_index(tmp_path, setup_path):
# GH 11926
periods = 10
dts = date_range("20151201", periods=periods, freq="D", tz="UTC")
mi = pd.MultiIndex.from_arrays([dts, range(periods)], names=["DATE", "NO"])
expected = DataFrame({"MYCOL": 0}, index=mi)
key = "mykey"
path = tmp_path / setup_path
with pd.HDFStore(path) as store:
store.append(key, expected, format="table", append=True)
result = pd.read_hdf(path, key, where="DATE > 20151130")
tm.assert_frame_equal(result, expected)
def test_py2_created_with_datetimez(datapath):
# The test HDF5 file was created in Python 2, but could not be read in
# Python 3.
#
# GH26443
index = DatetimeIndex(["2019-01-01T18:00"], dtype="M8[ns, America/New_York]")
expected = DataFrame({"data": 123}, index=index)
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "gh26443.h5"), mode="r"
) as store:
result = store["key"]
tm.assert_frame_equal(result, expected)