Updated script that can be controled by Nodejs web app
This commit is contained in:
@ -0,0 +1,9 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(params=["split", "records", "index", "columns", "values"])
|
||||
def orient(request):
|
||||
"""
|
||||
Fixture for orients excluding the table format.
|
||||
"""
|
||||
return request.param
|
@ -0,0 +1,130 @@
|
||||
from io import (
|
||||
BytesIO,
|
||||
StringIO,
|
||||
)
|
||||
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def test_compression_roundtrip(compression):
|
||||
df = pd.DataFrame(
|
||||
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
|
||||
index=["A", "B"],
|
||||
columns=["X", "Y", "Z"],
|
||||
)
|
||||
|
||||
with tm.ensure_clean() as path:
|
||||
df.to_json(path, compression=compression)
|
||||
tm.assert_frame_equal(df, pd.read_json(path, compression=compression))
|
||||
|
||||
# explicitly ensure file was compressed.
|
||||
with tm.decompress_file(path, compression) as fh:
|
||||
result = fh.read().decode("utf8")
|
||||
data = StringIO(result)
|
||||
tm.assert_frame_equal(df, pd.read_json(data))
|
||||
|
||||
|
||||
def test_read_zipped_json(datapath):
|
||||
uncompressed_path = datapath("io", "json", "data", "tsframe_v012.json")
|
||||
uncompressed_df = pd.read_json(uncompressed_path)
|
||||
|
||||
compressed_path = datapath("io", "json", "data", "tsframe_v012.json.zip")
|
||||
compressed_df = pd.read_json(compressed_path, compression="zip")
|
||||
|
||||
tm.assert_frame_equal(uncompressed_df, compressed_df)
|
||||
|
||||
|
||||
@td.skip_if_not_us_locale
|
||||
@pytest.mark.single_cpu
|
||||
def test_with_s3_url(compression, s3_public_bucket, s3so):
|
||||
# Bucket created in tests/io/conftest.py
|
||||
df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
|
||||
|
||||
with tm.ensure_clean() as path:
|
||||
df.to_json(path, compression=compression)
|
||||
with open(path, "rb") as f:
|
||||
s3_public_bucket.put_object(Key="test-1", Body=f)
|
||||
|
||||
roundtripped_df = pd.read_json(
|
||||
f"s3://{s3_public_bucket.name}/test-1",
|
||||
compression=compression,
|
||||
storage_options=s3so,
|
||||
)
|
||||
tm.assert_frame_equal(df, roundtripped_df)
|
||||
|
||||
|
||||
def test_lines_with_compression(compression):
|
||||
with tm.ensure_clean() as path:
|
||||
df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
|
||||
df.to_json(path, orient="records", lines=True, compression=compression)
|
||||
roundtripped_df = pd.read_json(path, lines=True, compression=compression)
|
||||
tm.assert_frame_equal(df, roundtripped_df)
|
||||
|
||||
|
||||
def test_chunksize_with_compression(compression):
|
||||
with tm.ensure_clean() as path:
|
||||
df = pd.read_json(StringIO('{"a": ["foo", "bar", "baz"], "b": [4, 5, 6]}'))
|
||||
df.to_json(path, orient="records", lines=True, compression=compression)
|
||||
|
||||
with pd.read_json(
|
||||
path, lines=True, chunksize=1, compression=compression
|
||||
) as res:
|
||||
roundtripped_df = pd.concat(res)
|
||||
tm.assert_frame_equal(df, roundtripped_df)
|
||||
|
||||
|
||||
def test_write_unsupported_compression_type():
|
||||
df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
|
||||
with tm.ensure_clean() as path:
|
||||
msg = "Unrecognized compression type: unsupported"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.to_json(path, compression="unsupported")
|
||||
|
||||
|
||||
def test_read_unsupported_compression_type():
|
||||
with tm.ensure_clean() as path:
|
||||
msg = "Unrecognized compression type: unsupported"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.read_json(path, compression="unsupported")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
|
||||
)
|
||||
@pytest.mark.parametrize("to_infer", [True, False])
|
||||
@pytest.mark.parametrize("read_infer", [True, False])
|
||||
def test_to_json_compression(
|
||||
compression_only, read_infer, to_infer, compression_to_extension, infer_string
|
||||
):
|
||||
with pd.option_context("future.infer_string", infer_string):
|
||||
# see gh-15008
|
||||
compression = compression_only
|
||||
|
||||
# We'll complete file extension subsequently.
|
||||
filename = "test."
|
||||
filename += compression_to_extension[compression]
|
||||
|
||||
df = pd.DataFrame({"A": [1]})
|
||||
|
||||
to_compression = "infer" if to_infer else compression
|
||||
read_compression = "infer" if read_infer else compression
|
||||
|
||||
with tm.ensure_clean(filename) as path:
|
||||
df.to_json(path, compression=to_compression)
|
||||
result = pd.read_json(path, compression=read_compression)
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
|
||||
def test_to_json_compression_mode(compression):
|
||||
# GH 39985 (read_json does not support user-provided binary files)
|
||||
expected = pd.DataFrame({"A": [1]})
|
||||
|
||||
with BytesIO() as buffer:
|
||||
expected.to_json(buffer, compression=compression)
|
||||
# df = pd.read_json(buffer, compression=compression)
|
||||
# tm.assert_frame_equal(expected, df)
|
@ -0,0 +1,21 @@
|
||||
"""
|
||||
Tests for the deprecated keyword arguments for `read_json`.
|
||||
"""
|
||||
from io import StringIO
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
from pandas.io.json import read_json
|
||||
|
||||
|
||||
def test_good_kwargs():
|
||||
df = pd.DataFrame({"A": [2, 4, 6], "B": [3, 6, 9]}, index=[0, 1, 2])
|
||||
|
||||
with tm.assert_produces_warning(None):
|
||||
data1 = StringIO(df.to_json(orient="split"))
|
||||
tm.assert_frame_equal(df, read_json(data1, orient="split"))
|
||||
data2 = StringIO(df.to_json(orient="columns"))
|
||||
tm.assert_frame_equal(df, read_json(data2, orient="columns"))
|
||||
data3 = StringIO(df.to_json(orient="index"))
|
||||
tm.assert_frame_equal(df, read_json(data3, orient="index"))
|
@ -0,0 +1,873 @@
|
||||
"""Tests for Table Schema integration."""
|
||||
from collections import OrderedDict
|
||||
from io import StringIO
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import (
|
||||
CategoricalDtype,
|
||||
DatetimeTZDtype,
|
||||
PeriodDtype,
|
||||
)
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
|
||||
from pandas.io.json._table_schema import (
|
||||
as_json_table_type,
|
||||
build_table_schema,
|
||||
convert_json_field_to_pandas_type,
|
||||
convert_pandas_type_to_json_field,
|
||||
set_default_names,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def df_schema():
|
||||
return DataFrame(
|
||||
{
|
||||
"A": [1, 2, 3, 4],
|
||||
"B": ["a", "b", "c", "c"],
|
||||
"C": pd.date_range("2016-01-01", freq="d", periods=4),
|
||||
"D": pd.timedelta_range("1h", periods=4, freq="min"),
|
||||
},
|
||||
index=pd.Index(range(4), name="idx"),
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def df_table():
|
||||
return DataFrame(
|
||||
{
|
||||
"A": [1, 2, 3, 4],
|
||||
"B": ["a", "b", "c", "c"],
|
||||
"C": pd.date_range("2016-01-01", freq="d", periods=4),
|
||||
"D": pd.timedelta_range("1h", periods=4, freq="min"),
|
||||
"E": pd.Series(pd.Categorical(["a", "b", "c", "c"])),
|
||||
"F": pd.Series(pd.Categorical(["a", "b", "c", "c"], ordered=True)),
|
||||
"G": [1.0, 2.0, 3, 4.0],
|
||||
"H": pd.date_range("2016-01-01", freq="d", periods=4, tz="US/Central"),
|
||||
},
|
||||
index=pd.Index(range(4), name="idx"),
|
||||
)
|
||||
|
||||
|
||||
class TestBuildSchema:
|
||||
def test_build_table_schema(self, df_schema, using_infer_string):
|
||||
result = build_table_schema(df_schema, version=False)
|
||||
expected = {
|
||||
"fields": [
|
||||
{"name": "idx", "type": "integer"},
|
||||
{"name": "A", "type": "integer"},
|
||||
{"name": "B", "type": "string"},
|
||||
{"name": "C", "type": "datetime"},
|
||||
{"name": "D", "type": "duration"},
|
||||
],
|
||||
"primaryKey": ["idx"],
|
||||
}
|
||||
if using_infer_string:
|
||||
expected["fields"][2] = {"name": "B", "type": "any", "extDtype": "string"}
|
||||
assert result == expected
|
||||
result = build_table_schema(df_schema)
|
||||
assert "pandas_version" in result
|
||||
|
||||
def test_series(self):
|
||||
s = pd.Series([1, 2, 3], name="foo")
|
||||
result = build_table_schema(s, version=False)
|
||||
expected = {
|
||||
"fields": [
|
||||
{"name": "index", "type": "integer"},
|
||||
{"name": "foo", "type": "integer"},
|
||||
],
|
||||
"primaryKey": ["index"],
|
||||
}
|
||||
assert result == expected
|
||||
result = build_table_schema(s)
|
||||
assert "pandas_version" in result
|
||||
|
||||
def test_series_unnamed(self):
|
||||
result = build_table_schema(pd.Series([1, 2, 3]), version=False)
|
||||
expected = {
|
||||
"fields": [
|
||||
{"name": "index", "type": "integer"},
|
||||
{"name": "values", "type": "integer"},
|
||||
],
|
||||
"primaryKey": ["index"],
|
||||
}
|
||||
assert result == expected
|
||||
|
||||
def test_multiindex(self, df_schema, using_infer_string):
|
||||
df = df_schema
|
||||
idx = pd.MultiIndex.from_product([("a", "b"), (1, 2)])
|
||||
df.index = idx
|
||||
|
||||
result = build_table_schema(df, version=False)
|
||||
expected = {
|
||||
"fields": [
|
||||
{"name": "level_0", "type": "string"},
|
||||
{"name": "level_1", "type": "integer"},
|
||||
{"name": "A", "type": "integer"},
|
||||
{"name": "B", "type": "string"},
|
||||
{"name": "C", "type": "datetime"},
|
||||
{"name": "D", "type": "duration"},
|
||||
],
|
||||
"primaryKey": ["level_0", "level_1"],
|
||||
}
|
||||
if using_infer_string:
|
||||
expected["fields"][0] = {
|
||||
"name": "level_0",
|
||||
"type": "any",
|
||||
"extDtype": "string",
|
||||
}
|
||||
expected["fields"][3] = {"name": "B", "type": "any", "extDtype": "string"}
|
||||
assert result == expected
|
||||
|
||||
df.index.names = ["idx0", None]
|
||||
expected["fields"][0]["name"] = "idx0"
|
||||
expected["primaryKey"] = ["idx0", "level_1"]
|
||||
result = build_table_schema(df, version=False)
|
||||
assert result == expected
|
||||
|
||||
|
||||
class TestTableSchemaType:
|
||||
@pytest.mark.parametrize("int_type", [int, np.int16, np.int32, np.int64])
|
||||
def test_as_json_table_type_int_data(self, int_type):
|
||||
int_data = [1, 2, 3]
|
||||
assert as_json_table_type(np.array(int_data, dtype=int_type).dtype) == "integer"
|
||||
|
||||
@pytest.mark.parametrize("float_type", [float, np.float16, np.float32, np.float64])
|
||||
def test_as_json_table_type_float_data(self, float_type):
|
||||
float_data = [1.0, 2.0, 3.0]
|
||||
assert (
|
||||
as_json_table_type(np.array(float_data, dtype=float_type).dtype) == "number"
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize("bool_type", [bool, np.bool_])
|
||||
def test_as_json_table_type_bool_data(self, bool_type):
|
||||
bool_data = [True, False]
|
||||
assert (
|
||||
as_json_table_type(np.array(bool_data, dtype=bool_type).dtype) == "boolean"
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"date_data",
|
||||
[
|
||||
pd.to_datetime(["2016"]),
|
||||
pd.to_datetime(["2016"], utc=True),
|
||||
pd.Series(pd.to_datetime(["2016"])),
|
||||
pd.Series(pd.to_datetime(["2016"], utc=True)),
|
||||
pd.period_range("2016", freq="Y", periods=3),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_date_data(self, date_data):
|
||||
assert as_json_table_type(date_data.dtype) == "datetime"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"str_data",
|
||||
[pd.Series(["a", "b"], dtype=object), pd.Index(["a", "b"], dtype=object)],
|
||||
)
|
||||
def test_as_json_table_type_string_data(self, str_data):
|
||||
assert as_json_table_type(str_data.dtype) == "string"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"cat_data",
|
||||
[
|
||||
pd.Categorical(["a"]),
|
||||
pd.Categorical([1]),
|
||||
pd.Series(pd.Categorical([1])),
|
||||
pd.CategoricalIndex([1]),
|
||||
pd.Categorical([1]),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_categorical_data(self, cat_data):
|
||||
assert as_json_table_type(cat_data.dtype) == "any"
|
||||
|
||||
# ------
|
||||
# dtypes
|
||||
# ------
|
||||
@pytest.mark.parametrize("int_dtype", [int, np.int16, np.int32, np.int64])
|
||||
def test_as_json_table_type_int_dtypes(self, int_dtype):
|
||||
assert as_json_table_type(int_dtype) == "integer"
|
||||
|
||||
@pytest.mark.parametrize("float_dtype", [float, np.float16, np.float32, np.float64])
|
||||
def test_as_json_table_type_float_dtypes(self, float_dtype):
|
||||
assert as_json_table_type(float_dtype) == "number"
|
||||
|
||||
@pytest.mark.parametrize("bool_dtype", [bool, np.bool_])
|
||||
def test_as_json_table_type_bool_dtypes(self, bool_dtype):
|
||||
assert as_json_table_type(bool_dtype) == "boolean"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"date_dtype",
|
||||
[
|
||||
np.dtype("<M8[ns]"),
|
||||
PeriodDtype("D"),
|
||||
DatetimeTZDtype("ns", "US/Central"),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_date_dtypes(self, date_dtype):
|
||||
# TODO: datedate.date? datetime.time?
|
||||
assert as_json_table_type(date_dtype) == "datetime"
|
||||
|
||||
@pytest.mark.parametrize("td_dtype", [np.dtype("<m8[ns]")])
|
||||
def test_as_json_table_type_timedelta_dtypes(self, td_dtype):
|
||||
assert as_json_table_type(td_dtype) == "duration"
|
||||
|
||||
@pytest.mark.parametrize("str_dtype", [object]) # TODO(GH#14904) flesh out dtypes?
|
||||
def test_as_json_table_type_string_dtypes(self, str_dtype):
|
||||
assert as_json_table_type(str_dtype) == "string"
|
||||
|
||||
def test_as_json_table_type_categorical_dtypes(self):
|
||||
assert as_json_table_type(pd.Categorical(["a"]).dtype) == "any"
|
||||
assert as_json_table_type(CategoricalDtype()) == "any"
|
||||
|
||||
|
||||
class TestTableOrient:
|
||||
def test_build_series(self):
|
||||
s = pd.Series([1, 2], name="a")
|
||||
s.index.name = "id"
|
||||
result = s.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [{"name": "id", "type": "integer"}, {"name": "a", "type": "integer"}]
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["id"]}
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
("schema", schema),
|
||||
(
|
||||
"data",
|
||||
[
|
||||
OrderedDict([("id", 0), ("a", 1)]),
|
||||
OrderedDict([("id", 1), ("a", 2)]),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_read_json_from_to_json_results(self):
|
||||
# GH32383
|
||||
df = DataFrame(
|
||||
{
|
||||
"_id": {"row_0": 0},
|
||||
"category": {"row_0": "Goods"},
|
||||
"recommender_id": {"row_0": 3},
|
||||
"recommender_name_jp": {"row_0": "浦田"},
|
||||
"recommender_name_en": {"row_0": "Urata"},
|
||||
"name_jp": {"row_0": "博多人形(松尾吉将まつお よしまさ)"},
|
||||
"name_en": {"row_0": "Hakata Dolls Matsuo"},
|
||||
}
|
||||
)
|
||||
|
||||
result1 = pd.read_json(StringIO(df.to_json()))
|
||||
result2 = DataFrame.from_dict(json.loads(df.to_json()))
|
||||
tm.assert_frame_equal(result1, df)
|
||||
tm.assert_frame_equal(result2, df)
|
||||
|
||||
def test_to_json(self, df_table, using_infer_string):
|
||||
df = df_table
|
||||
df.index.name = "idx"
|
||||
result = df.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"name": "idx", "type": "integer"},
|
||||
{"name": "A", "type": "integer"},
|
||||
{"name": "B", "type": "string"},
|
||||
{"name": "C", "type": "datetime"},
|
||||
{"name": "D", "type": "duration"},
|
||||
{
|
||||
"constraints": {"enum": ["a", "b", "c"]},
|
||||
"name": "E",
|
||||
"ordered": False,
|
||||
"type": "any",
|
||||
},
|
||||
{
|
||||
"constraints": {"enum": ["a", "b", "c"]},
|
||||
"name": "F",
|
||||
"ordered": True,
|
||||
"type": "any",
|
||||
},
|
||||
{"name": "G", "type": "number"},
|
||||
{"name": "H", "type": "datetime", "tz": "US/Central"},
|
||||
]
|
||||
|
||||
if using_infer_string:
|
||||
fields[2] = {"name": "B", "type": "any", "extDtype": "string"}
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["idx"]}
|
||||
data = [
|
||||
OrderedDict(
|
||||
[
|
||||
("idx", 0),
|
||||
("A", 1),
|
||||
("B", "a"),
|
||||
("C", "2016-01-01T00:00:00.000"),
|
||||
("D", "P0DT1H0M0S"),
|
||||
("E", "a"),
|
||||
("F", "a"),
|
||||
("G", 1.0),
|
||||
("H", "2016-01-01T06:00:00.000Z"),
|
||||
]
|
||||
),
|
||||
OrderedDict(
|
||||
[
|
||||
("idx", 1),
|
||||
("A", 2),
|
||||
("B", "b"),
|
||||
("C", "2016-01-02T00:00:00.000"),
|
||||
("D", "P0DT1H1M0S"),
|
||||
("E", "b"),
|
||||
("F", "b"),
|
||||
("G", 2.0),
|
||||
("H", "2016-01-02T06:00:00.000Z"),
|
||||
]
|
||||
),
|
||||
OrderedDict(
|
||||
[
|
||||
("idx", 2),
|
||||
("A", 3),
|
||||
("B", "c"),
|
||||
("C", "2016-01-03T00:00:00.000"),
|
||||
("D", "P0DT1H2M0S"),
|
||||
("E", "c"),
|
||||
("F", "c"),
|
||||
("G", 3.0),
|
||||
("H", "2016-01-03T06:00:00.000Z"),
|
||||
]
|
||||
),
|
||||
OrderedDict(
|
||||
[
|
||||
("idx", 3),
|
||||
("A", 4),
|
||||
("B", "c"),
|
||||
("C", "2016-01-04T00:00:00.000"),
|
||||
("D", "P0DT1H3M0S"),
|
||||
("E", "c"),
|
||||
("F", "c"),
|
||||
("G", 4.0),
|
||||
("H", "2016-01-04T06:00:00.000Z"),
|
||||
]
|
||||
),
|
||||
]
|
||||
expected = OrderedDict([("schema", schema), ("data", data)])
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_to_json_float_index(self):
|
||||
data = pd.Series(1, index=[1.0, 2.0])
|
||||
result = data.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
(
|
||||
"schema",
|
||||
{
|
||||
"fields": [
|
||||
{"name": "index", "type": "number"},
|
||||
{"name": "values", "type": "integer"},
|
||||
],
|
||||
"primaryKey": ["index"],
|
||||
},
|
||||
),
|
||||
(
|
||||
"data",
|
||||
[
|
||||
OrderedDict([("index", 1.0), ("values", 1)]),
|
||||
OrderedDict([("index", 2.0), ("values", 1)]),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_to_json_period_index(self):
|
||||
idx = pd.period_range("2016", freq="Q-JAN", periods=2)
|
||||
data = pd.Series(1, idx)
|
||||
result = data.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"freq": "QE-JAN", "name": "index", "type": "datetime"},
|
||||
{"name": "values", "type": "integer"},
|
||||
]
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["index"]}
|
||||
data = [
|
||||
OrderedDict([("index", "2015-11-01T00:00:00.000"), ("values", 1)]),
|
||||
OrderedDict([("index", "2016-02-01T00:00:00.000"), ("values", 1)]),
|
||||
]
|
||||
expected = OrderedDict([("schema", schema), ("data", data)])
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_to_json_categorical_index(self):
|
||||
data = pd.Series(1, pd.CategoricalIndex(["a", "b"]))
|
||||
result = data.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
(
|
||||
"schema",
|
||||
{
|
||||
"fields": [
|
||||
{
|
||||
"name": "index",
|
||||
"type": "any",
|
||||
"constraints": {"enum": ["a", "b"]},
|
||||
"ordered": False,
|
||||
},
|
||||
{"name": "values", "type": "integer"},
|
||||
],
|
||||
"primaryKey": ["index"],
|
||||
},
|
||||
),
|
||||
(
|
||||
"data",
|
||||
[
|
||||
OrderedDict([("index", "a"), ("values", 1)]),
|
||||
OrderedDict([("index", "b"), ("values", 1)]),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_date_format_raises(self, df_table):
|
||||
msg = (
|
||||
"Trying to write with `orient='table'` and `date_format='epoch'`. Table "
|
||||
"Schema requires dates to be formatted with `date_format='iso'`"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df_table.to_json(orient="table", date_format="epoch")
|
||||
|
||||
# others work
|
||||
df_table.to_json(orient="table", date_format="iso")
|
||||
df_table.to_json(orient="table")
|
||||
|
||||
def test_convert_pandas_type_to_json_field_int(self, index_or_series):
|
||||
kind = index_or_series
|
||||
data = [1, 2, 3]
|
||||
result = convert_pandas_type_to_json_field(kind(data, name="name"))
|
||||
expected = {"name": "name", "type": "integer"}
|
||||
assert result == expected
|
||||
|
||||
def test_convert_pandas_type_to_json_field_float(self, index_or_series):
|
||||
kind = index_or_series
|
||||
data = [1.0, 2.0, 3.0]
|
||||
result = convert_pandas_type_to_json_field(kind(data, name="name"))
|
||||
expected = {"name": "name", "type": "number"}
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dt_args,extra_exp", [({}, {}), ({"utc": True}, {"tz": "UTC"})]
|
||||
)
|
||||
@pytest.mark.parametrize("wrapper", [None, pd.Series])
|
||||
def test_convert_pandas_type_to_json_field_datetime(
|
||||
self, dt_args, extra_exp, wrapper
|
||||
):
|
||||
data = [1.0, 2.0, 3.0]
|
||||
data = pd.to_datetime(data, **dt_args)
|
||||
if wrapper is pd.Series:
|
||||
data = pd.Series(data, name="values")
|
||||
result = convert_pandas_type_to_json_field(data)
|
||||
expected = {"name": "values", "type": "datetime"}
|
||||
expected.update(extra_exp)
|
||||
assert result == expected
|
||||
|
||||
def test_convert_pandas_type_to_json_period_range(self):
|
||||
arr = pd.period_range("2016", freq="Y-DEC", periods=4)
|
||||
result = convert_pandas_type_to_json_field(arr)
|
||||
expected = {"name": "values", "type": "datetime", "freq": "YE-DEC"}
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize("kind", [pd.Categorical, pd.CategoricalIndex])
|
||||
@pytest.mark.parametrize("ordered", [True, False])
|
||||
def test_convert_pandas_type_to_json_field_categorical(self, kind, ordered):
|
||||
data = ["a", "b", "c"]
|
||||
if kind is pd.Categorical:
|
||||
arr = pd.Series(kind(data, ordered=ordered), name="cats")
|
||||
elif kind is pd.CategoricalIndex:
|
||||
arr = kind(data, ordered=ordered, name="cats")
|
||||
|
||||
result = convert_pandas_type_to_json_field(arr)
|
||||
expected = {
|
||||
"name": "cats",
|
||||
"type": "any",
|
||||
"constraints": {"enum": data},
|
||||
"ordered": ordered,
|
||||
}
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"inp,exp",
|
||||
[
|
||||
({"type": "integer"}, "int64"),
|
||||
({"type": "number"}, "float64"),
|
||||
({"type": "boolean"}, "bool"),
|
||||
({"type": "duration"}, "timedelta64"),
|
||||
({"type": "datetime"}, "datetime64[ns]"),
|
||||
({"type": "datetime", "tz": "US/Hawaii"}, "datetime64[ns, US/Hawaii]"),
|
||||
({"type": "any"}, "object"),
|
||||
(
|
||||
{
|
||||
"type": "any",
|
||||
"constraints": {"enum": ["a", "b", "c"]},
|
||||
"ordered": False,
|
||||
},
|
||||
CategoricalDtype(categories=["a", "b", "c"], ordered=False),
|
||||
),
|
||||
(
|
||||
{
|
||||
"type": "any",
|
||||
"constraints": {"enum": ["a", "b", "c"]},
|
||||
"ordered": True,
|
||||
},
|
||||
CategoricalDtype(categories=["a", "b", "c"], ordered=True),
|
||||
),
|
||||
({"type": "string"}, "object"),
|
||||
],
|
||||
)
|
||||
def test_convert_json_field_to_pandas_type(self, inp, exp):
|
||||
field = {"name": "foo"}
|
||||
field.update(inp)
|
||||
assert convert_json_field_to_pandas_type(field) == exp
|
||||
|
||||
@pytest.mark.parametrize("inp", ["geopoint", "geojson", "fake_type"])
|
||||
def test_convert_json_field_to_pandas_type_raises(self, inp):
|
||||
field = {"type": inp}
|
||||
with pytest.raises(
|
||||
ValueError, match=f"Unsupported or invalid field type: {inp}"
|
||||
):
|
||||
convert_json_field_to_pandas_type(field)
|
||||
|
||||
def test_categorical(self):
|
||||
s = pd.Series(pd.Categorical(["a", "b", "a"]))
|
||||
s.index.name = "idx"
|
||||
result = s.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"name": "idx", "type": "integer"},
|
||||
{
|
||||
"constraints": {"enum": ["a", "b"]},
|
||||
"name": "values",
|
||||
"ordered": False,
|
||||
"type": "any",
|
||||
},
|
||||
]
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
("schema", {"fields": fields, "primaryKey": ["idx"]}),
|
||||
(
|
||||
"data",
|
||||
[
|
||||
OrderedDict([("idx", 0), ("values", "a")]),
|
||||
OrderedDict([("idx", 1), ("values", "b")]),
|
||||
OrderedDict([("idx", 2), ("values", "a")]),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx,nm,prop",
|
||||
[
|
||||
(pd.Index([1]), "index", "name"),
|
||||
(pd.Index([1], name="myname"), "myname", "name"),
|
||||
(
|
||||
pd.MultiIndex.from_product([("a", "b"), ("c", "d")]),
|
||||
["level_0", "level_1"],
|
||||
"names",
|
||||
),
|
||||
(
|
||||
pd.MultiIndex.from_product(
|
||||
[("a", "b"), ("c", "d")], names=["n1", "n2"]
|
||||
),
|
||||
["n1", "n2"],
|
||||
"names",
|
||||
),
|
||||
(
|
||||
pd.MultiIndex.from_product(
|
||||
[("a", "b"), ("c", "d")], names=["n1", None]
|
||||
),
|
||||
["n1", "level_1"],
|
||||
"names",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_set_names_unset(self, idx, nm, prop):
|
||||
data = pd.Series(1, idx)
|
||||
result = set_default_names(data)
|
||||
assert getattr(result.index, prop) == nm
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx",
|
||||
[
|
||||
pd.Index([], name="index"),
|
||||
pd.MultiIndex.from_arrays([["foo"], ["bar"]], names=("level_0", "level_1")),
|
||||
pd.MultiIndex.from_arrays([["foo"], ["bar"]], names=("foo", "level_1")),
|
||||
],
|
||||
)
|
||||
def test_warns_non_roundtrippable_names(self, idx):
|
||||
# GH 19130
|
||||
df = DataFrame(index=idx)
|
||||
df.index.name = "index"
|
||||
with tm.assert_produces_warning():
|
||||
set_default_names(df)
|
||||
|
||||
def test_timestamp_in_columns(self):
|
||||
df = DataFrame(
|
||||
[[1, 2]], columns=[pd.Timestamp("2016"), pd.Timedelta(10, unit="s")]
|
||||
)
|
||||
result = df.to_json(orient="table")
|
||||
js = json.loads(result)
|
||||
assert js["schema"]["fields"][1]["name"] == "2016-01-01T00:00:00.000"
|
||||
assert js["schema"]["fields"][2]["name"] == "P0DT0H0M10S"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"case",
|
||||
[
|
||||
pd.Series([1], index=pd.Index([1], name="a"), name="a"),
|
||||
DataFrame({"A": [1]}, index=pd.Index([1], name="A")),
|
||||
DataFrame(
|
||||
{"A": [1]},
|
||||
index=pd.MultiIndex.from_arrays([["a"], [1]], names=["A", "a"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_overlapping_names(self, case):
|
||||
with pytest.raises(ValueError, match="Overlapping"):
|
||||
case.to_json(orient="table")
|
||||
|
||||
def test_mi_falsey_name(self):
|
||||
# GH 16203
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((4, 4)),
|
||||
index=pd.MultiIndex.from_product([("A", "B"), ("a", "b")]),
|
||||
)
|
||||
result = [x["name"] for x in build_table_schema(df)["fields"]]
|
||||
assert result == ["level_0", "level_1", 0, 1, 2, 3]
|
||||
|
||||
|
||||
class TestTableOrientReader:
|
||||
@pytest.mark.parametrize(
|
||||
"index_nm",
|
||||
[None, "idx", pytest.param("index", marks=pytest.mark.xfail), "level_0"],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"vals",
|
||||
[
|
||||
{"ints": [1, 2, 3, 4]},
|
||||
{"objects": ["a", "b", "c", "d"]},
|
||||
{"objects": ["1", "2", "3", "4"]},
|
||||
{"date_ranges": pd.date_range("2016-01-01", freq="d", periods=4)},
|
||||
{"categoricals": pd.Series(pd.Categorical(["a", "b", "c", "c"]))},
|
||||
{
|
||||
"ordered_cats": pd.Series(
|
||||
pd.Categorical(["a", "b", "c", "c"], ordered=True)
|
||||
)
|
||||
},
|
||||
{"floats": [1.0, 2.0, 3.0, 4.0]},
|
||||
{"floats": [1.1, 2.2, 3.3, 4.4]},
|
||||
{"bools": [True, False, False, True]},
|
||||
{
|
||||
"timezones": pd.date_range(
|
||||
"2016-01-01", freq="d", periods=4, tz="US/Central"
|
||||
) # added in # GH 35973
|
||||
},
|
||||
],
|
||||
)
|
||||
def test_read_json_table_orient(self, index_nm, vals, recwarn):
|
||||
df = DataFrame(vals, index=pd.Index(range(4), name=index_nm))
|
||||
out = df.to_json(orient="table")
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
@pytest.mark.parametrize("index_nm", [None, "idx", "index"])
|
||||
@pytest.mark.parametrize(
|
||||
"vals",
|
||||
[{"timedeltas": pd.timedelta_range("1h", periods=4, freq="min")}],
|
||||
)
|
||||
def test_read_json_table_orient_raises(self, index_nm, vals, recwarn):
|
||||
df = DataFrame(vals, index=pd.Index(range(4), name=index_nm))
|
||||
out = df.to_json(orient="table")
|
||||
with pytest.raises(NotImplementedError, match="can not yet read "):
|
||||
pd.read_json(out, orient="table")
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index_nm",
|
||||
[None, "idx", pytest.param("index", marks=pytest.mark.xfail), "level_0"],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"vals",
|
||||
[
|
||||
{"ints": [1, 2, 3, 4]},
|
||||
{"objects": ["a", "b", "c", "d"]},
|
||||
{"objects": ["1", "2", "3", "4"]},
|
||||
{"date_ranges": pd.date_range("2016-01-01", freq="d", periods=4)},
|
||||
{"categoricals": pd.Series(pd.Categorical(["a", "b", "c", "c"]))},
|
||||
{
|
||||
"ordered_cats": pd.Series(
|
||||
pd.Categorical(["a", "b", "c", "c"], ordered=True)
|
||||
)
|
||||
},
|
||||
{"floats": [1.0, 2.0, 3.0, 4.0]},
|
||||
{"floats": [1.1, 2.2, 3.3, 4.4]},
|
||||
{"bools": [True, False, False, True]},
|
||||
{
|
||||
"timezones": pd.date_range(
|
||||
"2016-01-01", freq="d", periods=4, tz="US/Central"
|
||||
) # added in # GH 35973
|
||||
},
|
||||
],
|
||||
)
|
||||
def test_read_json_table_period_orient(self, index_nm, vals, recwarn):
|
||||
df = DataFrame(
|
||||
vals,
|
||||
index=pd.Index(
|
||||
(pd.Period(f"2022Q{q}") for q in range(1, 5)), name=index_nm
|
||||
),
|
||||
)
|
||||
out = df.to_json(orient="table")
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx",
|
||||
[
|
||||
pd.Index(range(4)),
|
||||
pd.date_range(
|
||||
"2020-08-30",
|
||||
freq="d",
|
||||
periods=4,
|
||||
)._with_freq(None),
|
||||
pd.date_range(
|
||||
"2020-08-30", freq="d", periods=4, tz="US/Central"
|
||||
)._with_freq(None),
|
||||
pd.MultiIndex.from_product(
|
||||
[
|
||||
pd.date_range("2020-08-30", freq="d", periods=2, tz="US/Central"),
|
||||
["x", "y"],
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"vals",
|
||||
[
|
||||
{"floats": [1.1, 2.2, 3.3, 4.4]},
|
||||
{"dates": pd.date_range("2020-08-30", freq="d", periods=4)},
|
||||
{
|
||||
"timezones": pd.date_range(
|
||||
"2020-08-30", freq="d", periods=4, tz="Europe/London"
|
||||
)
|
||||
},
|
||||
],
|
||||
)
|
||||
def test_read_json_table_timezones_orient(self, idx, vals, recwarn):
|
||||
# GH 35973
|
||||
df = DataFrame(vals, index=idx)
|
||||
out = df.to_json(orient="table")
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
def test_comprehensive(self):
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": [1, 2, 3, 4],
|
||||
"B": ["a", "b", "c", "c"],
|
||||
"C": pd.date_range("2016-01-01", freq="d", periods=4),
|
||||
# 'D': pd.timedelta_range('1h', periods=4, freq='min'),
|
||||
"E": pd.Series(pd.Categorical(["a", "b", "c", "c"])),
|
||||
"F": pd.Series(pd.Categorical(["a", "b", "c", "c"], ordered=True)),
|
||||
"G": [1.1, 2.2, 3.3, 4.4],
|
||||
"H": pd.date_range("2016-01-01", freq="d", periods=4, tz="US/Central"),
|
||||
"I": [True, False, False, True],
|
||||
},
|
||||
index=pd.Index(range(4), name="idx"),
|
||||
)
|
||||
|
||||
out = StringIO(df.to_json(orient="table"))
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index_names",
|
||||
[[None, None], ["foo", "bar"], ["foo", None], [None, "foo"], ["index", "foo"]],
|
||||
)
|
||||
def test_multiindex(self, index_names):
|
||||
# GH 18912
|
||||
df = DataFrame(
|
||||
[["Arr", "alpha", [1, 2, 3, 4]], ["Bee", "Beta", [10, 20, 30, 40]]],
|
||||
index=[["A", "B"], ["Null", "Eins"]],
|
||||
columns=["Aussprache", "Griechisch", "Args"],
|
||||
)
|
||||
df.index.names = index_names
|
||||
out = StringIO(df.to_json(orient="table"))
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
def test_empty_frame_roundtrip(self):
|
||||
# GH 21287
|
||||
df = DataFrame(columns=["a", "b", "c"])
|
||||
expected = df.copy()
|
||||
out = StringIO(df.to_json(orient="table"))
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(expected, result)
|
||||
|
||||
def test_read_json_orient_table_old_schema_version(self):
|
||||
df_json = """
|
||||
{
|
||||
"schema":{
|
||||
"fields":[
|
||||
{"name":"index","type":"integer"},
|
||||
{"name":"a","type":"string"}
|
||||
],
|
||||
"primaryKey":["index"],
|
||||
"pandas_version":"0.20.0"
|
||||
},
|
||||
"data":[
|
||||
{"index":0,"a":1},
|
||||
{"index":1,"a":2.0},
|
||||
{"index":2,"a":"s"}
|
||||
]
|
||||
}
|
||||
"""
|
||||
expected = DataFrame({"a": [1, 2.0, "s"]})
|
||||
result = pd.read_json(StringIO(df_json), orient="table")
|
||||
tm.assert_frame_equal(expected, result)
|
||||
|
||||
@pytest.mark.parametrize("freq", ["M", "2M", "Q", "2Q", "Y", "2Y"])
|
||||
def test_read_json_table_orient_period_depr_freq(self, freq, recwarn):
|
||||
# GH#9586
|
||||
df = DataFrame(
|
||||
{"ints": [1, 2]},
|
||||
index=pd.PeriodIndex(["2020-01", "2021-06"], freq=freq),
|
||||
)
|
||||
out = df.to_json(orient="table")
|
||||
result = pd.read_json(out, orient="table")
|
||||
tm.assert_frame_equal(df, result)
|
@ -0,0 +1,317 @@
|
||||
"""Tests for ExtensionDtype Table Schema integration."""
|
||||
|
||||
from collections import OrderedDict
|
||||
import datetime as dt
|
||||
import decimal
|
||||
from io import StringIO
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
NA,
|
||||
DataFrame,
|
||||
Index,
|
||||
array,
|
||||
read_json,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.integer import Int64Dtype
|
||||
from pandas.core.arrays.string_ import StringDtype
|
||||
from pandas.core.series import Series
|
||||
from pandas.tests.extension.date import (
|
||||
DateArray,
|
||||
DateDtype,
|
||||
)
|
||||
from pandas.tests.extension.decimal.array import (
|
||||
DecimalArray,
|
||||
DecimalDtype,
|
||||
)
|
||||
|
||||
from pandas.io.json._table_schema import (
|
||||
as_json_table_type,
|
||||
build_table_schema,
|
||||
)
|
||||
|
||||
|
||||
class TestBuildSchema:
|
||||
def test_build_table_schema(self):
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": DateArray([dt.date(2021, 10, 10)]),
|
||||
"B": DecimalArray([decimal.Decimal(10)]),
|
||||
"C": array(["pandas"], dtype="string"),
|
||||
"D": array([10], dtype="Int64"),
|
||||
}
|
||||
)
|
||||
result = build_table_schema(df, version=False)
|
||||
expected = {
|
||||
"fields": [
|
||||
{"name": "index", "type": "integer"},
|
||||
{"name": "A", "type": "any", "extDtype": "DateDtype"},
|
||||
{"name": "B", "type": "number", "extDtype": "decimal"},
|
||||
{"name": "C", "type": "any", "extDtype": "string"},
|
||||
{"name": "D", "type": "integer", "extDtype": "Int64"},
|
||||
],
|
||||
"primaryKey": ["index"],
|
||||
}
|
||||
assert result == expected
|
||||
result = build_table_schema(df)
|
||||
assert "pandas_version" in result
|
||||
|
||||
|
||||
class TestTableSchemaType:
|
||||
@pytest.mark.parametrize(
|
||||
"date_data",
|
||||
[
|
||||
DateArray([dt.date(2021, 10, 10)]),
|
||||
DateArray(dt.date(2021, 10, 10)),
|
||||
Series(DateArray(dt.date(2021, 10, 10))),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_ext_date_array_dtype(self, date_data):
|
||||
assert as_json_table_type(date_data.dtype) == "any"
|
||||
|
||||
def test_as_json_table_type_ext_date_dtype(self):
|
||||
assert as_json_table_type(DateDtype()) == "any"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"decimal_data",
|
||||
[
|
||||
DecimalArray([decimal.Decimal(10)]),
|
||||
Series(DecimalArray([decimal.Decimal(10)])),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_ext_decimal_array_dtype(self, decimal_data):
|
||||
assert as_json_table_type(decimal_data.dtype) == "number"
|
||||
|
||||
def test_as_json_table_type_ext_decimal_dtype(self):
|
||||
assert as_json_table_type(DecimalDtype()) == "number"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"string_data",
|
||||
[
|
||||
array(["pandas"], dtype="string"),
|
||||
Series(array(["pandas"], dtype="string")),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_ext_string_array_dtype(self, string_data):
|
||||
assert as_json_table_type(string_data.dtype) == "any"
|
||||
|
||||
def test_as_json_table_type_ext_string_dtype(self):
|
||||
assert as_json_table_type(StringDtype()) == "any"
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"integer_data",
|
||||
[
|
||||
array([10], dtype="Int64"),
|
||||
Series(array([10], dtype="Int64")),
|
||||
],
|
||||
)
|
||||
def test_as_json_table_type_ext_integer_array_dtype(self, integer_data):
|
||||
assert as_json_table_type(integer_data.dtype) == "integer"
|
||||
|
||||
def test_as_json_table_type_ext_integer_dtype(self):
|
||||
assert as_json_table_type(Int64Dtype()) == "integer"
|
||||
|
||||
|
||||
class TestTableOrient:
|
||||
@pytest.fixture
|
||||
def da(self):
|
||||
return DateArray([dt.date(2021, 10, 10)])
|
||||
|
||||
@pytest.fixture
|
||||
def dc(self):
|
||||
return DecimalArray([decimal.Decimal(10)])
|
||||
|
||||
@pytest.fixture
|
||||
def sa(self):
|
||||
return array(["pandas"], dtype="string")
|
||||
|
||||
@pytest.fixture
|
||||
def ia(self):
|
||||
return array([10], dtype="Int64")
|
||||
|
||||
@pytest.fixture
|
||||
def df(self, da, dc, sa, ia):
|
||||
return DataFrame(
|
||||
{
|
||||
"A": da,
|
||||
"B": dc,
|
||||
"C": sa,
|
||||
"D": ia,
|
||||
}
|
||||
)
|
||||
|
||||
def test_build_date_series(self, da):
|
||||
s = Series(da, name="a")
|
||||
s.index.name = "id"
|
||||
result = s.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"name": "id", "type": "integer"},
|
||||
{"name": "a", "type": "any", "extDtype": "DateDtype"},
|
||||
]
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["id"]}
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
("schema", schema),
|
||||
("data", [OrderedDict([("id", 0), ("a", "2021-10-10T00:00:00.000")])]),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_build_decimal_series(self, dc):
|
||||
s = Series(dc, name="a")
|
||||
s.index.name = "id"
|
||||
result = s.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"name": "id", "type": "integer"},
|
||||
{"name": "a", "type": "number", "extDtype": "decimal"},
|
||||
]
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["id"]}
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
("schema", schema),
|
||||
("data", [OrderedDict([("id", 0), ("a", 10.0)])]),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_build_string_series(self, sa):
|
||||
s = Series(sa, name="a")
|
||||
s.index.name = "id"
|
||||
result = s.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"name": "id", "type": "integer"},
|
||||
{"name": "a", "type": "any", "extDtype": "string"},
|
||||
]
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["id"]}
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
("schema", schema),
|
||||
("data", [OrderedDict([("id", 0), ("a", "pandas")])]),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_build_int64_series(self, ia):
|
||||
s = Series(ia, name="a")
|
||||
s.index.name = "id"
|
||||
result = s.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
{"name": "id", "type": "integer"},
|
||||
{"name": "a", "type": "integer", "extDtype": "Int64"},
|
||||
]
|
||||
|
||||
schema = {"fields": fields, "primaryKey": ["id"]}
|
||||
|
||||
expected = OrderedDict(
|
||||
[
|
||||
("schema", schema),
|
||||
("data", [OrderedDict([("id", 0), ("a", 10)])]),
|
||||
]
|
||||
)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_to_json(self, df):
|
||||
df = df.copy()
|
||||
df.index.name = "idx"
|
||||
result = df.to_json(orient="table", date_format="iso")
|
||||
result = json.loads(result, object_pairs_hook=OrderedDict)
|
||||
|
||||
assert "pandas_version" in result["schema"]
|
||||
result["schema"].pop("pandas_version")
|
||||
|
||||
fields = [
|
||||
OrderedDict({"name": "idx", "type": "integer"}),
|
||||
OrderedDict({"name": "A", "type": "any", "extDtype": "DateDtype"}),
|
||||
OrderedDict({"name": "B", "type": "number", "extDtype": "decimal"}),
|
||||
OrderedDict({"name": "C", "type": "any", "extDtype": "string"}),
|
||||
OrderedDict({"name": "D", "type": "integer", "extDtype": "Int64"}),
|
||||
]
|
||||
|
||||
schema = OrderedDict({"fields": fields, "primaryKey": ["idx"]})
|
||||
data = [
|
||||
OrderedDict(
|
||||
[
|
||||
("idx", 0),
|
||||
("A", "2021-10-10T00:00:00.000"),
|
||||
("B", 10.0),
|
||||
("C", "pandas"),
|
||||
("D", 10),
|
||||
]
|
||||
)
|
||||
]
|
||||
expected = OrderedDict([("schema", schema), ("data", data)])
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_json_ext_dtype_reading_roundtrip(self):
|
||||
# GH#40255
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": Series([2, NA], dtype="Int64"),
|
||||
"b": Series([1.5, NA], dtype="Float64"),
|
||||
"c": Series([True, NA], dtype="boolean"),
|
||||
},
|
||||
index=Index([1, NA], dtype="Int64"),
|
||||
)
|
||||
expected = df.copy()
|
||||
data_json = df.to_json(orient="table", indent=4)
|
||||
result = read_json(StringIO(data_json), orient="table")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_json_ext_dtype_reading(self):
|
||||
# GH#40255
|
||||
data_json = """{
|
||||
"schema":{
|
||||
"fields":[
|
||||
{
|
||||
"name":"a",
|
||||
"type":"integer",
|
||||
"extDtype":"Int64"
|
||||
}
|
||||
],
|
||||
},
|
||||
"data":[
|
||||
{
|
||||
"a":2
|
||||
},
|
||||
{
|
||||
"a":null
|
||||
}
|
||||
]
|
||||
}"""
|
||||
result = read_json(StringIO(data_json), orient="table")
|
||||
expected = DataFrame({"a": Series([2, NA], dtype="Int64")})
|
||||
tm.assert_frame_equal(result, expected)
|
@ -0,0 +1,907 @@
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
json_normalize,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
from pandas.io.json._normalize import nested_to_record
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def deep_nested():
|
||||
# deeply nested data
|
||||
return [
|
||||
{
|
||||
"country": "USA",
|
||||
"states": [
|
||||
{
|
||||
"name": "California",
|
||||
"cities": [
|
||||
{"name": "San Francisco", "pop": 12345},
|
||||
{"name": "Los Angeles", "pop": 12346},
|
||||
],
|
||||
},
|
||||
{
|
||||
"name": "Ohio",
|
||||
"cities": [
|
||||
{"name": "Columbus", "pop": 1234},
|
||||
{"name": "Cleveland", "pop": 1236},
|
||||
],
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
"country": "Germany",
|
||||
"states": [
|
||||
{"name": "Bayern", "cities": [{"name": "Munich", "pop": 12347}]},
|
||||
{
|
||||
"name": "Nordrhein-Westfalen",
|
||||
"cities": [
|
||||
{"name": "Duesseldorf", "pop": 1238},
|
||||
{"name": "Koeln", "pop": 1239},
|
||||
],
|
||||
},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def state_data():
|
||||
return [
|
||||
{
|
||||
"counties": [
|
||||
{"name": "Dade", "population": 12345},
|
||||
{"name": "Broward", "population": 40000},
|
||||
{"name": "Palm Beach", "population": 60000},
|
||||
],
|
||||
"info": {"governor": "Rick Scott"},
|
||||
"shortname": "FL",
|
||||
"state": "Florida",
|
||||
},
|
||||
{
|
||||
"counties": [
|
||||
{"name": "Summit", "population": 1234},
|
||||
{"name": "Cuyahoga", "population": 1337},
|
||||
],
|
||||
"info": {"governor": "John Kasich"},
|
||||
"shortname": "OH",
|
||||
"state": "Ohio",
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def author_missing_data():
|
||||
return [
|
||||
{"info": None},
|
||||
{
|
||||
"info": {"created_at": "11/08/1993", "last_updated": "26/05/2012"},
|
||||
"author_name": {"first": "Jane", "last_name": "Doe"},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def missing_metadata():
|
||||
return [
|
||||
{
|
||||
"name": "Alice",
|
||||
"addresses": [
|
||||
{
|
||||
"number": 9562,
|
||||
"street": "Morris St.",
|
||||
"city": "Massillon",
|
||||
"state": "OH",
|
||||
"zip": 44646,
|
||||
}
|
||||
],
|
||||
"previous_residences": {"cities": [{"city_name": "Foo York City"}]},
|
||||
},
|
||||
{
|
||||
"addresses": [
|
||||
{
|
||||
"number": 8449,
|
||||
"street": "Spring St.",
|
||||
"city": "Elizabethton",
|
||||
"state": "TN",
|
||||
"zip": 37643,
|
||||
}
|
||||
],
|
||||
"previous_residences": {"cities": [{"city_name": "Barmingham"}]},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def max_level_test_input_data():
|
||||
"""
|
||||
input data to test json_normalize with max_level param
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Lookup": {
|
||||
"TextField": "Some text",
|
||||
"UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
},
|
||||
"Image": {"a": "b"},
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
class TestJSONNormalize:
|
||||
def test_simple_records(self):
|
||||
recs = [
|
||||
{"a": 1, "b": 2, "c": 3},
|
||||
{"a": 4, "b": 5, "c": 6},
|
||||
{"a": 7, "b": 8, "c": 9},
|
||||
{"a": 10, "b": 11, "c": 12},
|
||||
]
|
||||
|
||||
result = json_normalize(recs)
|
||||
expected = DataFrame(recs)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_simple_normalize(self, state_data):
|
||||
result = json_normalize(state_data[0], "counties")
|
||||
expected = DataFrame(state_data[0]["counties"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = json_normalize(state_data, "counties")
|
||||
|
||||
expected = []
|
||||
for rec in state_data:
|
||||
expected.extend(rec["counties"])
|
||||
expected = DataFrame(expected)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = json_normalize(state_data, "counties", meta="state")
|
||||
expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_fields_list_type_normalize(self):
|
||||
parse_metadata_fields_list_type = [
|
||||
{"values": [1, 2, 3], "metadata": {"listdata": [1, 2]}}
|
||||
]
|
||||
result = json_normalize(
|
||||
parse_metadata_fields_list_type,
|
||||
record_path=["values"],
|
||||
meta=[["metadata", "listdata"]],
|
||||
)
|
||||
expected = DataFrame(
|
||||
{0: [1, 2, 3], "metadata.listdata": [[1, 2], [1, 2], [1, 2]]}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_empty_array(self):
|
||||
result = json_normalize([])
|
||||
expected = DataFrame()
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, record_path, exception_type",
|
||||
[
|
||||
([{"a": 0}, {"a": 1}], None, None),
|
||||
({"a": [{"a": 0}, {"a": 1}]}, "a", None),
|
||||
('{"a": [{"a": 0}, {"a": 1}]}', None, NotImplementedError),
|
||||
(None, None, NotImplementedError),
|
||||
],
|
||||
)
|
||||
def test_accepted_input(self, data, record_path, exception_type):
|
||||
if exception_type is not None:
|
||||
with pytest.raises(exception_type, match=""):
|
||||
json_normalize(data, record_path=record_path)
|
||||
else:
|
||||
result = json_normalize(data, record_path=record_path)
|
||||
expected = DataFrame([0, 1], columns=["a"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_simple_normalize_with_separator(self, deep_nested):
|
||||
# GH 14883
|
||||
result = json_normalize({"A": {"A": 1, "B": 2}})
|
||||
expected = DataFrame([[1, 2]], columns=["A.A", "A.B"])
|
||||
tm.assert_frame_equal(result.reindex_like(expected), expected)
|
||||
|
||||
result = json_normalize({"A": {"A": 1, "B": 2}}, sep="_")
|
||||
expected = DataFrame([[1, 2]], columns=["A_A", "A_B"])
|
||||
tm.assert_frame_equal(result.reindex_like(expected), expected)
|
||||
|
||||
result = json_normalize({"A": {"A": 1, "B": 2}}, sep="\u03c3")
|
||||
expected = DataFrame([[1, 2]], columns=["A\u03c3A", "A\u03c3B"])
|
||||
tm.assert_frame_equal(result.reindex_like(expected), expected)
|
||||
|
||||
result = json_normalize(
|
||||
deep_nested,
|
||||
["states", "cities"],
|
||||
meta=["country", ["states", "name"]],
|
||||
sep="_",
|
||||
)
|
||||
expected = Index(["name", "pop", "country", "states_name"]).sort_values()
|
||||
assert result.columns.sort_values().equals(expected)
|
||||
|
||||
def test_normalize_with_multichar_separator(self):
|
||||
# GH #43831
|
||||
data = {"a": [1, 2], "b": {"b_1": 2, "b_2": (3, 4)}}
|
||||
result = json_normalize(data, sep="__")
|
||||
expected = DataFrame([[[1, 2], 2, (3, 4)]], columns=["a", "b__b_1", "b__b_2"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_value_array_record_prefix(self):
|
||||
# GH 21536
|
||||
result = json_normalize({"A": [1, 2]}, "A", record_prefix="Prefix.")
|
||||
expected = DataFrame([[1], [2]], columns=["Prefix.0"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_nested_object_record_path(self):
|
||||
# GH 22706
|
||||
data = {
|
||||
"state": "Florida",
|
||||
"info": {
|
||||
"governor": "Rick Scott",
|
||||
"counties": [
|
||||
{"name": "Dade", "population": 12345},
|
||||
{"name": "Broward", "population": 40000},
|
||||
{"name": "Palm Beach", "population": 60000},
|
||||
],
|
||||
},
|
||||
}
|
||||
result = json_normalize(data, record_path=["info", "counties"])
|
||||
expected = DataFrame(
|
||||
[["Dade", 12345], ["Broward", 40000], ["Palm Beach", 60000]],
|
||||
columns=["name", "population"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_more_deeply_nested(self, deep_nested):
|
||||
result = json_normalize(
|
||||
deep_nested, ["states", "cities"], meta=["country", ["states", "name"]]
|
||||
)
|
||||
ex_data = {
|
||||
"country": ["USA"] * 4 + ["Germany"] * 3,
|
||||
"states.name": [
|
||||
"California",
|
||||
"California",
|
||||
"Ohio",
|
||||
"Ohio",
|
||||
"Bayern",
|
||||
"Nordrhein-Westfalen",
|
||||
"Nordrhein-Westfalen",
|
||||
],
|
||||
"name": [
|
||||
"San Francisco",
|
||||
"Los Angeles",
|
||||
"Columbus",
|
||||
"Cleveland",
|
||||
"Munich",
|
||||
"Duesseldorf",
|
||||
"Koeln",
|
||||
],
|
||||
"pop": [12345, 12346, 1234, 1236, 12347, 1238, 1239],
|
||||
}
|
||||
|
||||
expected = DataFrame(ex_data, columns=result.columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_shallow_nested(self):
|
||||
data = [
|
||||
{
|
||||
"state": "Florida",
|
||||
"shortname": "FL",
|
||||
"info": {"governor": "Rick Scott"},
|
||||
"counties": [
|
||||
{"name": "Dade", "population": 12345},
|
||||
{"name": "Broward", "population": 40000},
|
||||
{"name": "Palm Beach", "population": 60000},
|
||||
],
|
||||
},
|
||||
{
|
||||
"state": "Ohio",
|
||||
"shortname": "OH",
|
||||
"info": {"governor": "John Kasich"},
|
||||
"counties": [
|
||||
{"name": "Summit", "population": 1234},
|
||||
{"name": "Cuyahoga", "population": 1337},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
result = json_normalize(
|
||||
data, "counties", ["state", "shortname", ["info", "governor"]]
|
||||
)
|
||||
ex_data = {
|
||||
"name": ["Dade", "Broward", "Palm Beach", "Summit", "Cuyahoga"],
|
||||
"state": ["Florida"] * 3 + ["Ohio"] * 2,
|
||||
"shortname": ["FL", "FL", "FL", "OH", "OH"],
|
||||
"info.governor": ["Rick Scott"] * 3 + ["John Kasich"] * 2,
|
||||
"population": [12345, 40000, 60000, 1234, 1337],
|
||||
}
|
||||
expected = DataFrame(ex_data, columns=result.columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_nested_meta_path_with_nested_record_path(self, state_data):
|
||||
# GH 27220
|
||||
result = json_normalize(
|
||||
data=state_data,
|
||||
record_path=["counties"],
|
||||
meta=["state", "shortname", ["info", "governor"]],
|
||||
errors="ignore",
|
||||
)
|
||||
|
||||
ex_data = {
|
||||
"name": ["Dade", "Broward", "Palm Beach", "Summit", "Cuyahoga"],
|
||||
"population": [12345, 40000, 60000, 1234, 1337],
|
||||
"state": ["Florida"] * 3 + ["Ohio"] * 2,
|
||||
"shortname": ["FL"] * 3 + ["OH"] * 2,
|
||||
"info.governor": ["Rick Scott"] * 3 + ["John Kasich"] * 2,
|
||||
}
|
||||
|
||||
expected = DataFrame(ex_data)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_meta_name_conflict(self):
|
||||
data = [
|
||||
{
|
||||
"foo": "hello",
|
||||
"bar": "there",
|
||||
"data": [
|
||||
{"foo": "something", "bar": "else"},
|
||||
{"foo": "something2", "bar": "else2"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
msg = r"Conflicting metadata name (foo|bar), need distinguishing prefix"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
json_normalize(data, "data", meta=["foo", "bar"])
|
||||
|
||||
result = json_normalize(data, "data", meta=["foo", "bar"], meta_prefix="meta")
|
||||
|
||||
for val in ["metafoo", "metabar", "foo", "bar"]:
|
||||
assert val in result
|
||||
|
||||
def test_meta_parameter_not_modified(self):
|
||||
# GH 18610
|
||||
data = [
|
||||
{
|
||||
"foo": "hello",
|
||||
"bar": "there",
|
||||
"data": [
|
||||
{"foo": "something", "bar": "else"},
|
||||
{"foo": "something2", "bar": "else2"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
COLUMNS = ["foo", "bar"]
|
||||
result = json_normalize(data, "data", meta=COLUMNS, meta_prefix="meta")
|
||||
|
||||
assert COLUMNS == ["foo", "bar"]
|
||||
for val in ["metafoo", "metabar", "foo", "bar"]:
|
||||
assert val in result
|
||||
|
||||
def test_record_prefix(self, state_data):
|
||||
result = json_normalize(state_data[0], "counties")
|
||||
expected = DataFrame(state_data[0]["counties"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = json_normalize(
|
||||
state_data, "counties", meta="state", record_prefix="county_"
|
||||
)
|
||||
|
||||
expected = []
|
||||
for rec in state_data:
|
||||
expected.extend(rec["counties"])
|
||||
expected = DataFrame(expected)
|
||||
expected = expected.rename(columns=lambda x: "county_" + x)
|
||||
expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_non_ascii_key(self):
|
||||
testjson = (
|
||||
b'[{"\xc3\x9cnic\xc3\xb8de":0,"sub":{"A":1, "B":2}},'
|
||||
b'{"\xc3\x9cnic\xc3\xb8de":1,"sub":{"A":3, "B":4}}]'
|
||||
).decode("utf8")
|
||||
|
||||
testdata = {
|
||||
b"\xc3\x9cnic\xc3\xb8de".decode("utf8"): [0, 1],
|
||||
"sub.A": [1, 3],
|
||||
"sub.B": [2, 4],
|
||||
}
|
||||
expected = DataFrame(testdata)
|
||||
|
||||
result = json_normalize(json.loads(testjson))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_missing_field(self, author_missing_data):
|
||||
# GH20030:
|
||||
result = json_normalize(author_missing_data)
|
||||
ex_data = [
|
||||
{
|
||||
"info": np.nan,
|
||||
"info.created_at": np.nan,
|
||||
"info.last_updated": np.nan,
|
||||
"author_name.first": np.nan,
|
||||
"author_name.last_name": np.nan,
|
||||
},
|
||||
{
|
||||
"info": None,
|
||||
"info.created_at": "11/08/1993",
|
||||
"info.last_updated": "26/05/2012",
|
||||
"author_name.first": "Jane",
|
||||
"author_name.last_name": "Doe",
|
||||
},
|
||||
]
|
||||
expected = DataFrame(ex_data)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"max_level,expected",
|
||||
[
|
||||
(
|
||||
0,
|
||||
[
|
||||
{
|
||||
"TextField": "Some text",
|
||||
"UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Image": {"a": "b"},
|
||||
},
|
||||
{
|
||||
"TextField": "Some text",
|
||||
"UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Image": {"a": "b"},
|
||||
},
|
||||
],
|
||||
),
|
||||
(
|
||||
1,
|
||||
[
|
||||
{
|
||||
"TextField": "Some text",
|
||||
"UserField.Id": "ID001",
|
||||
"UserField.Name": "Name001",
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Image": {"a": "b"},
|
||||
},
|
||||
{
|
||||
"TextField": "Some text",
|
||||
"UserField.Id": "ID001",
|
||||
"UserField.Name": "Name001",
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Image": {"a": "b"},
|
||||
},
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_max_level_with_records_path(self, max_level, expected):
|
||||
# GH23843: Enhanced JSON normalize
|
||||
test_input = [
|
||||
{
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Lookup": [
|
||||
{
|
||||
"TextField": "Some text",
|
||||
"UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
},
|
||||
{
|
||||
"TextField": "Some text",
|
||||
"UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
},
|
||||
],
|
||||
"Image": {"a": "b"},
|
||||
"tags": [
|
||||
{"foo": "something", "bar": "else"},
|
||||
{"foo": "something2", "bar": "else2"},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
result = json_normalize(
|
||||
test_input,
|
||||
record_path=["Lookup"],
|
||||
meta=[["CreatedBy"], ["Image"]],
|
||||
max_level=max_level,
|
||||
)
|
||||
expected_df = DataFrame(data=expected, columns=result.columns.values)
|
||||
tm.assert_equal(expected_df, result)
|
||||
|
||||
def test_nested_flattening_consistent(self):
|
||||
# see gh-21537
|
||||
df1 = json_normalize([{"A": {"B": 1}}])
|
||||
df2 = json_normalize({"dummy": [{"A": {"B": 1}}]}, "dummy")
|
||||
|
||||
# They should be the same.
|
||||
tm.assert_frame_equal(df1, df2)
|
||||
|
||||
def test_nonetype_record_path(self, nulls_fixture):
|
||||
# see gh-30148
|
||||
# should not raise TypeError
|
||||
result = json_normalize(
|
||||
[
|
||||
{"state": "Texas", "info": nulls_fixture},
|
||||
{"state": "Florida", "info": [{"i": 2}]},
|
||||
],
|
||||
record_path=["info"],
|
||||
)
|
||||
expected = DataFrame({"i": 2}, index=[0])
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("value", ["false", "true", "{}", "1", '"text"'])
|
||||
def test_non_list_record_path_errors(self, value):
|
||||
# see gh-30148, GH 26284
|
||||
parsed_value = json.loads(value)
|
||||
test_input = {"state": "Texas", "info": parsed_value}
|
||||
test_path = "info"
|
||||
msg = (
|
||||
f"{test_input} has non list value {parsed_value} for path {test_path}. "
|
||||
"Must be list or null."
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
json_normalize([test_input], record_path=[test_path])
|
||||
|
||||
def test_meta_non_iterable(self):
|
||||
# GH 31507
|
||||
data = """[{"id": 99, "data": [{"one": 1, "two": 2}]}]"""
|
||||
|
||||
result = json_normalize(json.loads(data), record_path=["data"], meta=["id"])
|
||||
expected = DataFrame(
|
||||
{"one": [1], "two": [2], "id": np.array([99], dtype=object)}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_generator(self, state_data):
|
||||
# GH35923 Fix pd.json_normalize to not skip the first element of a
|
||||
# generator input
|
||||
def generator_data():
|
||||
yield from state_data[0]["counties"]
|
||||
|
||||
result = json_normalize(generator_data())
|
||||
expected = DataFrame(state_data[0]["counties"])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_top_column_with_leading_underscore(self):
|
||||
# 49861
|
||||
data = {"_id": {"a1": 10, "l2": {"l3": 0}}, "gg": 4}
|
||||
result = json_normalize(data, sep="_")
|
||||
expected = DataFrame([[4, 10, 0]], columns=["gg", "_id_a1", "_id_l2_l3"])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
class TestNestedToRecord:
|
||||
def test_flat_stays_flat(self):
|
||||
recs = [{"flat1": 1, "flat2": 2}, {"flat3": 3, "flat2": 4}]
|
||||
result = nested_to_record(recs)
|
||||
expected = recs
|
||||
assert result == expected
|
||||
|
||||
def test_one_level_deep_flattens(self):
|
||||
data = {"flat1": 1, "dict1": {"c": 1, "d": 2}}
|
||||
|
||||
result = nested_to_record(data)
|
||||
expected = {"dict1.c": 1, "dict1.d": 2, "flat1": 1}
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_nested_flattens(self):
|
||||
data = {
|
||||
"flat1": 1,
|
||||
"dict1": {"c": 1, "d": 2},
|
||||
"nested": {"e": {"c": 1, "d": 2}, "d": 2},
|
||||
}
|
||||
|
||||
result = nested_to_record(data)
|
||||
expected = {
|
||||
"dict1.c": 1,
|
||||
"dict1.d": 2,
|
||||
"flat1": 1,
|
||||
"nested.d": 2,
|
||||
"nested.e.c": 1,
|
||||
"nested.e.d": 2,
|
||||
}
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_json_normalize_errors(self, missing_metadata):
|
||||
# GH14583:
|
||||
# If meta keys are not always present a new option to set
|
||||
# errors='ignore' has been implemented
|
||||
|
||||
msg = (
|
||||
"Key 'name' not found. To replace missing values of "
|
||||
"'name' with np.nan, pass in errors='ignore'"
|
||||
)
|
||||
with pytest.raises(KeyError, match=msg):
|
||||
json_normalize(
|
||||
data=missing_metadata,
|
||||
record_path="addresses",
|
||||
meta="name",
|
||||
errors="raise",
|
||||
)
|
||||
|
||||
def test_missing_meta(self, missing_metadata):
|
||||
# GH25468
|
||||
# If metadata is nullable with errors set to ignore, the null values
|
||||
# should be numpy.nan values
|
||||
result = json_normalize(
|
||||
data=missing_metadata, record_path="addresses", meta="name", errors="ignore"
|
||||
)
|
||||
ex_data = [
|
||||
[9562, "Morris St.", "Massillon", "OH", 44646, "Alice"],
|
||||
[8449, "Spring St.", "Elizabethton", "TN", 37643, np.nan],
|
||||
]
|
||||
columns = ["number", "street", "city", "state", "zip", "name"]
|
||||
expected = DataFrame(ex_data, columns=columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_missing_nested_meta(self):
|
||||
# GH44312
|
||||
# If errors="ignore" and nested metadata is null, we should return nan
|
||||
data = {"meta": "foo", "nested_meta": None, "value": [{"rec": 1}, {"rec": 2}]}
|
||||
result = json_normalize(
|
||||
data,
|
||||
record_path="value",
|
||||
meta=["meta", ["nested_meta", "leaf"]],
|
||||
errors="ignore",
|
||||
)
|
||||
ex_data = [[1, "foo", np.nan], [2, "foo", np.nan]]
|
||||
columns = ["rec", "meta", "nested_meta.leaf"]
|
||||
expected = DataFrame(ex_data, columns=columns).astype(
|
||||
{"nested_meta.leaf": object}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# If errors="raise" and nested metadata is null, we should raise with the
|
||||
# key of the first missing level
|
||||
with pytest.raises(KeyError, match="'leaf' not found"):
|
||||
json_normalize(
|
||||
data,
|
||||
record_path="value",
|
||||
meta=["meta", ["nested_meta", "leaf"]],
|
||||
errors="raise",
|
||||
)
|
||||
|
||||
def test_missing_meta_multilevel_record_path_errors_raise(self, missing_metadata):
|
||||
# GH41876
|
||||
# Ensure errors='raise' works as intended even when a record_path of length
|
||||
# greater than one is passed in
|
||||
msg = (
|
||||
"Key 'name' not found. To replace missing values of "
|
||||
"'name' with np.nan, pass in errors='ignore'"
|
||||
)
|
||||
with pytest.raises(KeyError, match=msg):
|
||||
json_normalize(
|
||||
data=missing_metadata,
|
||||
record_path=["previous_residences", "cities"],
|
||||
meta="name",
|
||||
errors="raise",
|
||||
)
|
||||
|
||||
def test_missing_meta_multilevel_record_path_errors_ignore(self, missing_metadata):
|
||||
# GH41876
|
||||
# Ensure errors='ignore' works as intended even when a record_path of length
|
||||
# greater than one is passed in
|
||||
result = json_normalize(
|
||||
data=missing_metadata,
|
||||
record_path=["previous_residences", "cities"],
|
||||
meta="name",
|
||||
errors="ignore",
|
||||
)
|
||||
ex_data = [
|
||||
["Foo York City", "Alice"],
|
||||
["Barmingham", np.nan],
|
||||
]
|
||||
columns = ["city_name", "name"]
|
||||
expected = DataFrame(ex_data, columns=columns)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_donot_drop_nonevalues(self):
|
||||
# GH21356
|
||||
data = [
|
||||
{"info": None, "author_name": {"first": "Smith", "last_name": "Appleseed"}},
|
||||
{
|
||||
"info": {"created_at": "11/08/1993", "last_updated": "26/05/2012"},
|
||||
"author_name": {"first": "Jane", "last_name": "Doe"},
|
||||
},
|
||||
]
|
||||
result = nested_to_record(data)
|
||||
expected = [
|
||||
{
|
||||
"info": None,
|
||||
"author_name.first": "Smith",
|
||||
"author_name.last_name": "Appleseed",
|
||||
},
|
||||
{
|
||||
"author_name.first": "Jane",
|
||||
"author_name.last_name": "Doe",
|
||||
"info.created_at": "11/08/1993",
|
||||
"info.last_updated": "26/05/2012",
|
||||
},
|
||||
]
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_nonetype_top_level_bottom_level(self):
|
||||
# GH21158: If inner level json has a key with a null value
|
||||
# make sure it does not do a new_d.pop twice and except
|
||||
data = {
|
||||
"id": None,
|
||||
"location": {
|
||||
"country": {
|
||||
"state": {
|
||||
"id": None,
|
||||
"town.info": {
|
||||
"id": None,
|
||||
"region": None,
|
||||
"x": 49.151580810546875,
|
||||
"y": -33.148521423339844,
|
||||
"z": 27.572303771972656,
|
||||
},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
result = nested_to_record(data)
|
||||
expected = {
|
||||
"id": None,
|
||||
"location.country.state.id": None,
|
||||
"location.country.state.town.info.id": None,
|
||||
"location.country.state.town.info.region": None,
|
||||
"location.country.state.town.info.x": 49.151580810546875,
|
||||
"location.country.state.town.info.y": -33.148521423339844,
|
||||
"location.country.state.town.info.z": 27.572303771972656,
|
||||
}
|
||||
assert result == expected
|
||||
|
||||
def test_nonetype_multiple_levels(self):
|
||||
# GH21158: If inner level json has a key with a null value
|
||||
# make sure it does not do a new_d.pop twice and except
|
||||
data = {
|
||||
"id": None,
|
||||
"location": {
|
||||
"id": None,
|
||||
"country": {
|
||||
"id": None,
|
||||
"state": {
|
||||
"id": None,
|
||||
"town.info": {
|
||||
"region": None,
|
||||
"x": 49.151580810546875,
|
||||
"y": -33.148521423339844,
|
||||
"z": 27.572303771972656,
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
result = nested_to_record(data)
|
||||
expected = {
|
||||
"id": None,
|
||||
"location.id": None,
|
||||
"location.country.id": None,
|
||||
"location.country.state.id": None,
|
||||
"location.country.state.town.info.region": None,
|
||||
"location.country.state.town.info.x": 49.151580810546875,
|
||||
"location.country.state.town.info.y": -33.148521423339844,
|
||||
"location.country.state.town.info.z": 27.572303771972656,
|
||||
}
|
||||
assert result == expected
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"max_level, expected",
|
||||
[
|
||||
(
|
||||
None,
|
||||
[
|
||||
{
|
||||
"CreatedBy.Name": "User001",
|
||||
"Lookup.TextField": "Some text",
|
||||
"Lookup.UserField.Id": "ID001",
|
||||
"Lookup.UserField.Name": "Name001",
|
||||
"Image.a": "b",
|
||||
}
|
||||
],
|
||||
),
|
||||
(
|
||||
0,
|
||||
[
|
||||
{
|
||||
"CreatedBy": {"Name": "User001"},
|
||||
"Lookup": {
|
||||
"TextField": "Some text",
|
||||
"UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
},
|
||||
"Image": {"a": "b"},
|
||||
}
|
||||
],
|
||||
),
|
||||
(
|
||||
1,
|
||||
[
|
||||
{
|
||||
"CreatedBy.Name": "User001",
|
||||
"Lookup.TextField": "Some text",
|
||||
"Lookup.UserField": {"Id": "ID001", "Name": "Name001"},
|
||||
"Image.a": "b",
|
||||
}
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_with_max_level(self, max_level, expected, max_level_test_input_data):
|
||||
# GH23843: Enhanced JSON normalize
|
||||
output = nested_to_record(max_level_test_input_data, max_level=max_level)
|
||||
assert output == expected
|
||||
|
||||
def test_with_large_max_level(self):
|
||||
# GH23843: Enhanced JSON normalize
|
||||
max_level = 100
|
||||
input_data = [
|
||||
{
|
||||
"CreatedBy": {
|
||||
"user": {
|
||||
"name": {"firstname": "Leo", "LastName": "Thomson"},
|
||||
"family_tree": {
|
||||
"father": {
|
||||
"name": "Father001",
|
||||
"father": {
|
||||
"Name": "Father002",
|
||||
"father": {
|
||||
"name": "Father003",
|
||||
"father": {"Name": "Father004"},
|
||||
},
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
expected = [
|
||||
{
|
||||
"CreatedBy.user.name.firstname": "Leo",
|
||||
"CreatedBy.user.name.LastName": "Thomson",
|
||||
"CreatedBy.user.family_tree.father.name": "Father001",
|
||||
"CreatedBy.user.family_tree.father.father.Name": "Father002",
|
||||
"CreatedBy.user.family_tree.father.father.father.name": "Father003",
|
||||
"CreatedBy.user.family_tree.father.father.father.father.Name": "Father004", # noqa: E501
|
||||
}
|
||||
]
|
||||
output = nested_to_record(input_data, max_level=max_level)
|
||||
assert output == expected
|
||||
|
||||
def test_series_non_zero_index(self):
|
||||
# GH 19020
|
||||
data = {
|
||||
0: {"id": 1, "name": "Foo", "elements": {"a": 1}},
|
||||
1: {"id": 2, "name": "Bar", "elements": {"b": 2}},
|
||||
2: {"id": 3, "name": "Baz", "elements": {"c": 3}},
|
||||
}
|
||||
s = Series(data)
|
||||
s.index = [1, 2, 3]
|
||||
result = json_normalize(s)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"id": [1, 2, 3],
|
||||
"name": ["Foo", "Bar", "Baz"],
|
||||
"elements.a": [1.0, np.nan, np.nan],
|
||||
"elements.b": [np.nan, 2.0, np.nan],
|
||||
"elements.c": [np.nan, np.nan, 3.0],
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
2202
lib/python3.13/site-packages/pandas/tests/io/json/test_pandas.py
Normal file
2202
lib/python3.13/site-packages/pandas/tests/io/json/test_pandas.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,543 @@
|
||||
from collections.abc import Iterator
|
||||
from io import StringIO
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
read_json,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
from pandas.io.json._json import JsonReader
|
||||
|
||||
pytestmark = pytest.mark.filterwarnings(
|
||||
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lines_json_df():
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
||||
return df.to_json(lines=True, orient="records")
|
||||
|
||||
|
||||
@pytest.fixture(params=["ujson", "pyarrow"])
|
||||
def engine(request):
|
||||
if request.param == "pyarrow":
|
||||
pytest.importorskip("pyarrow.json")
|
||||
return request.param
|
||||
|
||||
|
||||
def test_read_jsonl():
|
||||
# GH9180
|
||||
result = read_json(StringIO('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n'), lines=True)
|
||||
expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_read_jsonl_engine_pyarrow(datapath, engine):
|
||||
result = read_json(
|
||||
datapath("io", "json", "data", "line_delimited.json"),
|
||||
lines=True,
|
||||
engine=engine,
|
||||
)
|
||||
expected = DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_read_datetime(request, engine):
|
||||
# GH33787
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = "Pyarrow only supports a file path as an input and line delimited json"
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
df = DataFrame(
|
||||
[([1, 2], ["2020-03-05", "2020-04-08T09:58:49+00:00"], "hector")],
|
||||
columns=["accounts", "date", "name"],
|
||||
)
|
||||
json_line = df.to_json(lines=True, orient="records")
|
||||
|
||||
if engine == "pyarrow":
|
||||
result = read_json(StringIO(json_line), engine=engine)
|
||||
else:
|
||||
result = read_json(StringIO(json_line), engine=engine)
|
||||
expected = DataFrame(
|
||||
[[1, "2020-03-05", "hector"], [2, "2020-04-08T09:58:49+00:00", "hector"]],
|
||||
columns=["accounts", "date", "name"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_read_jsonl_unicode_chars():
|
||||
# GH15132: non-ascii unicode characters
|
||||
# \u201d == RIGHT DOUBLE QUOTATION MARK
|
||||
|
||||
# simulate file handle
|
||||
json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
|
||||
json = StringIO(json)
|
||||
result = read_json(json, lines=True)
|
||||
expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# simulate string
|
||||
json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
|
||||
result = read_json(StringIO(json), lines=True)
|
||||
expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_jsonl():
|
||||
# GH9180
|
||||
df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
|
||||
result = df.to_json(orient="records", lines=True)
|
||||
expected = '{"a":1,"b":2}\n{"a":1,"b":2}\n'
|
||||
assert result == expected
|
||||
|
||||
df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"])
|
||||
result = df.to_json(orient="records", lines=True)
|
||||
expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}\n'
|
||||
assert result == expected
|
||||
tm.assert_frame_equal(read_json(StringIO(result), lines=True), df)
|
||||
|
||||
# GH15096: escaped characters in columns and data
|
||||
df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"])
|
||||
result = df.to_json(orient="records", lines=True)
|
||||
expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}\n'
|
||||
assert result == expected
|
||||
tm.assert_frame_equal(read_json(StringIO(result), lines=True), df)
|
||||
|
||||
|
||||
def test_to_jsonl_count_new_lines():
|
||||
# GH36888
|
||||
df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
|
||||
actual_new_lines_count = df.to_json(orient="records", lines=True).count("\n")
|
||||
expected_new_lines_count = 2
|
||||
assert actual_new_lines_count == expected_new_lines_count
|
||||
|
||||
|
||||
@pytest.mark.parametrize("chunksize", [1, 1.0])
|
||||
def test_readjson_chunks(request, lines_json_df, chunksize, engine):
|
||||
# Basic test that read_json(chunks=True) gives the same result as
|
||||
# read_json(chunks=False)
|
||||
# GH17048: memory usage when lines=True
|
||||
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
unchunked = read_json(StringIO(lines_json_df), lines=True)
|
||||
with read_json(
|
||||
StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine
|
||||
) as reader:
|
||||
chunked = pd.concat(reader)
|
||||
|
||||
tm.assert_frame_equal(chunked, unchunked)
|
||||
|
||||
|
||||
def test_readjson_chunksize_requires_lines(lines_json_df, engine):
|
||||
msg = "chunksize can only be passed if lines=True"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with read_json(
|
||||
StringIO(lines_json_df), lines=False, chunksize=2, engine=engine
|
||||
) as _:
|
||||
pass
|
||||
|
||||
|
||||
def test_readjson_chunks_series(request, engine):
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason))
|
||||
|
||||
# Test reading line-format JSON to Series with chunksize param
|
||||
s = pd.Series({"A": 1, "B": 2})
|
||||
|
||||
strio = StringIO(s.to_json(lines=True, orient="records"))
|
||||
unchunked = read_json(strio, lines=True, typ="Series", engine=engine)
|
||||
|
||||
strio = StringIO(s.to_json(lines=True, orient="records"))
|
||||
with read_json(
|
||||
strio, lines=True, typ="Series", chunksize=1, engine=engine
|
||||
) as reader:
|
||||
chunked = pd.concat(reader)
|
||||
|
||||
tm.assert_series_equal(chunked, unchunked)
|
||||
|
||||
|
||||
def test_readjson_each_chunk(request, lines_json_df, engine):
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
# Other tests check that the final result of read_json(chunksize=True)
|
||||
# is correct. This checks the intermediate chunks.
|
||||
with read_json(
|
||||
StringIO(lines_json_df), lines=True, chunksize=2, engine=engine
|
||||
) as reader:
|
||||
chunks = list(reader)
|
||||
assert chunks[0].shape == (2, 2)
|
||||
assert chunks[1].shape == (1, 2)
|
||||
|
||||
|
||||
def test_readjson_chunks_from_file(request, engine):
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
||||
df.to_json(path, lines=True, orient="records")
|
||||
with read_json(path, lines=True, chunksize=1, engine=engine) as reader:
|
||||
chunked = pd.concat(reader)
|
||||
unchunked = read_json(path, lines=True, engine=engine)
|
||||
tm.assert_frame_equal(unchunked, chunked)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("chunksize", [None, 1])
|
||||
def test_readjson_chunks_closes(chunksize):
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
||||
df.to_json(path, lines=True, orient="records")
|
||||
reader = JsonReader(
|
||||
path,
|
||||
orient=None,
|
||||
typ="frame",
|
||||
dtype=True,
|
||||
convert_axes=True,
|
||||
convert_dates=True,
|
||||
keep_default_dates=True,
|
||||
precise_float=False,
|
||||
date_unit=None,
|
||||
encoding=None,
|
||||
lines=True,
|
||||
chunksize=chunksize,
|
||||
compression=None,
|
||||
nrows=None,
|
||||
)
|
||||
with reader:
|
||||
reader.read()
|
||||
assert (
|
||||
reader.handles.handle.closed
|
||||
), f"didn't close stream with chunksize = {chunksize}"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("chunksize", [0, -1, 2.2, "foo"])
|
||||
def test_readjson_invalid_chunksize(lines_json_df, chunksize, engine):
|
||||
msg = r"'chunksize' must be an integer >=1"
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
with read_json(
|
||||
StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine
|
||||
) as _:
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.parametrize("chunksize", [None, 1, 2])
|
||||
def test_readjson_chunks_multiple_empty_lines(chunksize):
|
||||
j = """
|
||||
|
||||
{"A":1,"B":4}
|
||||
|
||||
|
||||
|
||||
{"A":2,"B":5}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
{"A":3,"B":6}
|
||||
"""
|
||||
orig = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
|
||||
test = read_json(StringIO(j), lines=True, chunksize=chunksize)
|
||||
if chunksize is not None:
|
||||
with test:
|
||||
test = pd.concat(test)
|
||||
tm.assert_frame_equal(orig, test, obj=f"chunksize: {chunksize}")
|
||||
|
||||
|
||||
def test_readjson_unicode(request, monkeypatch, engine):
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
monkeypatch.setattr("locale.getpreferredencoding", lambda do_setlocale: "cp949")
|
||||
with open(path, "w", encoding="utf-8") as f:
|
||||
f.write('{"£©µÀÆÖÞßéöÿ":["АБВГДабвгд가"]}')
|
||||
|
||||
result = read_json(path, engine=engine)
|
||||
expected = DataFrame({"£©µÀÆÖÞßéöÿ": ["АБВГДабвгд가"]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("nrows", [1, 2])
|
||||
def test_readjson_nrows(nrows, engine):
|
||||
# GH 33916
|
||||
# Test reading line-format JSON to Series with nrows param
|
||||
jsonl = """{"a": 1, "b": 2}
|
||||
{"a": 3, "b": 4}
|
||||
{"a": 5, "b": 6}
|
||||
{"a": 7, "b": 8}"""
|
||||
result = read_json(StringIO(jsonl), lines=True, nrows=nrows)
|
||||
expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("nrows,chunksize", [(2, 2), (4, 2)])
|
||||
def test_readjson_nrows_chunks(request, nrows, chunksize, engine):
|
||||
# GH 33916
|
||||
# Test reading line-format JSON to Series with nrows and chunksize param
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
jsonl = """{"a": 1, "b": 2}
|
||||
{"a": 3, "b": 4}
|
||||
{"a": 5, "b": 6}
|
||||
{"a": 7, "b": 8}"""
|
||||
|
||||
if engine != "pyarrow":
|
||||
with read_json(
|
||||
StringIO(jsonl), lines=True, nrows=nrows, chunksize=chunksize, engine=engine
|
||||
) as reader:
|
||||
chunked = pd.concat(reader)
|
||||
else:
|
||||
with read_json(
|
||||
jsonl, lines=True, nrows=nrows, chunksize=chunksize, engine=engine
|
||||
) as reader:
|
||||
chunked = pd.concat(reader)
|
||||
expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows]
|
||||
tm.assert_frame_equal(chunked, expected)
|
||||
|
||||
|
||||
def test_readjson_nrows_requires_lines(engine):
|
||||
# GH 33916
|
||||
# Test ValueError raised if nrows is set without setting lines in read_json
|
||||
jsonl = """{"a": 1, "b": 2}
|
||||
{"a": 3, "b": 4}
|
||||
{"a": 5, "b": 6}
|
||||
{"a": 7, "b": 8}"""
|
||||
msg = "nrows can only be passed if lines=True"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
read_json(jsonl, lines=False, nrows=2, engine=engine)
|
||||
|
||||
|
||||
def test_readjson_lines_chunks_fileurl(request, datapath, engine):
|
||||
# GH 27135
|
||||
# Test reading line-format JSON from file url
|
||||
if engine == "pyarrow":
|
||||
# GH 48893
|
||||
reason = (
|
||||
"Pyarrow only supports a file path as an input and line delimited json"
|
||||
"and doesn't support chunksize parameter."
|
||||
)
|
||||
request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
|
||||
|
||||
df_list_expected = [
|
||||
DataFrame([[1, 2]], columns=["a", "b"], index=[0]),
|
||||
DataFrame([[3, 4]], columns=["a", "b"], index=[1]),
|
||||
DataFrame([[5, 6]], columns=["a", "b"], index=[2]),
|
||||
]
|
||||
os_path = datapath("io", "json", "data", "line_delimited.json")
|
||||
file_url = Path(os_path).as_uri()
|
||||
with read_json(file_url, lines=True, chunksize=1, engine=engine) as url_reader:
|
||||
for index, chuck in enumerate(url_reader):
|
||||
tm.assert_frame_equal(chuck, df_list_expected[index])
|
||||
|
||||
|
||||
def test_chunksize_is_incremental():
|
||||
# See https://github.com/pandas-dev/pandas/issues/34548
|
||||
jsonl = (
|
||||
"""{"a": 1, "b": 2}
|
||||
{"a": 3, "b": 4}
|
||||
{"a": 5, "b": 6}
|
||||
{"a": 7, "b": 8}\n"""
|
||||
* 1000
|
||||
)
|
||||
|
||||
class MyReader:
|
||||
def __init__(self, contents) -> None:
|
||||
self.read_count = 0
|
||||
self.stringio = StringIO(contents)
|
||||
|
||||
def read(self, *args):
|
||||
self.read_count += 1
|
||||
return self.stringio.read(*args)
|
||||
|
||||
def __iter__(self) -> Iterator:
|
||||
self.read_count += 1
|
||||
return iter(self.stringio)
|
||||
|
||||
reader = MyReader(jsonl)
|
||||
assert len(list(read_json(reader, lines=True, chunksize=100))) > 1
|
||||
assert reader.read_count > 10
|
||||
|
||||
|
||||
@pytest.mark.parametrize("orient_", ["split", "index", "table"])
|
||||
def test_to_json_append_orient(orient_):
|
||||
# GH 35849
|
||||
# Test ValueError when orient is not 'records'
|
||||
df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
msg = (
|
||||
r"mode='a' \(append\) is only supported when "
|
||||
"lines is True and orient is 'records'"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.to_json(mode="a", orient=orient_)
|
||||
|
||||
|
||||
def test_to_json_append_lines():
|
||||
# GH 35849
|
||||
# Test ValueError when lines is not True
|
||||
df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
msg = (
|
||||
r"mode='a' \(append\) is only supported when "
|
||||
"lines is True and orient is 'records'"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.to_json(mode="a", lines=False, orient="records")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("mode_", ["r", "x"])
|
||||
def test_to_json_append_mode(mode_):
|
||||
# GH 35849
|
||||
# Test ValueError when mode is not supported option
|
||||
df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
msg = (
|
||||
f"mode={mode_} is not a valid option."
|
||||
"Only 'w' and 'a' are currently supported."
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.to_json(mode=mode_, lines=False, orient="records")
|
||||
|
||||
|
||||
def test_to_json_append_output_consistent_columns():
|
||||
# GH 35849
|
||||
# Testing that resulting output reads in as expected.
|
||||
# Testing same columns, new rows
|
||||
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
|
||||
|
||||
expected = DataFrame({"col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"]})
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
# Save dataframes to the same file
|
||||
df1.to_json(path, lines=True, orient="records")
|
||||
df2.to_json(path, mode="a", lines=True, orient="records")
|
||||
|
||||
# Read path file
|
||||
result = read_json(path, lines=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_json_append_output_inconsistent_columns():
|
||||
# GH 35849
|
||||
# Testing that resulting output reads in as expected.
|
||||
# Testing one new column, one old column, new rows
|
||||
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"col1": [1, 2, None, None],
|
||||
"col2": ["a", "b", "e", "f"],
|
||||
"col3": [np.nan, np.nan, "!", "#"],
|
||||
}
|
||||
)
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
# Save dataframes to the same file
|
||||
df1.to_json(path, mode="a", lines=True, orient="records")
|
||||
df3.to_json(path, mode="a", lines=True, orient="records")
|
||||
|
||||
# Read path file
|
||||
result = read_json(path, lines=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_json_append_output_different_columns():
|
||||
# GH 35849
|
||||
# Testing that resulting output reads in as expected.
|
||||
# Testing same, differing and new columns
|
||||
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
|
||||
df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
|
||||
df4 = DataFrame({"col4": [True, False]})
|
||||
|
||||
expected = DataFrame(
|
||||
{
|
||||
"col1": [1, 2, 3, 4, None, None, None, None],
|
||||
"col2": ["a", "b", "c", "d", "e", "f", np.nan, np.nan],
|
||||
"col3": [np.nan, np.nan, np.nan, np.nan, "!", "#", np.nan, np.nan],
|
||||
"col4": [None, None, None, None, None, None, True, False],
|
||||
}
|
||||
).astype({"col4": "float"})
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
# Save dataframes to the same file
|
||||
df1.to_json(path, mode="a", lines=True, orient="records")
|
||||
df2.to_json(path, mode="a", lines=True, orient="records")
|
||||
df3.to_json(path, mode="a", lines=True, orient="records")
|
||||
df4.to_json(path, mode="a", lines=True, orient="records")
|
||||
|
||||
# Read path file
|
||||
result = read_json(path, lines=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_to_json_append_output_different_columns_reordered():
|
||||
# GH 35849
|
||||
# Testing that resulting output reads in as expected.
|
||||
# Testing specific result column order.
|
||||
df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
|
||||
df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
|
||||
df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
|
||||
df4 = DataFrame({"col4": [True, False]})
|
||||
|
||||
# df4, df3, df2, df1 (in that order)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"col4": [True, False, None, None, None, None, None, None],
|
||||
"col2": [np.nan, np.nan, "e", "f", "c", "d", "a", "b"],
|
||||
"col3": [np.nan, np.nan, "!", "#", np.nan, np.nan, np.nan, np.nan],
|
||||
"col1": [None, None, None, None, 3, 4, 1, 2],
|
||||
}
|
||||
).astype({"col4": "float"})
|
||||
with tm.ensure_clean("test.json") as path:
|
||||
# Save dataframes to the same file
|
||||
df4.to_json(path, mode="a", lines=True, orient="records")
|
||||
df3.to_json(path, mode="a", lines=True, orient="records")
|
||||
df2.to_json(path, mode="a", lines=True, orient="records")
|
||||
df1.to_json(path, mode="a", lines=True, orient="records")
|
||||
|
||||
# Read path file
|
||||
result = read_json(path, lines=True)
|
||||
tm.assert_frame_equal(result, expected)
|
1087
lib/python3.13/site-packages/pandas/tests/io/json/test_ujson.py
Normal file
1087
lib/python3.13/site-packages/pandas/tests/io/json/test_ujson.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user