Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@@ -0,0 +1,358 @@
import io
import numpy as np
import pytest
from pandas import (
NA,
DataFrame,
read_csv,
)
pytest.importorskip("jinja2")
def bar_grad(a=None, b=None, c=None, d=None):
"""Used in multiple tests to simplify formatting of expected result"""
ret = [("width", "10em")]
if all(x is None for x in [a, b, c, d]):
return ret
return ret + [
(
"background",
f"linear-gradient(90deg,{','.join([x for x in [a, b, c, d] if x])})",
)
]
def no_bar():
return bar_grad()
def bar_to(x, color="#d65f5f"):
return bar_grad(f" {color} {x:.1f}%", f" transparent {x:.1f}%")
def bar_from_to(x, y, color="#d65f5f"):
return bar_grad(
f" transparent {x:.1f}%",
f" {color} {x:.1f}%",
f" {color} {y:.1f}%",
f" transparent {y:.1f}%",
)
@pytest.fixture
def df_pos():
return DataFrame([[1], [2], [3]])
@pytest.fixture
def df_neg():
return DataFrame([[-1], [-2], [-3]])
@pytest.fixture
def df_mix():
return DataFrame([[-3], [1], [2]])
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(50), bar_to(100)]),
("right", [bar_to(100), bar_from_to(50, 100), no_bar()]),
("mid", [bar_to(33.33), bar_to(66.66), bar_to(100)]),
("zero", [bar_from_to(50, 66.7), bar_from_to(50, 83.3), bar_from_to(50, 100)]),
("mean", [bar_to(50), no_bar(), bar_from_to(50, 100)]),
(2.0, [bar_to(50), no_bar(), bar_from_to(50, 100)]),
(np.median, [bar_to(50), no_bar(), bar_from_to(50, 100)]),
],
)
def test_align_positive_cases(df_pos, align, exp):
# test different align cases for all positive values
result = df_pos.style.bar(align=align)._compute().ctx
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
("left", [bar_to(100), bar_to(50), no_bar()]),
("right", [no_bar(), bar_from_to(50, 100), bar_to(100)]),
("mid", [bar_from_to(66.66, 100), bar_from_to(33.33, 100), bar_to(100)]),
("zero", [bar_from_to(33.33, 50), bar_from_to(16.66, 50), bar_to(50)]),
("mean", [bar_from_to(50, 100), no_bar(), bar_to(50)]),
(-2.0, [bar_from_to(50, 100), no_bar(), bar_to(50)]),
(np.median, [bar_from_to(50, 100), no_bar(), bar_to(50)]),
],
)
def test_align_negative_cases(df_neg, align, exp):
# test different align cases for all negative values
result = df_neg.style.bar(align=align)._compute().ctx
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(80), bar_to(100)]),
("right", [bar_to(100), bar_from_to(80, 100), no_bar()]),
("mid", [bar_to(60), bar_from_to(60, 80), bar_from_to(60, 100)]),
("zero", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
("mean", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
(-0.0, [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
(np.nanmedian, [bar_to(50), no_bar(), bar_from_to(50, 62.5)]),
],
)
@pytest.mark.parametrize("nans", [True, False])
def test_align_mixed_cases(df_mix, align, exp, nans):
# test different align cases for mixed positive and negative values
# also test no impact of NaNs and no_bar
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
if nans:
df_mix.loc[3, :] = np.nan
expected.update({(3, 0): no_bar()})
result = df_mix.style.bar(align=align)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
(
"left",
{
"index": [[no_bar(), no_bar()], [bar_to(100), bar_to(100)]],
"columns": [[no_bar(), bar_to(100)], [no_bar(), bar_to(100)]],
"none": [[no_bar(), bar_to(33.33)], [bar_to(66.66), bar_to(100)]],
},
),
(
"mid",
{
"index": [[bar_to(33.33), bar_to(50)], [bar_to(100), bar_to(100)]],
"columns": [[bar_to(50), bar_to(100)], [bar_to(75), bar_to(100)]],
"none": [[bar_to(25), bar_to(50)], [bar_to(75), bar_to(100)]],
},
),
(
"zero",
{
"index": [
[bar_from_to(50, 66.66), bar_from_to(50, 75)],
[bar_from_to(50, 100), bar_from_to(50, 100)],
],
"columns": [
[bar_from_to(50, 75), bar_from_to(50, 100)],
[bar_from_to(50, 87.5), bar_from_to(50, 100)],
],
"none": [
[bar_from_to(50, 62.5), bar_from_to(50, 75)],
[bar_from_to(50, 87.5), bar_from_to(50, 100)],
],
},
),
(
2,
{
"index": [
[bar_to(50), no_bar()],
[bar_from_to(50, 100), bar_from_to(50, 100)],
],
"columns": [
[bar_to(50), no_bar()],
[bar_from_to(50, 75), bar_from_to(50, 100)],
],
"none": [
[bar_from_to(25, 50), no_bar()],
[bar_from_to(50, 75), bar_from_to(50, 100)],
],
},
),
],
)
@pytest.mark.parametrize("axis", ["index", "columns", "none"])
def test_align_axis(align, exp, axis):
# test all axis combinations with positive values and different aligns
data = DataFrame([[1, 2], [3, 4]])
result = (
data.style.bar(align=align, axis=None if axis == "none" else axis)
._compute()
.ctx
)
expected = {
(0, 0): exp[axis][0][0],
(0, 1): exp[axis][0][1],
(1, 0): exp[axis][1][0],
(1, 1): exp[axis][1][1],
}
assert result == expected
@pytest.mark.parametrize(
"values, vmin, vmax",
[
("positive", 1.5, 2.5),
("negative", -2.5, -1.5),
("mixed", -2.5, 1.5),
],
)
@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately
@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"])
def test_vmin_vmax_clipping(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align):
# test that clipping occurs if any vmin > data_values or vmax < data_values
if align == "mid": # mid acts as left or right in each case
if values == "positive":
align = "left"
elif values == "negative":
align = "right"
df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values]
vmin = None if nullify == "vmin" else vmin
vmax = None if nullify == "vmax" else vmax
clip_df = df.where(df <= (vmax if vmax else 999), other=vmax)
clip_df = clip_df.where(clip_df >= (vmin if vmin else -999), other=vmin)
result = (
df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"])
._compute()
.ctx
)
expected = clip_df.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"values, vmin, vmax",
[
("positive", 0.5, 4.5),
("negative", -4.5, -0.5),
("mixed", -4.5, 4.5),
],
)
@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately
@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"])
def test_vmin_vmax_widening(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align):
# test that widening occurs if any vmax > data_values or vmin < data_values
if align == "mid": # mid acts as left or right in each case
if values == "positive":
align = "left"
elif values == "negative":
align = "right"
df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values]
vmin = None if nullify == "vmin" else vmin
vmax = None if nullify == "vmax" else vmax
expand_df = df.copy()
expand_df.loc[3, :], expand_df.loc[4, :] = vmin, vmax
result = (
df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"])
._compute()
.ctx
)
expected = expand_df.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result.items() <= expected.items()
def test_numerics():
# test data is pre-selected for numeric values
data = DataFrame([[1, "a"], [2, "b"]])
result = data.style.bar()._compute().ctx
assert (0, 1) not in result
assert (1, 1) not in result
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(100, "green")]),
("right", [bar_to(100, "red"), no_bar()]),
("mid", [bar_to(25, "red"), bar_from_to(25, 100, "green")]),
("zero", [bar_from_to(33.33, 50, "red"), bar_from_to(50, 100, "green")]),
],
)
def test_colors_mixed(align, exp):
data = DataFrame([[-1], [3]])
result = data.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result == {(0, 0): exp[0], (1, 0): exp[1]}
def test_bar_align_height():
# test when keyword height is used 'no-repeat center' and 'background-size' present
data = DataFrame([[1], [2]])
result = data.style.bar(align="left", height=50)._compute().ctx
bg_s = "linear-gradient(90deg, #d65f5f 100.0%, transparent 100.0%) no-repeat center"
expected = {
(0, 0): [("width", "10em")],
(1, 0): [
("width", "10em"),
("background", bg_s),
("background-size", "100% 50.0%"),
],
}
assert result == expected
def test_bar_value_error_raises():
df = DataFrame({"A": [-100, -60, -30, -20]})
msg = "`align` should be in {'left', 'right', 'mid', 'mean', 'zero'} or"
with pytest.raises(ValueError, match=msg):
df.style.bar(align="poorly", color=["#d65f5f", "#5fba7d"]).to_html()
msg = r"`width` must be a value in \[0, 100\]"
with pytest.raises(ValueError, match=msg):
df.style.bar(width=200).to_html()
msg = r"`height` must be a value in \[0, 100\]"
with pytest.raises(ValueError, match=msg):
df.style.bar(height=200).to_html()
def test_bar_color_and_cmap_error_raises():
df = DataFrame({"A": [1, 2, 3, 4]})
msg = "`color` and `cmap` cannot both be given"
# Test that providing both color and cmap raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color="#d65f5f", cmap="viridis").to_html()
def test_bar_invalid_color_type_error_raises():
df = DataFrame({"A": [1, 2, 3, 4]})
msg = (
r"`color` must be string or list or tuple of 2 strings,"
r"\(eg: color=\['#d65f5f', '#5fba7d'\]\)"
)
# Test that providing an invalid color type raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color=123).to_html()
# Test that providing a color list with more than two elements raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color=["#d65f5f", "#5fba7d", "#abcdef"]).to_html()
def test_styler_bar_with_NA_values():
df1 = DataFrame({"A": [1, 2, NA, 4]})
df2 = DataFrame([[NA, NA], [NA, NA]])
expected_substring = "style type="
html_output1 = df1.style.bar(subset="A").to_html()
html_output2 = df2.style.bar(align="left", axis=None).to_html()
assert expected_substring in html_output1
assert expected_substring in html_output2
def test_style_bar_with_pyarrow_NA_values():
data = """name,age,test1,test2,teacher
Adam,15,95.0,80,Ashby
Bob,16,81.0,82,Ashby
Dave,16,89.0,84,Jones
Fred,15,,88,Jones"""
df = read_csv(io.StringIO(data), dtype_backend="pyarrow")
expected_substring = "style type="
html_output = df.style.bar(subset="test1").to_html()
assert expected_substring in html_output