Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,358 @@
import io
import numpy as np
import pytest
from pandas import (
NA,
DataFrame,
read_csv,
)
pytest.importorskip("jinja2")
def bar_grad(a=None, b=None, c=None, d=None):
"""Used in multiple tests to simplify formatting of expected result"""
ret = [("width", "10em")]
if all(x is None for x in [a, b, c, d]):
return ret
return ret + [
(
"background",
f"linear-gradient(90deg,{','.join([x for x in [a, b, c, d] if x])})",
)
]
def no_bar():
return bar_grad()
def bar_to(x, color="#d65f5f"):
return bar_grad(f" {color} {x:.1f}%", f" transparent {x:.1f}%")
def bar_from_to(x, y, color="#d65f5f"):
return bar_grad(
f" transparent {x:.1f}%",
f" {color} {x:.1f}%",
f" {color} {y:.1f}%",
f" transparent {y:.1f}%",
)
@pytest.fixture
def df_pos():
return DataFrame([[1], [2], [3]])
@pytest.fixture
def df_neg():
return DataFrame([[-1], [-2], [-3]])
@pytest.fixture
def df_mix():
return DataFrame([[-3], [1], [2]])
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(50), bar_to(100)]),
("right", [bar_to(100), bar_from_to(50, 100), no_bar()]),
("mid", [bar_to(33.33), bar_to(66.66), bar_to(100)]),
("zero", [bar_from_to(50, 66.7), bar_from_to(50, 83.3), bar_from_to(50, 100)]),
("mean", [bar_to(50), no_bar(), bar_from_to(50, 100)]),
(2.0, [bar_to(50), no_bar(), bar_from_to(50, 100)]),
(np.median, [bar_to(50), no_bar(), bar_from_to(50, 100)]),
],
)
def test_align_positive_cases(df_pos, align, exp):
# test different align cases for all positive values
result = df_pos.style.bar(align=align)._compute().ctx
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
("left", [bar_to(100), bar_to(50), no_bar()]),
("right", [no_bar(), bar_from_to(50, 100), bar_to(100)]),
("mid", [bar_from_to(66.66, 100), bar_from_to(33.33, 100), bar_to(100)]),
("zero", [bar_from_to(33.33, 50), bar_from_to(16.66, 50), bar_to(50)]),
("mean", [bar_from_to(50, 100), no_bar(), bar_to(50)]),
(-2.0, [bar_from_to(50, 100), no_bar(), bar_to(50)]),
(np.median, [bar_from_to(50, 100), no_bar(), bar_to(50)]),
],
)
def test_align_negative_cases(df_neg, align, exp):
# test different align cases for all negative values
result = df_neg.style.bar(align=align)._compute().ctx
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(80), bar_to(100)]),
("right", [bar_to(100), bar_from_to(80, 100), no_bar()]),
("mid", [bar_to(60), bar_from_to(60, 80), bar_from_to(60, 100)]),
("zero", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
("mean", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
(-0.0, [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
(np.nanmedian, [bar_to(50), no_bar(), bar_from_to(50, 62.5)]),
],
)
@pytest.mark.parametrize("nans", [True, False])
def test_align_mixed_cases(df_mix, align, exp, nans):
# test different align cases for mixed positive and negative values
# also test no impact of NaNs and no_bar
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
if nans:
df_mix.loc[3, :] = np.nan
expected.update({(3, 0): no_bar()})
result = df_mix.style.bar(align=align)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
(
"left",
{
"index": [[no_bar(), no_bar()], [bar_to(100), bar_to(100)]],
"columns": [[no_bar(), bar_to(100)], [no_bar(), bar_to(100)]],
"none": [[no_bar(), bar_to(33.33)], [bar_to(66.66), bar_to(100)]],
},
),
(
"mid",
{
"index": [[bar_to(33.33), bar_to(50)], [bar_to(100), bar_to(100)]],
"columns": [[bar_to(50), bar_to(100)], [bar_to(75), bar_to(100)]],
"none": [[bar_to(25), bar_to(50)], [bar_to(75), bar_to(100)]],
},
),
(
"zero",
{
"index": [
[bar_from_to(50, 66.66), bar_from_to(50, 75)],
[bar_from_to(50, 100), bar_from_to(50, 100)],
],
"columns": [
[bar_from_to(50, 75), bar_from_to(50, 100)],
[bar_from_to(50, 87.5), bar_from_to(50, 100)],
],
"none": [
[bar_from_to(50, 62.5), bar_from_to(50, 75)],
[bar_from_to(50, 87.5), bar_from_to(50, 100)],
],
},
),
(
2,
{
"index": [
[bar_to(50), no_bar()],
[bar_from_to(50, 100), bar_from_to(50, 100)],
],
"columns": [
[bar_to(50), no_bar()],
[bar_from_to(50, 75), bar_from_to(50, 100)],
],
"none": [
[bar_from_to(25, 50), no_bar()],
[bar_from_to(50, 75), bar_from_to(50, 100)],
],
},
),
],
)
@pytest.mark.parametrize("axis", ["index", "columns", "none"])
def test_align_axis(align, exp, axis):
# test all axis combinations with positive values and different aligns
data = DataFrame([[1, 2], [3, 4]])
result = (
data.style.bar(align=align, axis=None if axis == "none" else axis)
._compute()
.ctx
)
expected = {
(0, 0): exp[axis][0][0],
(0, 1): exp[axis][0][1],
(1, 0): exp[axis][1][0],
(1, 1): exp[axis][1][1],
}
assert result == expected
@pytest.mark.parametrize(
"values, vmin, vmax",
[
("positive", 1.5, 2.5),
("negative", -2.5, -1.5),
("mixed", -2.5, 1.5),
],
)
@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately
@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"])
def test_vmin_vmax_clipping(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align):
# test that clipping occurs if any vmin > data_values or vmax < data_values
if align == "mid": # mid acts as left or right in each case
if values == "positive":
align = "left"
elif values == "negative":
align = "right"
df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values]
vmin = None if nullify == "vmin" else vmin
vmax = None if nullify == "vmax" else vmax
clip_df = df.where(df <= (vmax if vmax else 999), other=vmax)
clip_df = clip_df.where(clip_df >= (vmin if vmin else -999), other=vmin)
result = (
df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"])
._compute()
.ctx
)
expected = clip_df.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"values, vmin, vmax",
[
("positive", 0.5, 4.5),
("negative", -4.5, -0.5),
("mixed", -4.5, 4.5),
],
)
@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately
@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"])
def test_vmin_vmax_widening(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align):
# test that widening occurs if any vmax > data_values or vmin < data_values
if align == "mid": # mid acts as left or right in each case
if values == "positive":
align = "left"
elif values == "negative":
align = "right"
df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values]
vmin = None if nullify == "vmin" else vmin
vmax = None if nullify == "vmax" else vmax
expand_df = df.copy()
expand_df.loc[3, :], expand_df.loc[4, :] = vmin, vmax
result = (
df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"])
._compute()
.ctx
)
expected = expand_df.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result.items() <= expected.items()
def test_numerics():
# test data is pre-selected for numeric values
data = DataFrame([[1, "a"], [2, "b"]])
result = data.style.bar()._compute().ctx
assert (0, 1) not in result
assert (1, 1) not in result
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(100, "green")]),
("right", [bar_to(100, "red"), no_bar()]),
("mid", [bar_to(25, "red"), bar_from_to(25, 100, "green")]),
("zero", [bar_from_to(33.33, 50, "red"), bar_from_to(50, 100, "green")]),
],
)
def test_colors_mixed(align, exp):
data = DataFrame([[-1], [3]])
result = data.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result == {(0, 0): exp[0], (1, 0): exp[1]}
def test_bar_align_height():
# test when keyword height is used 'no-repeat center' and 'background-size' present
data = DataFrame([[1], [2]])
result = data.style.bar(align="left", height=50)._compute().ctx
bg_s = "linear-gradient(90deg, #d65f5f 100.0%, transparent 100.0%) no-repeat center"
expected = {
(0, 0): [("width", "10em")],
(1, 0): [
("width", "10em"),
("background", bg_s),
("background-size", "100% 50.0%"),
],
}
assert result == expected
def test_bar_value_error_raises():
df = DataFrame({"A": [-100, -60, -30, -20]})
msg = "`align` should be in {'left', 'right', 'mid', 'mean', 'zero'} or"
with pytest.raises(ValueError, match=msg):
df.style.bar(align="poorly", color=["#d65f5f", "#5fba7d"]).to_html()
msg = r"`width` must be a value in \[0, 100\]"
with pytest.raises(ValueError, match=msg):
df.style.bar(width=200).to_html()
msg = r"`height` must be a value in \[0, 100\]"
with pytest.raises(ValueError, match=msg):
df.style.bar(height=200).to_html()
def test_bar_color_and_cmap_error_raises():
df = DataFrame({"A": [1, 2, 3, 4]})
msg = "`color` and `cmap` cannot both be given"
# Test that providing both color and cmap raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color="#d65f5f", cmap="viridis").to_html()
def test_bar_invalid_color_type_error_raises():
df = DataFrame({"A": [1, 2, 3, 4]})
msg = (
r"`color` must be string or list or tuple of 2 strings,"
r"\(eg: color=\['#d65f5f', '#5fba7d'\]\)"
)
# Test that providing an invalid color type raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color=123).to_html()
# Test that providing a color list with more than two elements raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color=["#d65f5f", "#5fba7d", "#abcdef"]).to_html()
def test_styler_bar_with_NA_values():
df1 = DataFrame({"A": [1, 2, NA, 4]})
df2 = DataFrame([[NA, NA], [NA, NA]])
expected_substring = "style type="
html_output1 = df1.style.bar(subset="A").to_html()
html_output2 = df2.style.bar(align="left", axis=None).to_html()
assert expected_substring in html_output1
assert expected_substring in html_output2
def test_style_bar_with_pyarrow_NA_values():
data = """name,age,test1,test2,teacher
Adam,15,95.0,80,Ashby
Bob,16,81.0,82,Ashby
Dave,16,89.0,84,Jones
Fred,15,,88,Jones"""
df = read_csv(io.StringIO(data), dtype_backend="pyarrow")
expected_substring = "style type="
html_output = df.style.bar(subset="test1").to_html()
assert expected_substring in html_output

View File

@ -0,0 +1,44 @@
import pytest
jinja2 = pytest.importorskip("jinja2")
from pandas import (
DataFrame,
MultiIndex,
)
from pandas.io.formats.style import Styler
@pytest.fixture
def df():
return DataFrame(
data=[[0, -0.609], [1, -1.228]],
columns=["A", "B"],
index=["x", "y"],
)
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0)
def test_concat_bad_columns(styler):
msg = "`other.data` must have same columns as `Styler.data"
with pytest.raises(ValueError, match=msg):
styler.concat(DataFrame([[1, 2]]).style)
def test_concat_bad_type(styler):
msg = "`other` must be of type `Styler`"
with pytest.raises(TypeError, match=msg):
styler.concat(DataFrame([[1, 2]]))
def test_concat_bad_index_levels(styler, df):
df = df.copy()
df.index = MultiIndex.from_tuples([(0, 0), (1, 1)])
msg = "number of index levels must be same in `other`"
with pytest.raises(ValueError, match=msg):
styler.concat(df.style)

View File

@ -0,0 +1,562 @@
import numpy as np
import pytest
from pandas import (
NA,
DataFrame,
IndexSlice,
MultiIndex,
NaT,
Timestamp,
option_context,
)
pytest.importorskip("jinja2")
from pandas.io.formats.style import Styler
from pandas.io.formats.style_render import _str_escape
@pytest.fixture
def df():
return DataFrame(
data=[[0, -0.609], [1, -1.228]],
columns=["A", "B"],
index=["x", "y"],
)
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0)
@pytest.fixture
def df_multi():
return DataFrame(
data=np.arange(16).reshape(4, 4),
columns=MultiIndex.from_product([["A", "B"], ["a", "b"]]),
index=MultiIndex.from_product([["X", "Y"], ["x", "y"]]),
)
@pytest.fixture
def styler_multi(df_multi):
return Styler(df_multi, uuid_len=0)
def test_display_format(styler):
ctx = styler.format("{:0.1f}")._translate(True, True)
assert all(["display_value" in c for c in row] for row in ctx["body"])
assert all([len(c["display_value"]) <= 3 for c in row[1:]] for row in ctx["body"])
assert len(ctx["body"][0][1]["display_value"].lstrip("-")) <= 3
@pytest.mark.parametrize("index", [True, False])
@pytest.mark.parametrize("columns", [True, False])
def test_display_format_index(styler, index, columns):
exp_index = ["x", "y"]
if index:
styler.format_index(lambda v: v.upper(), axis=0) # test callable
exp_index = ["X", "Y"]
exp_columns = ["A", "B"]
if columns:
styler.format_index("*{}*", axis=1) # test string
exp_columns = ["*A*", "*B*"]
ctx = styler._translate(True, True)
for r, row in enumerate(ctx["body"]):
assert row[0]["display_value"] == exp_index[r]
for c, col in enumerate(ctx["head"][1:]):
assert col["display_value"] == exp_columns[c]
def test_format_dict(styler):
ctx = styler.format({"A": "{:0.1f}", "B": "{0:.2%}"})._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "0.0"
assert ctx["body"][0][2]["display_value"] == "-60.90%"
def test_format_index_dict(styler):
ctx = styler.format_index({0: lambda v: v.upper()})._translate(True, True)
for i, val in enumerate(["X", "Y"]):
assert ctx["body"][i][0]["display_value"] == val
def test_format_string(styler):
ctx = styler.format("{:.2f}")._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "0.00"
assert ctx["body"][0][2]["display_value"] == "-0.61"
assert ctx["body"][1][1]["display_value"] == "1.00"
assert ctx["body"][1][2]["display_value"] == "-1.23"
def test_format_callable(styler):
ctx = styler.format(lambda v: "neg" if v < 0 else "pos")._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "pos"
assert ctx["body"][0][2]["display_value"] == "neg"
assert ctx["body"][1][1]["display_value"] == "pos"
assert ctx["body"][1][2]["display_value"] == "neg"
def test_format_with_na_rep():
# GH 21527 28358
df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"])
ctx = df.style.format(None, na_rep="-")._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "-"
assert ctx["body"][0][2]["display_value"] == "-"
ctx = df.style.format("{:.2%}", na_rep="-")._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "-"
assert ctx["body"][0][2]["display_value"] == "-"
assert ctx["body"][1][1]["display_value"] == "110.00%"
assert ctx["body"][1][2]["display_value"] == "120.00%"
ctx = df.style.format("{:.2%}", na_rep="-", subset=["B"])._translate(True, True)
assert ctx["body"][0][2]["display_value"] == "-"
assert ctx["body"][1][2]["display_value"] == "120.00%"
def test_format_index_with_na_rep():
df = DataFrame([[1, 2, 3, 4, 5]], columns=["A", None, np.nan, NaT, NA])
ctx = df.style.format_index(None, na_rep="--", axis=1)._translate(True, True)
assert ctx["head"][0][1]["display_value"] == "A"
for i in [2, 3, 4, 5]:
assert ctx["head"][0][i]["display_value"] == "--"
def test_format_non_numeric_na():
# GH 21527 28358
df = DataFrame(
{
"object": [None, np.nan, "foo"],
"datetime": [None, NaT, Timestamp("20120101")],
}
)
ctx = df.style.format(None, na_rep="-")._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "-"
assert ctx["body"][0][2]["display_value"] == "-"
assert ctx["body"][1][1]["display_value"] == "-"
assert ctx["body"][1][2]["display_value"] == "-"
@pytest.mark.parametrize(
"func, attr, kwargs",
[
("format", "_display_funcs", {}),
("format_index", "_display_funcs_index", {"axis": 0}),
("format_index", "_display_funcs_columns", {"axis": 1}),
],
)
def test_format_clear(styler, func, attr, kwargs):
assert (0, 0) not in getattr(styler, attr) # using default
getattr(styler, func)("{:.2f}", **kwargs)
assert (0, 0) in getattr(styler, attr) # formatter is specified
getattr(styler, func)(**kwargs)
assert (0, 0) not in getattr(styler, attr) # formatter cleared to default
@pytest.mark.parametrize(
"escape, exp",
[
("html", "&lt;&gt;&amp;&#34;%$#_{}~^\\~ ^ \\ "),
(
"latex",
'<>\\&"\\%\\$\\#\\_\\{\\}\\textasciitilde \\textasciicircum '
"\\textbackslash \\textasciitilde \\space \\textasciicircum \\space "
"\\textbackslash \\space ",
),
],
)
def test_format_escape_html(escape, exp):
chars = '<>&"%$#_{}~^\\~ ^ \\ '
df = DataFrame([[chars]])
s = Styler(df, uuid_len=0).format("&{0}&", escape=None)
expected = f'<td id="T__row0_col0" class="data row0 col0" >&{chars}&</td>'
assert expected in s.to_html()
# only the value should be escaped before passing to the formatter
s = Styler(df, uuid_len=0).format("&{0}&", escape=escape)
expected = f'<td id="T__row0_col0" class="data row0 col0" >&{exp}&</td>'
assert expected in s.to_html()
# also test format_index()
styler = Styler(DataFrame(columns=[chars]), uuid_len=0)
styler.format_index("&{0}&", escape=None, axis=1)
assert styler._translate(True, True)["head"][0][1]["display_value"] == f"&{chars}&"
styler.format_index("&{0}&", escape=escape, axis=1)
assert styler._translate(True, True)["head"][0][1]["display_value"] == f"&{exp}&"
@pytest.mark.parametrize(
"chars, expected",
[
(
r"$ \$&%#_{}~^\ $ &%#_{}~^\ $",
"".join(
[
r"$ \$&%#_{}~^\ $ ",
r"\&\%\#\_\{\}\textasciitilde \textasciicircum ",
r"\textbackslash \space \$",
]
),
),
(
r"\( &%#_{}~^\ \) &%#_{}~^\ \(",
"".join(
[
r"\( &%#_{}~^\ \) ",
r"\&\%\#\_\{\}\textasciitilde \textasciicircum ",
r"\textbackslash \space \textbackslash (",
]
),
),
(
r"$\&%#_{}^\$",
r"\$\textbackslash \&\%\#\_\{\}\textasciicircum \textbackslash \$",
),
(
r"$ \frac{1}{2} $ \( \frac{1}{2} \)",
"".join(
[
r"$ \frac{1}{2} $",
r" \textbackslash ( \textbackslash frac\{1\}\{2\} \textbackslash )",
]
),
),
],
)
def test_format_escape_latex_math(chars, expected):
# GH 51903
# latex-math escape works for each DataFrame cell separately. If we have
# a combination of dollar signs and brackets, the dollar sign would apply.
df = DataFrame([[chars]])
s = df.style.format("{0}", escape="latex-math")
assert s._translate(True, True)["body"][0][1]["display_value"] == expected
def test_format_escape_na_rep():
# tests the na_rep is not escaped
df = DataFrame([['<>&"', None]])
s = Styler(df, uuid_len=0).format("X&{0}>X", escape="html", na_rep="&")
ex = '<td id="T__row0_col0" class="data row0 col0" >X&&lt;&gt;&amp;&#34;>X</td>'
expected2 = '<td id="T__row0_col1" class="data row0 col1" >&</td>'
assert ex in s.to_html()
assert expected2 in s.to_html()
# also test for format_index()
df = DataFrame(columns=['<>&"', None])
styler = Styler(df, uuid_len=0)
styler.format_index("X&{0}>X", escape="html", na_rep="&", axis=1)
ctx = styler._translate(True, True)
assert ctx["head"][0][1]["display_value"] == "X&&lt;&gt;&amp;&#34;>X"
assert ctx["head"][0][2]["display_value"] == "&"
def test_format_escape_floats(styler):
# test given formatter for number format is not impacted by escape
s = styler.format("{:.1f}", escape="html")
for expected in [">0.0<", ">1.0<", ">-1.2<", ">-0.6<"]:
assert expected in s.to_html()
# tests precision of floats is not impacted by escape
s = styler.format(precision=1, escape="html")
for expected in [">0<", ">1<", ">-1.2<", ">-0.6<"]:
assert expected in s.to_html()
@pytest.mark.parametrize("formatter", [5, True, [2.0]])
@pytest.mark.parametrize("func", ["format", "format_index"])
def test_format_raises(styler, formatter, func):
with pytest.raises(TypeError, match="expected str or callable"):
getattr(styler, func)(formatter)
@pytest.mark.parametrize(
"precision, expected",
[
(1, ["1.0", "2.0", "3.2", "4.6"]),
(2, ["1.00", "2.01", "3.21", "4.57"]),
(3, ["1.000", "2.009", "3.212", "4.566"]),
],
)
def test_format_with_precision(precision, expected):
# Issue #13257
df = DataFrame([[1.0, 2.0090, 3.2121, 4.566]], columns=[1.0, 2.0090, 3.2121, 4.566])
styler = Styler(df)
styler.format(precision=precision)
styler.format_index(precision=precision, axis=1)
ctx = styler._translate(True, True)
for col, exp in enumerate(expected):
assert ctx["body"][0][col + 1]["display_value"] == exp # format test
assert ctx["head"][0][col + 1]["display_value"] == exp # format_index test
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize(
"level, expected",
[
(0, ["X", "X", "_", "_"]), # level int
("zero", ["X", "X", "_", "_"]), # level name
(1, ["_", "_", "X", "X"]), # other level int
("one", ["_", "_", "X", "X"]), # other level name
([0, 1], ["X", "X", "X", "X"]), # both levels
([0, "zero"], ["X", "X", "_", "_"]), # level int and name simultaneous
([0, "one"], ["X", "X", "X", "X"]), # both levels as int and name
(["one", "zero"], ["X", "X", "X", "X"]), # both level names, reversed
],
)
def test_format_index_level(axis, level, expected):
midx = MultiIndex.from_arrays([["_", "_"], ["_", "_"]], names=["zero", "one"])
df = DataFrame([[1, 2], [3, 4]])
if axis == 0:
df.index = midx
else:
df.columns = midx
styler = df.style.format_index(lambda v: "X", level=level, axis=axis)
ctx = styler._translate(True, True)
if axis == 0: # compare index
result = [ctx["body"][s][0]["display_value"] for s in range(2)]
result += [ctx["body"][s][1]["display_value"] for s in range(2)]
else: # compare columns
result = [ctx["head"][0][s + 1]["display_value"] for s in range(2)]
result += [ctx["head"][1][s + 1]["display_value"] for s in range(2)]
assert expected == result
def test_format_subset():
df = DataFrame([[0.1234, 0.1234], [1.1234, 1.1234]], columns=["a", "b"])
ctx = df.style.format(
{"a": "{:0.1f}", "b": "{0:.2%}"}, subset=IndexSlice[0, :]
)._translate(True, True)
expected = "0.1"
raw_11 = "1.123400"
assert ctx["body"][0][1]["display_value"] == expected
assert ctx["body"][1][1]["display_value"] == raw_11
assert ctx["body"][0][2]["display_value"] == "12.34%"
ctx = df.style.format("{:0.1f}", subset=IndexSlice[0, :])._translate(True, True)
assert ctx["body"][0][1]["display_value"] == expected
assert ctx["body"][1][1]["display_value"] == raw_11
ctx = df.style.format("{:0.1f}", subset=IndexSlice["a"])._translate(True, True)
assert ctx["body"][0][1]["display_value"] == expected
assert ctx["body"][0][2]["display_value"] == "0.123400"
ctx = df.style.format("{:0.1f}", subset=IndexSlice[0, "a"])._translate(True, True)
assert ctx["body"][0][1]["display_value"] == expected
assert ctx["body"][1][1]["display_value"] == raw_11
ctx = df.style.format("{:0.1f}", subset=IndexSlice[[0, 1], ["a"]])._translate(
True, True
)
assert ctx["body"][0][1]["display_value"] == expected
assert ctx["body"][1][1]["display_value"] == "1.1"
assert ctx["body"][0][2]["display_value"] == "0.123400"
assert ctx["body"][1][2]["display_value"] == raw_11
@pytest.mark.parametrize("formatter", [None, "{:,.1f}"])
@pytest.mark.parametrize("decimal", [".", "*"])
@pytest.mark.parametrize("precision", [None, 2])
@pytest.mark.parametrize("func, col", [("format", 1), ("format_index", 0)])
def test_format_thousands(formatter, decimal, precision, func, col):
styler = DataFrame([[1000000.123456789]], index=[1000000.123456789]).style
result = getattr(styler, func)( # testing float
thousands="_", formatter=formatter, decimal=decimal, precision=precision
)._translate(True, True)
assert "1_000_000" in result["body"][0][col]["display_value"]
styler = DataFrame([[1000000]], index=[1000000]).style
result = getattr(styler, func)( # testing int
thousands="_", formatter=formatter, decimal=decimal, precision=precision
)._translate(True, True)
assert "1_000_000" in result["body"][0][col]["display_value"]
styler = DataFrame([[1 + 1000000.123456789j]], index=[1 + 1000000.123456789j]).style
result = getattr(styler, func)( # testing complex
thousands="_", formatter=formatter, decimal=decimal, precision=precision
)._translate(True, True)
assert "1_000_000" in result["body"][0][col]["display_value"]
@pytest.mark.parametrize("formatter", [None, "{:,.4f}"])
@pytest.mark.parametrize("thousands", [None, ",", "*"])
@pytest.mark.parametrize("precision", [None, 4])
@pytest.mark.parametrize("func, col", [("format", 1), ("format_index", 0)])
def test_format_decimal(formatter, thousands, precision, func, col):
styler = DataFrame([[1000000.123456789]], index=[1000000.123456789]).style
result = getattr(styler, func)( # testing float
decimal="_", formatter=formatter, thousands=thousands, precision=precision
)._translate(True, True)
assert "000_123" in result["body"][0][col]["display_value"]
styler = DataFrame([[1 + 1000000.123456789j]], index=[1 + 1000000.123456789j]).style
result = getattr(styler, func)( # testing complex
decimal="_", formatter=formatter, thousands=thousands, precision=precision
)._translate(True, True)
assert "000_123" in result["body"][0][col]["display_value"]
def test_str_escape_error():
msg = "`escape` only permitted in {'html', 'latex', 'latex-math'}, got "
with pytest.raises(ValueError, match=msg):
_str_escape("text", "bad_escape")
with pytest.raises(ValueError, match=msg):
_str_escape("text", [])
_str_escape(2.00, "bad_escape") # OK since dtype is float
def test_long_int_formatting():
df = DataFrame(data=[[1234567890123456789]], columns=["test"])
styler = df.style
ctx = styler._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "1234567890123456789"
styler = df.style.format(thousands="_")
ctx = styler._translate(True, True)
assert ctx["body"][0][1]["display_value"] == "1_234_567_890_123_456_789"
def test_format_options():
df = DataFrame({"int": [2000, 1], "float": [1.009, None], "str": ["&<", "&~"]})
ctx = df.style._translate(True, True)
# test option: na_rep
assert ctx["body"][1][2]["display_value"] == "nan"
with option_context("styler.format.na_rep", "MISSING"):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][1][2]["display_value"] == "MISSING"
# test option: decimal and precision
assert ctx["body"][0][2]["display_value"] == "1.009000"
with option_context("styler.format.decimal", "_"):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][0][2]["display_value"] == "1_009000"
with option_context("styler.format.precision", 2):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][0][2]["display_value"] == "1.01"
# test option: thousands
assert ctx["body"][0][1]["display_value"] == "2000"
with option_context("styler.format.thousands", "_"):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][0][1]["display_value"] == "2_000"
# test option: escape
assert ctx["body"][0][3]["display_value"] == "&<"
assert ctx["body"][1][3]["display_value"] == "&~"
with option_context("styler.format.escape", "html"):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][0][3]["display_value"] == "&amp;&lt;"
with option_context("styler.format.escape", "latex"):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][1][3]["display_value"] == "\\&\\textasciitilde "
with option_context("styler.format.escape", "latex-math"):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][1][3]["display_value"] == "\\&\\textasciitilde "
# test option: formatter
with option_context("styler.format.formatter", {"int": "{:,.2f}"}):
ctx_with_op = df.style._translate(True, True)
assert ctx_with_op["body"][0][1]["display_value"] == "2,000.00"
def test_precision_zero(df):
styler = Styler(df, precision=0)
ctx = styler._translate(True, True)
assert ctx["body"][0][2]["display_value"] == "-1"
assert ctx["body"][1][2]["display_value"] == "-1"
@pytest.mark.parametrize(
"formatter, exp",
[
(lambda x: f"{x:.3f}", "9.000"),
("{:.2f}", "9.00"),
({0: "{:.1f}"}, "9.0"),
(None, "9"),
],
)
def test_formatter_options_validator(formatter, exp):
df = DataFrame([[9]])
with option_context("styler.format.formatter", formatter):
assert f" {exp} " in df.style.to_latex()
def test_formatter_options_raises():
msg = "Value must be an instance of"
with pytest.raises(ValueError, match=msg):
with option_context("styler.format.formatter", ["bad", "type"]):
DataFrame().style.to_latex()
def test_1level_multiindex():
# GH 43383
midx = MultiIndex.from_product([[1, 2]], names=[""])
df = DataFrame(-1, index=midx, columns=[0, 1])
ctx = df.style._translate(True, True)
assert ctx["body"][0][0]["display_value"] == "1"
assert ctx["body"][0][0]["is_visible"] is True
assert ctx["body"][1][0]["display_value"] == "2"
assert ctx["body"][1][0]["is_visible"] is True
def test_boolean_format():
# gh 46384: booleans do not collapse to integer representation on display
df = DataFrame([[True, False]])
ctx = df.style._translate(True, True)
assert ctx["body"][0][1]["display_value"] is True
assert ctx["body"][0][2]["display_value"] is False
@pytest.mark.parametrize(
"hide, labels",
[
(False, [1, 2]),
(True, [1, 2, 3, 4]),
],
)
def test_relabel_raise_length(styler_multi, hide, labels):
if hide:
styler_multi.hide(axis=0, subset=[("X", "x"), ("Y", "y")])
with pytest.raises(ValueError, match="``labels`` must be of length equal"):
styler_multi.relabel_index(labels=labels)
def test_relabel_index(styler_multi):
labels = [(1, 2), (3, 4)]
styler_multi.hide(axis=0, subset=[("X", "x"), ("Y", "y")])
styler_multi.relabel_index(labels=labels)
ctx = styler_multi._translate(True, True)
assert {"value": "X", "display_value": 1}.items() <= ctx["body"][0][0].items()
assert {"value": "y", "display_value": 2}.items() <= ctx["body"][0][1].items()
assert {"value": "Y", "display_value": 3}.items() <= ctx["body"][1][0].items()
assert {"value": "x", "display_value": 4}.items() <= ctx["body"][1][1].items()
def test_relabel_columns(styler_multi):
labels = [(1, 2), (3, 4)]
styler_multi.hide(axis=1, subset=[("A", "a"), ("B", "b")])
styler_multi.relabel_index(axis=1, labels=labels)
ctx = styler_multi._translate(True, True)
assert {"value": "A", "display_value": 1}.items() <= ctx["head"][0][3].items()
assert {"value": "B", "display_value": 3}.items() <= ctx["head"][0][4].items()
assert {"value": "b", "display_value": 2}.items() <= ctx["head"][1][3].items()
assert {"value": "a", "display_value": 4}.items() <= ctx["head"][1][4].items()
def test_relabel_roundtrip(styler):
styler.relabel_index(["{}", "{}"])
ctx = styler._translate(True, True)
assert {"value": "x", "display_value": "x"}.items() <= ctx["body"][0][0].items()
assert {"value": "y", "display_value": "y"}.items() <= ctx["body"][1][0].items()

View File

@ -0,0 +1,218 @@
import numpy as np
import pytest
from pandas import (
NA,
DataFrame,
IndexSlice,
)
pytest.importorskip("jinja2")
from pandas.io.formats.style import Styler
@pytest.fixture(params=[(None, "float64"), (NA, "Int64")])
def df(request):
# GH 45804
return DataFrame(
{"A": [0, np.nan, 10], "B": [1, request.param[0], 2]}, dtype=request.param[1]
)
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0)
def test_highlight_null(styler):
result = styler.highlight_null()._compute().ctx
expected = {
(1, 0): [("background-color", "red")],
(1, 1): [("background-color", "red")],
}
assert result == expected
def test_highlight_null_subset(styler):
# GH 31345
result = (
styler.highlight_null(color="red", subset=["A"])
.highlight_null(color="green", subset=["B"])
._compute()
.ctx
)
expected = {
(1, 0): [("background-color", "red")],
(1, 1): [("background-color", "green")],
}
assert result == expected
@pytest.mark.parametrize("f", ["highlight_min", "highlight_max"])
def test_highlight_minmax_basic(df, f):
expected = {
(0, 1): [("background-color", "red")],
# ignores NaN row,
(2, 0): [("background-color", "red")],
}
if f == "highlight_min":
df = -df
result = getattr(df.style, f)(axis=1, color="red")._compute().ctx
assert result == expected
@pytest.mark.parametrize("f", ["highlight_min", "highlight_max"])
@pytest.mark.parametrize(
"kwargs",
[
{"axis": None, "color": "red"}, # test axis
{"axis": 0, "subset": ["A"], "color": "red"}, # test subset and ignores NaN
{"axis": None, "props": "background-color: red"}, # test props
],
)
def test_highlight_minmax_ext(df, f, kwargs):
expected = {(2, 0): [("background-color", "red")]}
if f == "highlight_min":
df = -df
result = getattr(df.style, f)(**kwargs)._compute().ctx
assert result == expected
@pytest.mark.parametrize("f", ["highlight_min", "highlight_max"])
@pytest.mark.parametrize("axis", [None, 0, 1])
def test_highlight_minmax_nulls(f, axis):
# GH 42750
expected = {
(1, 0): [("background-color", "yellow")],
(1, 1): [("background-color", "yellow")],
}
if axis == 1:
expected.update({(2, 1): [("background-color", "yellow")]})
if f == "highlight_max":
df = DataFrame({"a": [NA, 1, None], "b": [np.nan, 1, -1]})
else:
df = DataFrame({"a": [NA, -1, None], "b": [np.nan, -1, 1]})
result = getattr(df.style, f)(axis=axis)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"kwargs",
[
{"left": 0, "right": 1}, # test basic range
{"left": 0, "right": 1, "props": "background-color: yellow"}, # test props
{"left": -100, "right": 100, "subset": IndexSlice[[0, 1], :]}, # test subset
{"left": 0, "subset": IndexSlice[[0, 1], :]}, # test no right
{"right": 1}, # test no left
{"left": [0, 0, 11], "axis": 0}, # test left as sequence
{"left": DataFrame({"A": [0, 0, 11], "B": [1, 1, 11]}), "axis": None}, # axis
{"left": 0, "right": [0, 1], "axis": 1}, # test sequence right
],
)
def test_highlight_between(styler, kwargs):
expected = {
(0, 0): [("background-color", "yellow")],
(0, 1): [("background-color", "yellow")],
}
result = styler.highlight_between(**kwargs)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"arg, map, axis",
[
("left", [1, 2], 0), # 0 axis has 3 elements not 2
("left", [1, 2, 3], 1), # 1 axis has 2 elements not 3
("left", np.array([[1, 2], [1, 2]]), None), # df is (2,3) not (2,2)
("right", [1, 2], 0), # same tests as above for 'right' not 'left'
("right", [1, 2, 3], 1), # ..
("right", np.array([[1, 2], [1, 2]]), None), # ..
],
)
def test_highlight_between_raises(arg, styler, map, axis):
msg = f"supplied '{arg}' is not correct shape"
with pytest.raises(ValueError, match=msg):
styler.highlight_between(**{arg: map, "axis": axis})._compute()
def test_highlight_between_raises2(styler):
msg = "values can be 'both', 'left', 'right', or 'neither'"
with pytest.raises(ValueError, match=msg):
styler.highlight_between(inclusive="badstring")._compute()
with pytest.raises(ValueError, match=msg):
styler.highlight_between(inclusive=1)._compute()
@pytest.mark.parametrize(
"inclusive, expected",
[
(
"both",
{
(0, 0): [("background-color", "yellow")],
(0, 1): [("background-color", "yellow")],
},
),
("neither", {}),
("left", {(0, 0): [("background-color", "yellow")]}),
("right", {(0, 1): [("background-color", "yellow")]}),
],
)
def test_highlight_between_inclusive(styler, inclusive, expected):
kwargs = {"left": 0, "right": 1, "subset": IndexSlice[[0, 1], :]}
result = styler.highlight_between(**kwargs, inclusive=inclusive)._compute()
assert result.ctx == expected
@pytest.mark.parametrize(
"kwargs",
[
{"q_left": 0.5, "q_right": 1, "axis": 0}, # base case
{"q_left": 0.5, "q_right": 1, "axis": None}, # test axis
{"q_left": 0, "q_right": 1, "subset": IndexSlice[2, :]}, # test subset
{"q_left": 0.5, "axis": 0}, # test no high
{"q_right": 1, "subset": IndexSlice[2, :], "axis": 1}, # test no low
{"q_left": 0.5, "axis": 0, "props": "background-color: yellow"}, # tst prop
],
)
def test_highlight_quantile(styler, kwargs):
expected = {
(2, 0): [("background-color", "yellow")],
(2, 1): [("background-color", "yellow")],
}
result = styler.highlight_quantile(**kwargs)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"f,kwargs",
[
("highlight_min", {"axis": 1, "subset": IndexSlice[1, :]}),
("highlight_max", {"axis": 0, "subset": [0]}),
("highlight_quantile", {"axis": None, "q_left": 0.6, "q_right": 0.8}),
("highlight_between", {"subset": [0]}),
],
)
@pytest.mark.parametrize(
"df",
[
DataFrame([[0, 10], [20, 30]], dtype=int),
DataFrame([[0, 10], [20, 30]], dtype=float),
DataFrame([[0, 10], [20, 30]], dtype="datetime64[ns]"),
DataFrame([[0, 10], [20, 30]], dtype=str),
DataFrame([[0, 10], [20, 30]], dtype="timedelta64[ns]"),
],
)
def test_all_highlight_dtypes(f, kwargs, df):
if f == "highlight_quantile" and isinstance(df.iloc[0, 0], (str)):
return None # quantile incompatible with str
if f == "highlight_between":
kwargs["left"] = df.iloc[1, 0] # set the range low for testing
expected = {(1, 0): [("background-color", "yellow")]}
result = getattr(df.style, f)(**kwargs)._compute().ctx
assert result == expected

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,335 @@
import gc
import numpy as np
import pytest
from pandas import (
DataFrame,
IndexSlice,
Series,
)
pytest.importorskip("matplotlib")
pytest.importorskip("jinja2")
import matplotlib as mpl
from pandas.io.formats.style import Styler
@pytest.fixture(autouse=True)
def mpl_cleanup():
# matplotlib/testing/decorators.py#L24
# 1) Resets units registry
# 2) Resets rc_context
# 3) Closes all figures
mpl = pytest.importorskip("matplotlib")
mpl_units = pytest.importorskip("matplotlib.units")
plt = pytest.importorskip("matplotlib.pyplot")
orig_units_registry = mpl_units.registry.copy()
with mpl.rc_context():
mpl.use("template")
yield
mpl_units.registry.clear()
mpl_units.registry.update(orig_units_registry)
plt.close("all")
# https://matplotlib.org/stable/users/prev_whats_new/whats_new_3.6.0.html#garbage-collection-is-no-longer-run-on-figure-close # noqa: E501
gc.collect(1)
@pytest.fixture
def df():
return DataFrame([[1, 2], [2, 4]], columns=["A", "B"])
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0)
@pytest.fixture
def df_blank():
return DataFrame([[0, 0], [0, 0]], columns=["A", "B"], index=["X", "Y"])
@pytest.fixture
def styler_blank(df_blank):
return Styler(df_blank, uuid_len=0)
@pytest.mark.parametrize("f", ["background_gradient", "text_gradient"])
def test_function_gradient(styler, f):
for c_map in [None, "YlOrRd"]:
result = getattr(styler, f)(cmap=c_map)._compute().ctx
assert all("#" in x[0][1] for x in result.values())
assert result[(0, 0)] == result[(0, 1)]
assert result[(1, 0)] == result[(1, 1)]
@pytest.mark.parametrize("f", ["background_gradient", "text_gradient"])
def test_background_gradient_color(styler, f):
result = getattr(styler, f)(subset=IndexSlice[1, "A"])._compute().ctx
if f == "background_gradient":
assert result[(1, 0)] == [("background-color", "#fff7fb"), ("color", "#000000")]
elif f == "text_gradient":
assert result[(1, 0)] == [("color", "#fff7fb")]
@pytest.mark.parametrize(
"axis, expected",
[
(0, ["low", "low", "high", "high"]),
(1, ["low", "high", "low", "high"]),
(None, ["low", "mid", "mid", "high"]),
],
)
@pytest.mark.parametrize("f", ["background_gradient", "text_gradient"])
def test_background_gradient_axis(styler, axis, expected, f):
if f == "background_gradient":
colors = {
"low": [("background-color", "#f7fbff"), ("color", "#000000")],
"mid": [("background-color", "#abd0e6"), ("color", "#000000")],
"high": [("background-color", "#08306b"), ("color", "#f1f1f1")],
}
elif f == "text_gradient":
colors = {
"low": [("color", "#f7fbff")],
"mid": [("color", "#abd0e6")],
"high": [("color", "#08306b")],
}
result = getattr(styler, f)(cmap="Blues", axis=axis)._compute().ctx
for i, cell in enumerate([(0, 0), (0, 1), (1, 0), (1, 1)]):
assert result[cell] == colors[expected[i]]
@pytest.mark.parametrize(
"cmap, expected",
[
(
"PuBu",
{
(4, 5): [("background-color", "#86b0d3"), ("color", "#000000")],
(4, 6): [("background-color", "#83afd3"), ("color", "#f1f1f1")],
},
),
(
"YlOrRd",
{
(4, 8): [("background-color", "#fd913e"), ("color", "#000000")],
(4, 9): [("background-color", "#fd8f3d"), ("color", "#f1f1f1")],
},
),
(
None,
{
(7, 0): [("background-color", "#48c16e"), ("color", "#f1f1f1")],
(7, 1): [("background-color", "#4cc26c"), ("color", "#000000")],
},
),
],
)
def test_text_color_threshold(cmap, expected):
# GH 39888
df = DataFrame(np.arange(100).reshape(10, 10))
result = df.style.background_gradient(cmap=cmap, axis=None)._compute().ctx
for k in expected.keys():
assert result[k] == expected[k]
def test_background_gradient_vmin_vmax():
# GH 12145
df = DataFrame(range(5))
ctx = df.style.background_gradient(vmin=1, vmax=3)._compute().ctx
assert ctx[(0, 0)] == ctx[(1, 0)]
assert ctx[(4, 0)] == ctx[(3, 0)]
def test_background_gradient_int64():
# GH 28869
df1 = Series(range(3)).to_frame()
df2 = Series(range(3), dtype="Int64").to_frame()
ctx1 = df1.style.background_gradient()._compute().ctx
ctx2 = df2.style.background_gradient()._compute().ctx
assert ctx2[(0, 0)] == ctx1[(0, 0)]
assert ctx2[(1, 0)] == ctx1[(1, 0)]
assert ctx2[(2, 0)] == ctx1[(2, 0)]
@pytest.mark.parametrize(
"axis, gmap, expected",
[
(
0,
[1, 2],
{
(0, 0): [("background-color", "#fff7fb"), ("color", "#000000")],
(1, 0): [("background-color", "#023858"), ("color", "#f1f1f1")],
(0, 1): [("background-color", "#fff7fb"), ("color", "#000000")],
(1, 1): [("background-color", "#023858"), ("color", "#f1f1f1")],
},
),
(
1,
[1, 2],
{
(0, 0): [("background-color", "#fff7fb"), ("color", "#000000")],
(1, 0): [("background-color", "#fff7fb"), ("color", "#000000")],
(0, 1): [("background-color", "#023858"), ("color", "#f1f1f1")],
(1, 1): [("background-color", "#023858"), ("color", "#f1f1f1")],
},
),
(
None,
np.array([[2, 1], [1, 2]]),
{
(0, 0): [("background-color", "#023858"), ("color", "#f1f1f1")],
(1, 0): [("background-color", "#fff7fb"), ("color", "#000000")],
(0, 1): [("background-color", "#fff7fb"), ("color", "#000000")],
(1, 1): [("background-color", "#023858"), ("color", "#f1f1f1")],
},
),
],
)
def test_background_gradient_gmap_array(styler_blank, axis, gmap, expected):
# tests when gmap is given as a sequence and converted to ndarray
result = styler_blank.background_gradient(axis=axis, gmap=gmap)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"gmap, axis", [([1, 2, 3], 0), ([1, 2], 1), (np.array([[1, 2], [1, 2]]), None)]
)
def test_background_gradient_gmap_array_raises(gmap, axis):
# test when gmap as converted ndarray is bad shape
df = DataFrame([[0, 0, 0], [0, 0, 0]])
msg = "supplied 'gmap' is not correct shape"
with pytest.raises(ValueError, match=msg):
df.style.background_gradient(gmap=gmap, axis=axis)._compute()
@pytest.mark.parametrize(
"gmap",
[
DataFrame( # reverse the columns
[[2, 1], [1, 2]], columns=["B", "A"], index=["X", "Y"]
),
DataFrame( # reverse the index
[[2, 1], [1, 2]], columns=["A", "B"], index=["Y", "X"]
),
DataFrame( # reverse the index and columns
[[1, 2], [2, 1]], columns=["B", "A"], index=["Y", "X"]
),
DataFrame( # add unnecessary columns
[[1, 2, 3], [2, 1, 3]], columns=["A", "B", "C"], index=["X", "Y"]
),
DataFrame( # add unnecessary index
[[1, 2], [2, 1], [3, 3]], columns=["A", "B"], index=["X", "Y", "Z"]
),
],
)
@pytest.mark.parametrize(
"subset, exp_gmap", # exp_gmap is underlying map DataFrame should conform to
[
(None, [[1, 2], [2, 1]]),
(["A"], [[1], [2]]), # slice only column "A" in data and gmap
(["B", "A"], [[2, 1], [1, 2]]), # reverse the columns in data
(IndexSlice["X", :], [[1, 2]]), # slice only index "X" in data and gmap
(IndexSlice[["Y", "X"], :], [[2, 1], [1, 2]]), # reverse the index in data
],
)
def test_background_gradient_gmap_dataframe_align(styler_blank, gmap, subset, exp_gmap):
# test gmap given as DataFrame that it aligns to the data including subset
expected = styler_blank.background_gradient(axis=None, gmap=exp_gmap, subset=subset)
result = styler_blank.background_gradient(axis=None, gmap=gmap, subset=subset)
assert expected._compute().ctx == result._compute().ctx
@pytest.mark.parametrize(
"gmap, axis, exp_gmap",
[
(Series([2, 1], index=["Y", "X"]), 0, [[1, 1], [2, 2]]), # revrse the index
(Series([2, 1], index=["B", "A"]), 1, [[1, 2], [1, 2]]), # revrse the cols
(Series([1, 2, 3], index=["X", "Y", "Z"]), 0, [[1, 1], [2, 2]]), # add idx
(Series([1, 2, 3], index=["A", "B", "C"]), 1, [[1, 2], [1, 2]]), # add col
],
)
def test_background_gradient_gmap_series_align(styler_blank, gmap, axis, exp_gmap):
# test gmap given as Series that it aligns to the data including subset
expected = styler_blank.background_gradient(axis=None, gmap=exp_gmap)._compute()
result = styler_blank.background_gradient(axis=axis, gmap=gmap)._compute()
assert expected.ctx == result.ctx
@pytest.mark.parametrize(
"gmap, axis",
[
(DataFrame([[1, 2], [2, 1]], columns=["A", "B"], index=["X", "Y"]), 1),
(DataFrame([[1, 2], [2, 1]], columns=["A", "B"], index=["X", "Y"]), 0),
],
)
def test_background_gradient_gmap_wrong_dataframe(styler_blank, gmap, axis):
# test giving a gmap in DataFrame but with wrong axis
msg = "'gmap' is a DataFrame but underlying data for operations is a Series"
with pytest.raises(ValueError, match=msg):
styler_blank.background_gradient(gmap=gmap, axis=axis)._compute()
def test_background_gradient_gmap_wrong_series(styler_blank):
# test giving a gmap in Series form but with wrong axis
msg = "'gmap' is a Series but underlying data for operations is a DataFrame"
gmap = Series([1, 2], index=["X", "Y"])
with pytest.raises(ValueError, match=msg):
styler_blank.background_gradient(gmap=gmap, axis=None)._compute()
def test_background_gradient_nullable_dtypes():
# GH 50712
df1 = DataFrame([[1], [0], [np.nan]], dtype=float)
df2 = DataFrame([[1], [0], [None]], dtype="Int64")
ctx1 = df1.style.background_gradient()._compute().ctx
ctx2 = df2.style.background_gradient()._compute().ctx
assert ctx1 == ctx2
@pytest.mark.parametrize(
"cmap",
["PuBu", mpl.colormaps["PuBu"]],
)
def test_bar_colormap(cmap):
data = DataFrame([[1, 2], [3, 4]])
ctx = data.style.bar(cmap=cmap, axis=None)._compute().ctx
pubu_colors = {
(0, 0): "#d0d1e6",
(1, 0): "#056faf",
(0, 1): "#73a9cf",
(1, 1): "#023858",
}
for k, v in pubu_colors.items():
assert v in ctx[k][1][1]
def test_bar_color_raises(df):
msg = "`color` must be string or list or tuple of 2 strings"
with pytest.raises(ValueError, match=msg):
df.style.bar(color={"a", "b"}).to_html()
with pytest.raises(ValueError, match=msg):
df.style.bar(color=["a", "b", "c"]).to_html()
msg = "`color` and `cmap` cannot both be given"
with pytest.raises(ValueError, match=msg):
df.style.bar(color="something", cmap="something else").to_html()
@pytest.mark.parametrize(
"plot_method",
["scatter", "hexbin"],
)
def test_pass_colormap_instance(df, plot_method):
# https://github.com/pandas-dev/pandas/issues/49374
cmap = mpl.colors.ListedColormap([[1, 1, 1], [0, 0, 0]])
df["c"] = df.A + df.B
kwargs = {"x": "A", "y": "B", "c": "c", "colormap": cmap}
if plot_method == "hexbin":
kwargs["C"] = kwargs.pop("c")
getattr(df.plot, plot_method)(**kwargs)

View File

@ -0,0 +1,140 @@
from textwrap import dedent
import pytest
from pandas import (
DataFrame,
IndexSlice,
)
pytest.importorskip("jinja2")
from pandas.io.formats.style import Styler
@pytest.fixture
def df():
return DataFrame(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
index=["i", "j", "j"],
columns=["c", "d", "d"],
dtype=float,
)
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0)
def test_format_non_unique(df):
# GH 41269
# test dict
html = df.style.format({"d": "{:.1f}"}).to_html()
for val in ["1.000000<", "4.000000<", "7.000000<"]:
assert val in html
for val in ["2.0<", "3.0<", "5.0<", "6.0<", "8.0<", "9.0<"]:
assert val in html
# test subset
html = df.style.format(precision=1, subset=IndexSlice["j", "d"]).to_html()
for val in ["1.000000<", "4.000000<", "7.000000<", "2.000000<", "3.000000<"]:
assert val in html
for val in ["5.0<", "6.0<", "8.0<", "9.0<"]:
assert val in html
@pytest.mark.parametrize("func", ["apply", "map"])
def test_apply_map_non_unique_raises(df, func):
# GH 41269
if func == "apply":
op = lambda s: ["color: red;"] * len(s)
else:
op = lambda v: "color: red;"
with pytest.raises(KeyError, match="`Styler.apply` and `.map` are not"):
getattr(df.style, func)(op)._compute()
def test_table_styles_dict_non_unique_index(styler):
styles = styler.set_table_styles(
{"j": [{"selector": "td", "props": "a: v;"}]}, axis=1
).table_styles
assert styles == [
{"selector": "td.row1", "props": [("a", "v")]},
{"selector": "td.row2", "props": [("a", "v")]},
]
def test_table_styles_dict_non_unique_columns(styler):
styles = styler.set_table_styles(
{"d": [{"selector": "td", "props": "a: v;"}]}, axis=0
).table_styles
assert styles == [
{"selector": "td.col1", "props": [("a", "v")]},
{"selector": "td.col2", "props": [("a", "v")]},
]
def test_tooltips_non_unique_raises(styler):
# ttips has unique keys
ttips = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "b"])
styler.set_tooltips(ttips=ttips) # OK
# ttips has non-unique columns
ttips = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "c"], index=["a", "b"])
with pytest.raises(KeyError, match="Tooltips render only if `ttips` has unique"):
styler.set_tooltips(ttips=ttips)
# ttips has non-unique index
ttips = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "a"])
with pytest.raises(KeyError, match="Tooltips render only if `ttips` has unique"):
styler.set_tooltips(ttips=ttips)
def test_set_td_classes_non_unique_raises(styler):
# classes has unique keys
classes = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "b"])
styler.set_td_classes(classes=classes) # OK
# classes has non-unique columns
classes = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "c"], index=["a", "b"])
with pytest.raises(KeyError, match="Classes render only if `classes` has unique"):
styler.set_td_classes(classes=classes)
# classes has non-unique index
classes = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "a"])
with pytest.raises(KeyError, match="Classes render only if `classes` has unique"):
styler.set_td_classes(classes=classes)
def test_hide_columns_non_unique(styler):
ctx = styler.hide(["d"], axis="columns")._translate(True, True)
assert ctx["head"][0][1]["display_value"] == "c"
assert ctx["head"][0][1]["is_visible"] is True
assert ctx["head"][0][2]["display_value"] == "d"
assert ctx["head"][0][2]["is_visible"] is False
assert ctx["head"][0][3]["display_value"] == "d"
assert ctx["head"][0][3]["is_visible"] is False
assert ctx["body"][0][1]["is_visible"] is True
assert ctx["body"][0][2]["is_visible"] is False
assert ctx["body"][0][3]["is_visible"] is False
def test_latex_non_unique(styler):
result = styler.to_latex()
assert result == dedent(
"""\
\\begin{tabular}{lrrr}
& c & d & d \\\\
i & 1.000000 & 2.000000 & 3.000000 \\\\
j & 4.000000 & 5.000000 & 6.000000 \\\\
j & 7.000000 & 8.000000 & 9.000000 \\\\
\\end{tabular}
"""
)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,96 @@
from textwrap import dedent
import pytest
from pandas import (
DataFrame,
Series,
)
pytest.importorskip("jinja2")
from pandas.io.formats.style import Styler
@pytest.fixture
def df():
return DataFrame(
{"A": [0, 1], "B": [-0.61, -1.22], "C": Series(["ab", "cd"], dtype=object)}
)
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0, precision=2)
def test_basic_string(styler):
result = styler.to_string()
expected = dedent(
"""\
A B C
0 0 -0.61 ab
1 1 -1.22 cd
"""
)
assert result == expected
def test_string_delimiter(styler):
result = styler.to_string(delimiter=";")
expected = dedent(
"""\
;A;B;C
0;0;-0.61;ab
1;1;-1.22;cd
"""
)
assert result == expected
def test_concat(styler):
result = styler.concat(styler.data.agg(["sum"]).style).to_string()
expected = dedent(
"""\
A B C
0 0 -0.61 ab
1 1 -1.22 cd
sum 1 -1.830000 abcd
"""
)
assert result == expected
def test_concat_recursion(styler):
df = styler.data
styler1 = styler
styler2 = Styler(df.agg(["sum"]), uuid_len=0, precision=3)
styler3 = Styler(df.agg(["sum"]), uuid_len=0, precision=4)
result = styler1.concat(styler2.concat(styler3)).to_string()
expected = dedent(
"""\
A B C
0 0 -0.61 ab
1 1 -1.22 cd
sum 1 -1.830 abcd
sum 1 -1.8300 abcd
"""
)
assert result == expected
def test_concat_chain(styler):
df = styler.data
styler1 = styler
styler2 = Styler(df.agg(["sum"]), uuid_len=0, precision=3)
styler3 = Styler(df.agg(["sum"]), uuid_len=0, precision=4)
result = styler1.concat(styler2).concat(styler3).to_string()
expected = dedent(
"""\
A B C
0 0 -0.61 ab
1 1 -1.22 cd
sum 1 -1.830 abcd
sum 1 -1.8300 abcd
"""
)
assert result == expected

View File

@ -0,0 +1,85 @@
import numpy as np
import pytest
from pandas import DataFrame
pytest.importorskip("jinja2")
from pandas.io.formats.style import Styler
@pytest.fixture
def df():
return DataFrame(
data=[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
columns=["A", "B", "C"],
index=["x", "y", "z"],
)
@pytest.fixture
def styler(df):
return Styler(df, uuid_len=0)
@pytest.mark.parametrize(
"ttips",
[
DataFrame( # Test basic reindex and ignoring blank
data=[["Min", "Max"], [np.nan, ""]],
columns=["A", "C"],
index=["x", "y"],
),
DataFrame( # Test non-referenced columns, reversed col names, short index
data=[["Max", "Min", "Bad-Col"]], columns=["C", "A", "D"], index=["x"]
),
],
)
def test_tooltip_render(ttips, styler):
# GH 21266
result = styler.set_tooltips(ttips).to_html()
# test tooltip table level class
assert "#T_ .pd-t {\n visibility: hidden;\n" in result
# test 'Min' tooltip added
assert "#T_ #T__row0_col0:hover .pd-t {\n visibility: visible;\n}" in result
assert '#T_ #T__row0_col0 .pd-t::after {\n content: "Min";\n}' in result
assert 'class="data row0 col0" >0<span class="pd-t"></span></td>' in result
# test 'Max' tooltip added
assert "#T_ #T__row0_col2:hover .pd-t {\n visibility: visible;\n}" in result
assert '#T_ #T__row0_col2 .pd-t::after {\n content: "Max";\n}' in result
assert 'class="data row0 col2" >2<span class="pd-t"></span></td>' in result
# test Nan, empty string and bad column ignored
assert "#T_ #T__row1_col0:hover .pd-t {\n visibility: visible;\n}" not in result
assert "#T_ #T__row1_col1:hover .pd-t {\n visibility: visible;\n}" not in result
assert "#T_ #T__row0_col1:hover .pd-t {\n visibility: visible;\n}" not in result
assert "#T_ #T__row1_col2:hover .pd-t {\n visibility: visible;\n}" not in result
assert "Bad-Col" not in result
def test_tooltip_ignored(styler):
# GH 21266
result = styler.to_html() # no set_tooltips() creates no <span>
assert '<style type="text/css">\n</style>' in result
assert '<span class="pd-t"></span>' not in result
def test_tooltip_css_class(styler):
# GH 21266
result = styler.set_tooltips(
DataFrame([["tooltip"]], index=["x"], columns=["A"]),
css_class="other-class",
props=[("color", "green")],
).to_html()
assert "#T_ .other-class {\n color: green;\n" in result
assert '#T_ #T__row0_col0 .other-class::after {\n content: "tooltip";\n' in result
# GH 39563
result = styler.set_tooltips( # set_tooltips overwrites previous
DataFrame([["tooltip"]], index=["x"], columns=["A"]),
css_class="another-class",
props="color:green;color:red;",
).to_html()
assert "#T_ .another-class {\n color: green;\n color: red;\n}" in result