Updated script that can be controled by Nodejs web app
This commit is contained in:
@ -0,0 +1,87 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._libs import index as libindex
|
||||
from pandas.errors import SettingWithCopyError
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
MultiIndex,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def test_detect_chained_assignment(using_copy_on_write, warn_copy_on_write):
|
||||
# Inplace ops, originally from:
|
||||
# https://stackoverflow.com/questions/20508968/series-fillna-in-a-multiindex-dataframe-does-not-fill-is-this-a-bug
|
||||
a = [12, 23]
|
||||
b = [123, None]
|
||||
c = [1234, 2345]
|
||||
d = [12345, 23456]
|
||||
tuples = [("eyes", "left"), ("eyes", "right"), ("ears", "left"), ("ears", "right")]
|
||||
events = {
|
||||
("eyes", "left"): a,
|
||||
("eyes", "right"): b,
|
||||
("ears", "left"): c,
|
||||
("ears", "right"): d,
|
||||
}
|
||||
multiind = MultiIndex.from_tuples(tuples, names=["part", "side"])
|
||||
zed = DataFrame(events, index=["a", "b"], columns=multiind)
|
||||
|
||||
if using_copy_on_write:
|
||||
with tm.raises_chained_assignment_error():
|
||||
zed["eyes"]["right"].fillna(value=555, inplace=True)
|
||||
elif warn_copy_on_write:
|
||||
with tm.assert_produces_warning(None):
|
||||
zed["eyes"]["right"].fillna(value=555, inplace=True)
|
||||
else:
|
||||
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
|
||||
with pytest.raises(SettingWithCopyError, match=msg):
|
||||
with tm.assert_produces_warning(None):
|
||||
zed["eyes"]["right"].fillna(value=555, inplace=True)
|
||||
|
||||
|
||||
@td.skip_array_manager_invalid_test # with ArrayManager df.loc[0] is not a view
|
||||
def test_cache_updating(using_copy_on_write, warn_copy_on_write):
|
||||
# 5216
|
||||
# make sure that we don't try to set a dead cache
|
||||
a = np.random.default_rng(2).random((10, 3))
|
||||
df = DataFrame(a, columns=["x", "y", "z"])
|
||||
df_original = df.copy()
|
||||
tuples = [(i, j) for i in range(5) for j in range(2)]
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
df.index = index
|
||||
|
||||
# setting via chained assignment
|
||||
# but actually works, since everything is a view
|
||||
|
||||
with tm.raises_chained_assignment_error():
|
||||
df.loc[0]["z"].iloc[0] = 1.0
|
||||
|
||||
if using_copy_on_write:
|
||||
assert df.loc[(0, 0), "z"] == df_original.loc[0, "z"]
|
||||
else:
|
||||
result = df.loc[(0, 0), "z"]
|
||||
assert result == 1
|
||||
|
||||
# correct setting
|
||||
df.loc[(0, 0), "z"] = 2
|
||||
result = df.loc[(0, 0), "z"]
|
||||
assert result == 2
|
||||
|
||||
|
||||
def test_indexer_caching(monkeypatch):
|
||||
# GH5727
|
||||
# make sure that indexers are in the _internal_names_set
|
||||
size_cutoff = 20
|
||||
with monkeypatch.context():
|
||||
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
|
||||
index = MultiIndex.from_arrays([np.arange(size_cutoff), np.arange(size_cutoff)])
|
||||
s = Series(np.zeros(size_cutoff), index=index)
|
||||
|
||||
# setitem
|
||||
s[s == 0] = 1
|
||||
expected = Series(np.ones(size_cutoff), index=index)
|
||||
tm.assert_series_equal(s, expected)
|
@ -0,0 +1,50 @@
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Period,
|
||||
Series,
|
||||
period_range,
|
||||
to_datetime,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def test_multiindex_period_datetime():
|
||||
# GH4861, using datetime in period of multiindex raises exception
|
||||
|
||||
idx1 = Index(["a", "a", "a", "b", "b"])
|
||||
idx2 = period_range("2012-01", periods=len(idx1), freq="M")
|
||||
s = Series(np.random.default_rng(2).standard_normal(len(idx1)), [idx1, idx2])
|
||||
|
||||
# try Period as index
|
||||
expected = s.iloc[0]
|
||||
result = s.loc["a", Period("2012-01")]
|
||||
assert result == expected
|
||||
|
||||
# try datetime as index
|
||||
result = s.loc["a", datetime(2012, 1, 1)]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_multiindex_datetime_columns():
|
||||
# GH35015, using datetime as column indices raises exception
|
||||
|
||||
mi = MultiIndex.from_tuples(
|
||||
[(to_datetime("02/29/2020"), to_datetime("03/01/2020"))], names=["a", "b"]
|
||||
)
|
||||
|
||||
df = DataFrame([], columns=mi)
|
||||
|
||||
expected_df = DataFrame(
|
||||
[],
|
||||
columns=MultiIndex.from_arrays(
|
||||
[[to_datetime("02/29/2020")], [to_datetime("03/01/2020")]], names=["a", "b"]
|
||||
),
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(df, expected_df)
|
@ -0,0 +1,410 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.indexing import IndexingError
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# test indexing of Series with multi-level Index
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"access_method",
|
||||
[lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"level1_value, expected",
|
||||
[(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
|
||||
)
|
||||
def test_series_getitem_multiindex(access_method, level1_value, expected):
|
||||
# GH 6018
|
||||
# series regression getitem with a multi-index
|
||||
|
||||
mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
|
||||
ser = Series([1, 2, 3], index=mi)
|
||||
expected.index.name = "A"
|
||||
|
||||
result = access_method(ser, level1_value)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("level0_value", ["D", "A"])
|
||||
def test_series_getitem_duplicates_multiindex(level0_value):
|
||||
# GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
|
||||
# the appropriate error, only in PY3 of course!
|
||||
|
||||
index = MultiIndex(
|
||||
levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
|
||||
codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
|
||||
names=["tag", "day"],
|
||||
)
|
||||
arr = np.random.default_rng(2).standard_normal((len(index), 1))
|
||||
df = DataFrame(arr, index=index, columns=["val"])
|
||||
|
||||
# confirm indexing on missing value raises KeyError
|
||||
if level0_value != "A":
|
||||
with pytest.raises(KeyError, match=r"^'A'$"):
|
||||
df.val["A"]
|
||||
|
||||
with pytest.raises(KeyError, match=r"^'X'$"):
|
||||
df.val["X"]
|
||||
|
||||
result = df.val[level0_value]
|
||||
expected = Series(
|
||||
arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
|
||||
s = multiindex_year_month_day_dataframe_random_data["A"]
|
||||
expected = s.reindex(s.index[42:65])
|
||||
expected.index = expected.index.droplevel(0).droplevel(0)
|
||||
|
||||
result = indexer_sl(s)[2000, 3]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_series_getitem_returns_scalar(
|
||||
multiindex_year_month_day_dataframe_random_data, indexer_sl
|
||||
):
|
||||
s = multiindex_year_month_day_dataframe_random_data["A"]
|
||||
expected = s.iloc[49]
|
||||
|
||||
result = indexer_sl(s)[2000, 3, 10]
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer,expected_error,expected_error_msg",
|
||||
[
|
||||
(lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
|
||||
(lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
|
||||
(lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
|
||||
(lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
|
||||
(lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
|
||||
(lambda s: s[len(s)], KeyError, ""), # match should include len(s)
|
||||
(
|
||||
lambda s: s.iloc[len(s)],
|
||||
IndexError,
|
||||
"single positional indexer is out-of-bounds",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_series_getitem_indexing_errors(
|
||||
multiindex_year_month_day_dataframe_random_data,
|
||||
indexer,
|
||||
expected_error,
|
||||
expected_error_msg,
|
||||
):
|
||||
s = multiindex_year_month_day_dataframe_random_data["A"]
|
||||
with pytest.raises(expected_error, match=expected_error_msg):
|
||||
indexer(s)
|
||||
|
||||
|
||||
def test_series_getitem_corner_generator(
|
||||
multiindex_year_month_day_dataframe_random_data,
|
||||
):
|
||||
s = multiindex_year_month_day_dataframe_random_data["A"]
|
||||
result = s[(x > 0 for x in s)]
|
||||
expected = s[s > 0]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# test indexing of DataFrame with multi-level Index
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def test_getitem_simple(multiindex_dataframe_random_data):
|
||||
df = multiindex_dataframe_random_data.T
|
||||
expected = df.values[:, 0]
|
||||
result = df["foo", "one"].values
|
||||
tm.assert_almost_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer,expected_error_msg",
|
||||
[
|
||||
(lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
|
||||
(lambda df: df["foobar"], r"^'foobar'$"),
|
||||
],
|
||||
)
|
||||
def test_frame_getitem_simple_key_error(
|
||||
multiindex_dataframe_random_data, indexer, expected_error_msg
|
||||
):
|
||||
df = multiindex_dataframe_random_data.T
|
||||
with pytest.raises(KeyError, match=expected_error_msg):
|
||||
indexer(df)
|
||||
|
||||
|
||||
def test_tuple_string_column_names():
|
||||
# GH#50372
|
||||
mi = MultiIndex.from_tuples([("a", "aa"), ("a", "ab"), ("b", "ba"), ("b", "bb")])
|
||||
df = DataFrame([range(4), range(1, 5), range(2, 6)], columns=mi)
|
||||
df["single_index"] = 0
|
||||
|
||||
df_flat = df.copy()
|
||||
df_flat.columns = df_flat.columns.to_flat_index()
|
||||
df_flat["new_single_index"] = 0
|
||||
|
||||
result = df_flat[[("a", "aa"), "new_single_index"]]
|
||||
expected = DataFrame(
|
||||
[[0, 0], [1, 0], [2, 0]], columns=Index([("a", "aa"), "new_single_index"])
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_getitem_multicolumn_empty_level():
|
||||
df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
|
||||
df.columns = [
|
||||
["level1 item1", "level1 item2"],
|
||||
["", "level2 item2"],
|
||||
["level3 item1", "level3 item2"],
|
||||
]
|
||||
|
||||
result = df["level1 item1"]
|
||||
expected = DataFrame(
|
||||
[["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer,expected_slice",
|
||||
[
|
||||
(lambda df: df["foo"], slice(3)),
|
||||
(lambda df: df["bar"], slice(3, 5)),
|
||||
(lambda df: df.loc[:, "bar"], slice(3, 5)),
|
||||
],
|
||||
)
|
||||
def test_frame_getitem_toplevel(
|
||||
multiindex_dataframe_random_data, indexer, expected_slice
|
||||
):
|
||||
df = multiindex_dataframe_random_data.T
|
||||
expected = df.reindex(columns=df.columns[expected_slice])
|
||||
expected.columns = expected.columns.droplevel(0)
|
||||
result = indexer(df)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_mixed_depth_get():
|
||||
arrays = [
|
||||
["a", "top", "top", "routine1", "routine1", "routine2"],
|
||||
["", "OD", "OD", "result1", "result2", "result1"],
|
||||
["", "wx", "wy", "", "", ""],
|
||||
]
|
||||
|
||||
tuples = sorted(zip(*arrays))
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
|
||||
|
||||
result = df["a"]
|
||||
expected = df["a", "", ""].rename("a")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = df["routine1", "result1"]
|
||||
expected = df["routine1", "result1", ""]
|
||||
expected = expected.rename(("routine1", "result1"))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_getitem_nan_multiindex(nulls_fixture):
|
||||
# GH#29751
|
||||
# loc on a multiindex containing nan values
|
||||
n = nulls_fixture # for code readability
|
||||
cols = ["a", "b", "c"]
|
||||
df = DataFrame(
|
||||
[[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
|
||||
columns=cols,
|
||||
).set_index(["a", "b"])
|
||||
df["c"] = df["c"].astype("int64")
|
||||
|
||||
idx = (21, n)
|
||||
result = df.loc[:idx]
|
||||
expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
|
||||
expected["c"] = expected["c"].astype("int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[idx:]
|
||||
expected = DataFrame(
|
||||
[[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
|
||||
).set_index(["a", "b"])
|
||||
expected["c"] = expected["c"].astype("int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
idx1, idx2 = (21, n), (31, n)
|
||||
result = df.loc[idx1:idx2]
|
||||
expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
|
||||
expected["c"] = expected["c"].astype("int64")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer,expected",
|
||||
[
|
||||
(
|
||||
(["b"], ["bar", np.nan]),
|
||||
(
|
||||
DataFrame(
|
||||
[[2, 3], [5, 6]],
|
||||
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
|
||||
dtype="int64",
|
||||
)
|
||||
),
|
||||
),
|
||||
(
|
||||
(["a", "b"]),
|
||||
(
|
||||
DataFrame(
|
||||
[[1, 2, 3], [4, 5, 6]],
|
||||
columns=MultiIndex.from_tuples(
|
||||
[("a", "foo"), ("b", "bar"), ("b", np.nan)]
|
||||
),
|
||||
dtype="int64",
|
||||
)
|
||||
),
|
||||
),
|
||||
(
|
||||
(["b"]),
|
||||
(
|
||||
DataFrame(
|
||||
[[2, 3], [5, 6]],
|
||||
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
|
||||
dtype="int64",
|
||||
)
|
||||
),
|
||||
),
|
||||
(
|
||||
(["b"], ["bar"]),
|
||||
(
|
||||
DataFrame(
|
||||
[[2], [5]],
|
||||
columns=MultiIndex.from_tuples([("b", "bar")]),
|
||||
dtype="int64",
|
||||
)
|
||||
),
|
||||
),
|
||||
(
|
||||
(["b"], [np.nan]),
|
||||
(
|
||||
DataFrame(
|
||||
[[3], [6]],
|
||||
columns=MultiIndex(
|
||||
codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
|
||||
),
|
||||
dtype="int64",
|
||||
)
|
||||
),
|
||||
),
|
||||
(("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
|
||||
],
|
||||
)
|
||||
def test_frame_getitem_nan_cols_multiindex(
|
||||
indexer,
|
||||
expected,
|
||||
nulls_fixture,
|
||||
):
|
||||
# Slicing MultiIndex including levels with nan values, for more information
|
||||
# see GH#25154
|
||||
df = DataFrame(
|
||||
[[1, 2, 3], [4, 5, 6]],
|
||||
columns=MultiIndex.from_tuples(
|
||||
[("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
|
||||
),
|
||||
dtype="int64",
|
||||
)
|
||||
|
||||
result = df.loc[:, indexer]
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# test indexing of DataFrame with multi-level Index with duplicates
|
||||
# ----------------------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dataframe_with_duplicate_index():
|
||||
"""Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
|
||||
data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
|
||||
index = ["h1", "h3", "h5"]
|
||||
columns = MultiIndex(
|
||||
levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
|
||||
codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
|
||||
names=["main", "sub"],
|
||||
)
|
||||
return DataFrame(data, index=index, columns=columns)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
|
||||
)
|
||||
def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
|
||||
# GH 4145
|
||||
df = dataframe_with_duplicate_index
|
||||
index = Index(["h1", "h3", "h5"])
|
||||
columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
|
||||
expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
|
||||
|
||||
result = indexer(df)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
|
||||
# GH 4146, not returning a block manager when selecting a unique index
|
||||
# from a duplicate index
|
||||
# as of 4879, this returns a Series (which is similar to what happens
|
||||
# with a non-unique)
|
||||
df = dataframe_with_duplicate_index
|
||||
expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
|
||||
result = df["A"]["A1"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
|
||||
# selecting a non_unique from the 2nd level
|
||||
df = dataframe_with_duplicate_index
|
||||
expected = DataFrame(
|
||||
[["d", 4, 4], ["e", 5, 5]],
|
||||
index=Index(["B2", "B2"], name="sub"),
|
||||
columns=["h1", "h3", "h5"],
|
||||
).T
|
||||
result = df["A"]["B2"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_mi_empty_slice():
|
||||
# GH 15454
|
||||
df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
|
||||
result = df[[]]
|
||||
expected = DataFrame(
|
||||
index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_empty_multiindex():
|
||||
# GH#36936
|
||||
arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
|
||||
index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
|
||||
df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
|
||||
|
||||
# loc on empty multiindex == loc with False mask
|
||||
empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
|
||||
result = df.loc[empty_multiindex, :]
|
||||
expected = df.loc[[False] * len(df.index), :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# replacing value with loc on empty multiindex
|
||||
df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
|
||||
result = df
|
||||
expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
|
||||
tm.assert_frame_equal(result, expected)
|
@ -0,0 +1,171 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
MultiIndex,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def simple_multiindex_dataframe():
|
||||
"""
|
||||
Factory function to create simple 3 x 3 dataframe with
|
||||
both columns and row MultiIndex using supplied data or
|
||||
random data by default.
|
||||
"""
|
||||
|
||||
data = np.random.default_rng(2).standard_normal((3, 3))
|
||||
return DataFrame(
|
||||
data, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer, expected",
|
||||
[
|
||||
(
|
||||
lambda df: df.iloc[0],
|
||||
lambda arr: Series(arr[0], index=[[2, 2, 4], [6, 8, 10]], name=(4, 8)),
|
||||
),
|
||||
(
|
||||
lambda df: df.iloc[2],
|
||||
lambda arr: Series(arr[2], index=[[2, 2, 4], [6, 8, 10]], name=(8, 12)),
|
||||
),
|
||||
(
|
||||
lambda df: df.iloc[:, 2],
|
||||
lambda arr: Series(arr[:, 2], index=[[4, 4, 8], [8, 10, 12]], name=(4, 10)),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_iloc_returns_series(indexer, expected, simple_multiindex_dataframe):
|
||||
df = simple_multiindex_dataframe
|
||||
arr = df.values
|
||||
result = indexer(df)
|
||||
expected = expected(arr)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_iloc_returns_dataframe(simple_multiindex_dataframe):
|
||||
df = simple_multiindex_dataframe
|
||||
result = df.iloc[[0, 1]]
|
||||
expected = df.xs(4, drop_level=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_iloc_returns_scalar(simple_multiindex_dataframe):
|
||||
df = simple_multiindex_dataframe
|
||||
arr = df.values
|
||||
result = df.iloc[2, 2]
|
||||
expected = arr[2, 2]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_iloc_getitem_multiple_items():
|
||||
# GH 5528
|
||||
tup = zip(*[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
|
||||
index = MultiIndex.from_tuples(tup)
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), index=index)
|
||||
result = df.iloc[[2, 3]]
|
||||
expected = df.xs("b", drop_level=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_iloc_getitem_labels():
|
||||
# this is basically regular indexing
|
||||
arr = np.random.default_rng(2).standard_normal((4, 3))
|
||||
df = DataFrame(
|
||||
arr,
|
||||
columns=[["i", "i", "j"], ["A", "A", "B"]],
|
||||
index=[["i", "i", "j", "k"], ["X", "X", "Y", "Y"]],
|
||||
)
|
||||
result = df.iloc[2, 2]
|
||||
expected = arr[2, 2]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_frame_getitem_slice(multiindex_dataframe_random_data):
|
||||
df = multiindex_dataframe_random_data
|
||||
result = df.iloc[:4]
|
||||
expected = df[:4]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_setitem_slice(multiindex_dataframe_random_data):
|
||||
df = multiindex_dataframe_random_data
|
||||
df.iloc[:4] = 0
|
||||
|
||||
assert (df.values[:4] == 0).all()
|
||||
assert (df.values[4:] != 0).all()
|
||||
|
||||
|
||||
def test_indexing_ambiguity_bug_1678():
|
||||
# GH 1678
|
||||
columns = MultiIndex.from_tuples(
|
||||
[("Ohio", "Green"), ("Ohio", "Red"), ("Colorado", "Green")]
|
||||
)
|
||||
index = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
|
||||
|
||||
df = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns)
|
||||
|
||||
result = df.iloc[:, 1]
|
||||
expected = df.loc[:, ("Ohio", "Red")]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_iloc_integer_locations():
|
||||
# GH 13797
|
||||
data = [
|
||||
["str00", "str01"],
|
||||
["str10", "str11"],
|
||||
["str20", "srt21"],
|
||||
["str30", "str31"],
|
||||
["str40", "str41"],
|
||||
]
|
||||
|
||||
index = MultiIndex.from_tuples(
|
||||
[("CC", "A"), ("CC", "B"), ("CC", "B"), ("BB", "a"), ("BB", "b")]
|
||||
)
|
||||
|
||||
expected = DataFrame(data)
|
||||
df = DataFrame(data, index=index)
|
||||
|
||||
result = DataFrame([[df.iloc[r, c] for c in range(2)] for r in range(5)])
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"data, indexes, values, expected_k",
|
||||
[
|
||||
# test without indexer value in first level of MultiIndex
|
||||
([[2, 22, 5], [2, 33, 6]], [0, -1, 1], [2, 3, 1], [7, 10]),
|
||||
# test like code sample 1 in the issue
|
||||
([[1, 22, 555], [1, 33, 666]], [0, -1, 1], [200, 300, 100], [755, 1066]),
|
||||
# test like code sample 2 in the issue
|
||||
([[1, 3, 7], [2, 4, 8]], [0, -1, 1], [10, 10, 1000], [17, 1018]),
|
||||
# test like code sample 3 in the issue
|
||||
([[1, 11, 4], [2, 22, 5], [3, 33, 6]], [0, -1, 1], [4, 7, 10], [8, 15, 13]),
|
||||
],
|
||||
)
|
||||
def test_iloc_setitem_int_multiindex_series(data, indexes, values, expected_k):
|
||||
# GH17148
|
||||
df = DataFrame(data=data, columns=["i", "j", "k"])
|
||||
df = df.set_index(["i", "j"])
|
||||
|
||||
series = df.k.copy()
|
||||
for i, v in zip(indexes, values):
|
||||
series.iloc[i] += v
|
||||
|
||||
df["k"] = expected_k
|
||||
expected = df.k
|
||||
tm.assert_series_equal(series, expected)
|
||||
|
||||
|
||||
def test_getitem_iloc(multiindex_dataframe_random_data):
|
||||
df = multiindex_dataframe_random_data
|
||||
result = df.iloc[2]
|
||||
expected = df.xs(df.index[2])
|
||||
tm.assert_series_equal(result, expected)
|
@ -0,0 +1,118 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def m():
|
||||
return 5
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def n():
|
||||
return 100
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def cols():
|
||||
return ["jim", "joe", "jolie", "joline", "jolia"]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vals(n):
|
||||
vals = [
|
||||
np.random.default_rng(2).integers(0, 10, n),
|
||||
np.random.default_rng(2).choice(list("abcdefghij"), n),
|
||||
np.random.default_rng(2).choice(
|
||||
pd.date_range("20141009", periods=10).tolist(), n
|
||||
),
|
||||
np.random.default_rng(2).choice(list("ZYXWVUTSRQ"), n),
|
||||
np.random.default_rng(2).standard_normal(n),
|
||||
]
|
||||
vals = list(map(tuple, zip(*vals)))
|
||||
return vals
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def keys(n, m, vals):
|
||||
# bunch of keys for testing
|
||||
keys = [
|
||||
np.random.default_rng(2).integers(0, 11, m),
|
||||
np.random.default_rng(2).choice(list("abcdefghijk"), m),
|
||||
np.random.default_rng(2).choice(
|
||||
pd.date_range("20141009", periods=11).tolist(), m
|
||||
),
|
||||
np.random.default_rng(2).choice(list("ZYXWVUTSRQP"), m),
|
||||
]
|
||||
keys = list(map(tuple, zip(*keys)))
|
||||
keys += [t[:-1] for t in vals[:: n // m]]
|
||||
return keys
|
||||
|
||||
|
||||
# covers both unique index and non-unique index
|
||||
@pytest.fixture
|
||||
def df(vals, cols):
|
||||
return DataFrame(vals, columns=cols)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def a(df):
|
||||
return pd.concat([df, df])
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def b(df, cols):
|
||||
return df.drop_duplicates(subset=cols[:-1])
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning")
|
||||
@pytest.mark.parametrize("lexsort_depth", list(range(5)))
|
||||
@pytest.mark.parametrize("frame_fixture", ["a", "b"])
|
||||
def test_multiindex_get_loc(request, lexsort_depth, keys, frame_fixture, cols):
|
||||
# GH7724, GH2646
|
||||
|
||||
frame = request.getfixturevalue(frame_fixture)
|
||||
if lexsort_depth == 0:
|
||||
df = frame.copy(deep=False)
|
||||
else:
|
||||
df = frame.sort_values(by=cols[:lexsort_depth])
|
||||
|
||||
mi = df.set_index(cols[:-1])
|
||||
assert not mi.index._lexsort_depth < lexsort_depth
|
||||
for key in keys:
|
||||
mask = np.ones(len(df), dtype=bool)
|
||||
|
||||
# test for all partials of this key
|
||||
for i, k in enumerate(key):
|
||||
mask &= df.iloc[:, i] == k
|
||||
|
||||
if not mask.any():
|
||||
assert key[: i + 1] not in mi.index
|
||||
continue
|
||||
|
||||
assert key[: i + 1] in mi.index
|
||||
right = df[mask].copy(deep=False)
|
||||
|
||||
if i + 1 != len(key): # partial key
|
||||
return_value = right.drop(cols[: i + 1], axis=1, inplace=True)
|
||||
assert return_value is None
|
||||
return_value = right.set_index(cols[i + 1 : -1], inplace=True)
|
||||
assert return_value is None
|
||||
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
|
||||
|
||||
else: # full key
|
||||
return_value = right.set_index(cols[:-1], inplace=True)
|
||||
assert return_value is None
|
||||
if len(right) == 1: # single hit
|
||||
right = Series(
|
||||
right["jolia"].values, name=right.index[0], index=["jolia"]
|
||||
)
|
||||
tm.assert_series_equal(mi.loc[key[: i + 1]], right)
|
||||
else: # multi hit
|
||||
tm.assert_frame_equal(mi.loc[key[: i + 1]], right)
|
@ -0,0 +1,992 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.errors import (
|
||||
IndexingError,
|
||||
PerformanceWarning,
|
||||
)
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def single_level_multiindex():
|
||||
"""single level MultiIndex"""
|
||||
return MultiIndex(
|
||||
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def frame_random_data_integer_multi_index():
|
||||
levels = [[0, 1], [0, 1, 2]]
|
||||
codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
|
||||
index = MultiIndex(levels=levels, codes=codes)
|
||||
return DataFrame(np.random.default_rng(2).standard_normal((6, 2)), index=index)
|
||||
|
||||
|
||||
class TestMultiIndexLoc:
|
||||
def test_loc_setitem_frame_with_multiindex(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
frame.loc[("bar", "two"), "B"] = 5
|
||||
assert frame.loc[("bar", "two"), "B"] == 5
|
||||
|
||||
# with integer labels
|
||||
df = frame.copy()
|
||||
df.columns = list(range(3))
|
||||
df.loc[("bar", "two"), 1] = 7
|
||||
assert df.loc[("bar", "two"), 1] == 7
|
||||
|
||||
def test_loc_getitem_general(self, any_real_numpy_dtype):
|
||||
# GH#2817
|
||||
dtype = any_real_numpy_dtype
|
||||
data = {
|
||||
"amount": {0: 700, 1: 600, 2: 222, 3: 333, 4: 444},
|
||||
"col": {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0},
|
||||
"num": {0: 12, 1: 11, 2: 12, 3: 12, 4: 12},
|
||||
}
|
||||
df = DataFrame(data)
|
||||
df = df.astype({"col": dtype, "num": dtype})
|
||||
df = df.set_index(keys=["col", "num"])
|
||||
key = 4.0, 12
|
||||
|
||||
# emits a PerformanceWarning, ok
|
||||
with tm.assert_produces_warning(PerformanceWarning):
|
||||
tm.assert_frame_equal(df.loc[key], df.iloc[2:])
|
||||
|
||||
# this is ok
|
||||
return_value = df.sort_index(inplace=True)
|
||||
assert return_value is None
|
||||
res = df.loc[key]
|
||||
|
||||
# col has float dtype, result should be float64 Index
|
||||
col_arr = np.array([4.0] * 3, dtype=dtype)
|
||||
year_arr = np.array([12] * 3, dtype=dtype)
|
||||
index = MultiIndex.from_arrays([col_arr, year_arr], names=["col", "num"])
|
||||
expected = DataFrame({"amount": [222, 333, 444]}, index=index)
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
||||
def test_loc_getitem_multiindex_missing_label_raises(self):
|
||||
# GH#21593
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((3, 3)),
|
||||
columns=[[2, 2, 4], [6, 8, 10]],
|
||||
index=[[4, 4, 8], [8, 10, 12]],
|
||||
)
|
||||
|
||||
with pytest.raises(KeyError, match=r"^2$"):
|
||||
df.loc[2]
|
||||
|
||||
def test_loc_getitem_list_of_tuples_with_multiindex(
|
||||
self, multiindex_year_month_day_dataframe_random_data
|
||||
):
|
||||
ser = multiindex_year_month_day_dataframe_random_data["A"]
|
||||
expected = ser.reindex(ser.index[49:51])
|
||||
result = ser.loc[[(2000, 3, 10), (2000, 3, 13)]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_loc_getitem_series(self):
|
||||
# GH14730
|
||||
# passing a series as a key with a MultiIndex
|
||||
index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
|
||||
x = Series(index=index, data=range(9), dtype=np.float64)
|
||||
y = Series([1, 3])
|
||||
expected = Series(
|
||||
data=[0, 1, 2, 6, 7, 8],
|
||||
index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
|
||||
dtype=np.float64,
|
||||
)
|
||||
result = x.loc[y]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = x.loc[[1, 3]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# GH15424
|
||||
y1 = Series([1, 3], index=[1, 2])
|
||||
result = x.loc[y1]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
empty = Series(data=[], dtype=np.float64)
|
||||
expected = Series(
|
||||
[],
|
||||
index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
|
||||
dtype=np.float64,
|
||||
)
|
||||
result = x.loc[empty]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_loc_getitem_array(self):
|
||||
# GH15434
|
||||
# passing an array as a key with a MultiIndex
|
||||
index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
|
||||
x = Series(index=index, data=range(9), dtype=np.float64)
|
||||
y = np.array([1, 3])
|
||||
expected = Series(
|
||||
data=[0, 1, 2, 6, 7, 8],
|
||||
index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
|
||||
dtype=np.float64,
|
||||
)
|
||||
result = x.loc[y]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# empty array:
|
||||
empty = np.array([])
|
||||
expected = Series(
|
||||
[],
|
||||
index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
|
||||
dtype="float64",
|
||||
)
|
||||
result = x.loc[empty]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# 0-dim array (scalar):
|
||||
scalar = np.int64(1)
|
||||
expected = Series(data=[0, 1, 2], index=["A", "B", "C"], dtype=np.float64)
|
||||
result = x.loc[scalar]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_loc_multiindex_labels(self):
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((3, 3)),
|
||||
columns=[["i", "i", "j"], ["A", "A", "B"]],
|
||||
index=[["i", "i", "j"], ["X", "X", "Y"]],
|
||||
)
|
||||
|
||||
# the first 2 rows
|
||||
expected = df.iloc[[0, 1]].droplevel(0)
|
||||
result = df.loc["i"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# 2nd (last) column
|
||||
expected = df.iloc[:, [2]].droplevel(0, axis=1)
|
||||
result = df.loc[:, "j"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# bottom right corner
|
||||
expected = df.iloc[[2], [2]].droplevel(0).droplevel(0, axis=1)
|
||||
result = df.loc["j"].loc[:, "j"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# with a tuple
|
||||
expected = df.iloc[[0, 1]]
|
||||
result = df.loc[("i", "X")]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_loc_multiindex_ints(self):
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((3, 3)),
|
||||
columns=[[2, 2, 4], [6, 8, 10]],
|
||||
index=[[4, 4, 8], [8, 10, 12]],
|
||||
)
|
||||
expected = df.iloc[[0, 1]].droplevel(0)
|
||||
result = df.loc[4]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_loc_multiindex_missing_label_raises(self):
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((3, 3)),
|
||||
columns=[[2, 2, 4], [6, 8, 10]],
|
||||
index=[[4, 4, 8], [8, 10, 12]],
|
||||
)
|
||||
|
||||
with pytest.raises(KeyError, match=r"^2$"):
|
||||
df.loc[2]
|
||||
|
||||
@pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
|
||||
def test_loc_multiindex_list_missing_label(self, key, pos):
|
||||
# GH 27148 - lists with missing labels _do_ raise
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((3, 3)),
|
||||
columns=[[2, 2, 4], [6, 8, 10]],
|
||||
index=[[4, 4, 8], [8, 10, 12]],
|
||||
)
|
||||
|
||||
with pytest.raises(KeyError, match="not in index"):
|
||||
df.loc[key]
|
||||
|
||||
def test_loc_multiindex_too_many_dims_raises(self):
|
||||
# GH 14885
|
||||
s = Series(
|
||||
range(8),
|
||||
index=MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]),
|
||||
)
|
||||
|
||||
with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
|
||||
s.loc["a", "b"]
|
||||
with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
|
||||
s.loc["a", "d", "g"]
|
||||
with pytest.raises(IndexingError, match="Too many indexers"):
|
||||
s.loc["a", "d", "g", "j"]
|
||||
|
||||
def test_loc_multiindex_indexer_none(self):
|
||||
# GH6788
|
||||
# multi-index indexer is None (meaning take all)
|
||||
attributes = ["Attribute" + str(i) for i in range(1)]
|
||||
attribute_values = ["Value" + str(i) for i in range(5)]
|
||||
|
||||
index = MultiIndex.from_product([attributes, attribute_values])
|
||||
df = 0.1 * np.random.default_rng(2).standard_normal((10, 1 * 5)) + 0.5
|
||||
df = DataFrame(df, columns=index)
|
||||
result = df[attributes]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
# GH 7349
|
||||
# loc with a multi-index seems to be doing fallback
|
||||
df = DataFrame(
|
||||
np.arange(12).reshape(-1, 1),
|
||||
index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]]),
|
||||
)
|
||||
|
||||
expected = df.loc[([1, 2],), :]
|
||||
result = df.loc[[1, 2]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_loc_multiindex_incomplete(self):
|
||||
# GH 7399
|
||||
# incomplete indexers
|
||||
s = Series(
|
||||
np.arange(15, dtype="int64"),
|
||||
MultiIndex.from_product([range(5), ["a", "b", "c"]]),
|
||||
)
|
||||
expected = s.loc[:, "a":"c"]
|
||||
|
||||
result = s.loc[0:4, "a":"c"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.loc[:4, "a":"c"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.loc[0:, "a":"c"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# GH 7400
|
||||
# multiindexer getitem with list of indexers skips wrong element
|
||||
s = Series(
|
||||
np.arange(15, dtype="int64"),
|
||||
MultiIndex.from_product([range(5), ["a", "b", "c"]]),
|
||||
)
|
||||
expected = s.iloc[[6, 7, 8, 12, 13, 14]]
|
||||
result = s.loc[2:4:2, "a":"c"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_get_loc_single_level(self, single_level_multiindex):
|
||||
single_level = single_level_multiindex
|
||||
s = Series(
|
||||
np.random.default_rng(2).standard_normal(len(single_level)),
|
||||
index=single_level,
|
||||
)
|
||||
for k in single_level.values:
|
||||
s[k]
|
||||
|
||||
def test_loc_getitem_int_slice(self):
|
||||
# GH 3053
|
||||
# loc should treat integer slices like label slices
|
||||
|
||||
index = MultiIndex.from_product([[6, 7, 8], ["a", "b"]])
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index)
|
||||
result = df.loc[6:8, :]
|
||||
expected = df
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
index = MultiIndex.from_product([[10, 20, 30], ["a", "b"]])
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index)
|
||||
result = df.loc[20:30, :]
|
||||
expected = df.iloc[2:]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# doc examples
|
||||
result = df.loc[10, :]
|
||||
expected = df.iloc[0:2]
|
||||
expected.index = ["a", "b"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[:, 10]
|
||||
expected = df[10]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer_type_1", (list, tuple, set, slice, np.ndarray, Series, Index)
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"indexer_type_2", (list, tuple, set, slice, np.ndarray, Series, Index)
|
||||
)
|
||||
def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2):
|
||||
# GH #19686
|
||||
# .loc should work with nested indexers which can be
|
||||
# any list-like objects (see `is_list_like` (`pandas.api.types`)) or slices
|
||||
|
||||
def convert_nested_indexer(indexer_type, keys):
|
||||
if indexer_type == np.ndarray:
|
||||
return np.array(keys)
|
||||
if indexer_type == slice:
|
||||
return slice(*keys)
|
||||
return indexer_type(keys)
|
||||
|
||||
a = [10, 20, 30]
|
||||
b = [1, 2, 3]
|
||||
index = MultiIndex.from_product([a, b])
|
||||
df = DataFrame(
|
||||
np.arange(len(index), dtype="int64"), index=index, columns=["Data"]
|
||||
)
|
||||
|
||||
keys = ([10, 20], [2, 3])
|
||||
types = (indexer_type_1, indexer_type_2)
|
||||
|
||||
# check indexers with all the combinations of nested objects
|
||||
# of all the valid types
|
||||
indexer = tuple(
|
||||
convert_nested_indexer(indexer_type, k)
|
||||
for indexer_type, k in zip(types, keys)
|
||||
)
|
||||
if indexer_type_1 is set or indexer_type_2 is set:
|
||||
with pytest.raises(TypeError, match="as an indexer is not supported"):
|
||||
df.loc[indexer, "Data"]
|
||||
|
||||
return
|
||||
else:
|
||||
result = df.loc[indexer, "Data"]
|
||||
expected = Series(
|
||||
[1, 2, 4, 5], name="Data", index=MultiIndex.from_product(keys)
|
||||
)
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_multiindex_loc_one_dimensional_tuple(self, frame_or_series):
|
||||
# GH#37711
|
||||
mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
|
||||
obj = frame_or_series([1, 2], index=mi)
|
||||
obj.loc[("a",)] = 0
|
||||
expected = frame_or_series([0, 2], index=mi)
|
||||
tm.assert_equal(obj, expected)
|
||||
|
||||
@pytest.mark.parametrize("indexer", [("a",), ("a")])
|
||||
def test_multiindex_one_dimensional_tuple_columns(self, indexer):
|
||||
# GH#37711
|
||||
mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
|
||||
obj = DataFrame([1, 2], index=mi)
|
||||
obj.loc[indexer, :] = 0
|
||||
expected = DataFrame([0, 2], index=mi)
|
||||
tm.assert_frame_equal(obj, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer, exp_value", [(slice(None), 1.0), ((1, 2), np.nan)]
|
||||
)
|
||||
def test_multiindex_setitem_columns_enlarging(self, indexer, exp_value):
|
||||
# GH#39147
|
||||
mi = MultiIndex.from_tuples([(1, 2), (3, 4)])
|
||||
df = DataFrame([[1, 2], [3, 4]], index=mi, columns=["a", "b"])
|
||||
df.loc[indexer, ["c", "d"]] = 1.0
|
||||
expected = DataFrame(
|
||||
[[1, 2, 1.0, 1.0], [3, 4, exp_value, exp_value]],
|
||||
index=mi,
|
||||
columns=["a", "b", "c", "d"],
|
||||
)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_sorted_multiindex_after_union(self):
|
||||
# GH#44752
|
||||
midx = MultiIndex.from_product(
|
||||
[pd.date_range("20110101", periods=2), Index(["a", "b"])]
|
||||
)
|
||||
ser1 = Series(1, index=midx)
|
||||
ser2 = Series(1, index=midx[:2])
|
||||
df = pd.concat([ser1, ser2], axis=1)
|
||||
expected = df.copy()
|
||||
result = df.loc["2011-01-01":"2011-01-02"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = DataFrame({0: ser1, 1: ser2})
|
||||
result = df.loc["2011-01-01":"2011-01-02"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = pd.concat([ser1, ser2.reindex(ser1.index)], axis=1)
|
||||
result = df.loc["2011-01-01":"2011-01-02"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_loc_no_second_level_index(self):
|
||||
# GH#43599
|
||||
df = DataFrame(
|
||||
index=MultiIndex.from_product([list("ab"), list("cd"), list("e")]),
|
||||
columns=["Val"],
|
||||
)
|
||||
res = df.loc[np.s_[:, "c", :]]
|
||||
expected = DataFrame(
|
||||
index=MultiIndex.from_product([list("ab"), list("e")]), columns=["Val"]
|
||||
)
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
||||
def test_loc_multi_index_key_error(self):
|
||||
# GH 51892
|
||||
df = DataFrame(
|
||||
{
|
||||
(1, 2): ["a", "b", "c"],
|
||||
(1, 3): ["d", "e", "f"],
|
||||
(2, 2): ["g", "h", "i"],
|
||||
(2, 4): ["j", "k", "l"],
|
||||
}
|
||||
)
|
||||
with pytest.raises(KeyError, match=r"(1, 4)"):
|
||||
df.loc[0, (1, 4)]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer, pos",
|
||||
[
|
||||
([], []), # empty ok
|
||||
(["A"], slice(3)),
|
||||
(["A", "D"], []), # "D" isn't present -> raise
|
||||
(["D", "E"], []), # no values found -> raise
|
||||
(["D"], []), # same, with single item list: GH 27148
|
||||
(pd.IndexSlice[:, ["foo"]], slice(2, None, 3)),
|
||||
(pd.IndexSlice[:, ["foo", "bah"]], slice(2, None, 3)),
|
||||
],
|
||||
)
|
||||
def test_loc_getitem_duplicates_multiindex_missing_indexers(indexer, pos):
|
||||
# GH 7866
|
||||
# multi-index slicing with missing indexers
|
||||
idx = MultiIndex.from_product(
|
||||
[["A", "B", "C"], ["foo", "bar", "baz"]], names=["one", "two"]
|
||||
)
|
||||
ser = Series(np.arange(9, dtype="int64"), index=idx).sort_index()
|
||||
expected = ser.iloc[pos]
|
||||
|
||||
if expected.size == 0 and indexer != []:
|
||||
with pytest.raises(KeyError, match=str(indexer)):
|
||||
ser.loc[indexer]
|
||||
elif indexer == (slice(None), ["foo", "bah"]):
|
||||
# "bah" is not in idx.levels[1], raising KeyError enforced in 2.0
|
||||
with pytest.raises(KeyError, match="'bah'"):
|
||||
ser.loc[indexer]
|
||||
else:
|
||||
result = ser.loc[indexer]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("columns_indexer", [([], slice(None)), (["foo"], [])])
|
||||
def test_loc_getitem_duplicates_multiindex_empty_indexer(columns_indexer):
|
||||
# GH 8737
|
||||
# empty indexer
|
||||
multi_index = MultiIndex.from_product((["foo", "bar", "baz"], ["alpha", "beta"]))
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((5, 6)),
|
||||
index=range(5),
|
||||
columns=multi_index,
|
||||
)
|
||||
df = df.sort_index(level=0, axis=1)
|
||||
|
||||
expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0])
|
||||
result = df.loc[:, columns_indexer]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_getitem_duplicates_multiindex_non_scalar_type_object():
|
||||
# regression from < 0.14.0
|
||||
# GH 7914
|
||||
df = DataFrame(
|
||||
[[np.mean, np.median], ["mean", "median"]],
|
||||
columns=MultiIndex.from_tuples([("functs", "mean"), ("functs", "median")]),
|
||||
index=["function", "name"],
|
||||
)
|
||||
result = df.loc["function", ("functs", "mean")]
|
||||
expected = np.mean
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_loc_getitem_tuple_plus_slice():
|
||||
# GH 671
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": np.arange(10),
|
||||
"b": np.arange(10),
|
||||
"c": np.random.default_rng(2).standard_normal(10),
|
||||
"d": np.random.default_rng(2).standard_normal(10),
|
||||
}
|
||||
).set_index(["a", "b"])
|
||||
expected = df.loc[0, 0]
|
||||
result = df.loc[(0, 0), :]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_getitem_int(frame_random_data_integer_multi_index):
|
||||
df = frame_random_data_integer_multi_index
|
||||
result = df.loc[1]
|
||||
expected = df[-3:]
|
||||
expected.index = expected.index.droplevel(0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_getitem_int_raises_exception(frame_random_data_integer_multi_index):
|
||||
df = frame_random_data_integer_multi_index
|
||||
with pytest.raises(KeyError, match=r"^3$"):
|
||||
df.loc[3]
|
||||
|
||||
|
||||
def test_loc_getitem_lowerdim_corner(multiindex_dataframe_random_data):
|
||||
df = multiindex_dataframe_random_data
|
||||
|
||||
# test setup - check key not in dataframe
|
||||
with pytest.raises(KeyError, match=r"^\('bar', 'three'\)$"):
|
||||
df.loc[("bar", "three"), "B"]
|
||||
|
||||
# in theory should be inserting in a sorted space????
|
||||
df.loc[("bar", "three"), "B"] = 0
|
||||
expected = 0
|
||||
result = df.sort_index().loc[("bar", "three"), "B"]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_loc_setitem_single_column_slice():
|
||||
# case from https://github.com/pandas-dev/pandas/issues/27841
|
||||
df = DataFrame(
|
||||
"string",
|
||||
index=list("abcd"),
|
||||
columns=MultiIndex.from_product([["Main"], ("another", "one")]),
|
||||
)
|
||||
df["labels"] = "a"
|
||||
df.loc[:, "labels"] = df.index
|
||||
tm.assert_numpy_array_equal(np.asarray(df["labels"]), np.asarray(df.index))
|
||||
|
||||
# test with non-object block
|
||||
df = DataFrame(
|
||||
np.nan,
|
||||
index=range(4),
|
||||
columns=MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]),
|
||||
)
|
||||
expected = df.copy()
|
||||
df.loc[:, "B"] = np.arange(4)
|
||||
expected.iloc[:, 2] = np.arange(4)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
|
||||
def test_loc_nan_multiindex(using_infer_string):
|
||||
# GH 5286
|
||||
tups = [
|
||||
("Good Things", "C", np.nan),
|
||||
("Good Things", "R", np.nan),
|
||||
("Bad Things", "C", np.nan),
|
||||
("Bad Things", "T", np.nan),
|
||||
("Okay Things", "N", "B"),
|
||||
("Okay Things", "N", "D"),
|
||||
("Okay Things", "B", np.nan),
|
||||
("Okay Things", "D", np.nan),
|
||||
]
|
||||
df = DataFrame(
|
||||
np.ones((8, 4)),
|
||||
columns=Index(["d1", "d2", "d3", "d4"]),
|
||||
index=MultiIndex.from_tuples(tups, names=["u1", "u2", "u3"]),
|
||||
)
|
||||
result = df.loc["Good Things"].loc["C"]
|
||||
expected = DataFrame(
|
||||
np.ones((1, 4)),
|
||||
index=Index(
|
||||
[np.nan],
|
||||
dtype="object" if not using_infer_string else "string[pyarrow_numpy]",
|
||||
name="u3",
|
||||
),
|
||||
columns=Index(["d1", "d2", "d3", "d4"]),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_period_string_indexing():
|
||||
# GH 9892
|
||||
a = pd.period_range("2013Q1", "2013Q4", freq="Q")
|
||||
i = (1111, 2222, 3333)
|
||||
idx = MultiIndex.from_product((a, i), names=("Period", "CVR"))
|
||||
df = DataFrame(
|
||||
index=idx,
|
||||
columns=(
|
||||
"OMS",
|
||||
"OMK",
|
||||
"RES",
|
||||
"DRIFT_IND",
|
||||
"OEVRIG_IND",
|
||||
"FIN_IND",
|
||||
"VARE_UD",
|
||||
"LOEN_UD",
|
||||
"FIN_UD",
|
||||
),
|
||||
)
|
||||
result = df.loc[("2013Q1", 1111), "OMS"]
|
||||
|
||||
alt = df.loc[(a[0], 1111), "OMS"]
|
||||
assert np.isnan(alt)
|
||||
|
||||
# Because the resolution of the string matches, it is an exact lookup,
|
||||
# not a slice
|
||||
assert np.isnan(result)
|
||||
|
||||
alt = df.loc[("2013Q1", 1111), "OMS"]
|
||||
assert np.isnan(alt)
|
||||
|
||||
|
||||
def test_loc_datetime_mask_slicing():
|
||||
# GH 16699
|
||||
dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"])
|
||||
m_idx = MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"])
|
||||
df = DataFrame(
|
||||
data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"]
|
||||
)
|
||||
result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"]
|
||||
expected = Series(
|
||||
[3],
|
||||
name="C1",
|
||||
index=MultiIndex.from_tuples(
|
||||
[(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))],
|
||||
names=["Idx1", "Idx2"],
|
||||
),
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_datetime_series_tuple_slicing():
|
||||
# https://github.com/pandas-dev/pandas/issues/35858
|
||||
date = pd.Timestamp("2000")
|
||||
ser = Series(
|
||||
1,
|
||||
index=MultiIndex.from_tuples([("a", date)], names=["a", "b"]),
|
||||
name="c",
|
||||
)
|
||||
result = ser.loc[:, [date]]
|
||||
tm.assert_series_equal(result, ser)
|
||||
|
||||
|
||||
def test_loc_with_mi_indexer():
|
||||
# https://github.com/pandas-dev/pandas/issues/35351
|
||||
df = DataFrame(
|
||||
data=[["a", 1], ["a", 0], ["b", 1], ["c", 2]],
|
||||
index=MultiIndex.from_tuples(
|
||||
[(0, 1), (1, 0), (1, 1), (1, 1)], names=["index", "date"]
|
||||
),
|
||||
columns=["author", "price"],
|
||||
)
|
||||
idx = MultiIndex.from_tuples([(0, 1), (1, 1)], names=["index", "date"])
|
||||
result = df.loc[idx, :]
|
||||
expected = DataFrame(
|
||||
[["a", 1], ["b", 1], ["c", 2]],
|
||||
index=MultiIndex.from_tuples([(0, 1), (1, 1), (1, 1)], names=["index", "date"]),
|
||||
columns=["author", "price"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_mi_with_level1_named_0():
|
||||
# GH#37194
|
||||
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
|
||||
|
||||
ser = Series(range(3), index=dti)
|
||||
df = ser.to_frame()
|
||||
df[1] = dti
|
||||
|
||||
df2 = df.set_index(0, append=True)
|
||||
assert df2.index.names == (None, 0)
|
||||
df2.index.get_loc(dti[0]) # smoke test
|
||||
|
||||
result = df2.loc[dti[0]]
|
||||
expected = df2.iloc[[0]].droplevel(None)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
ser2 = df2[1]
|
||||
assert ser2.index.names == (None, 0)
|
||||
|
||||
result = ser2.loc[dti[0]]
|
||||
expected = ser2.iloc[[0]].droplevel(None)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_getitem_str_slice():
|
||||
# GH#15928
|
||||
df = DataFrame(
|
||||
[
|
||||
["20160525 13:30:00.023", "MSFT", "51.95", "51.95"],
|
||||
["20160525 13:30:00.048", "GOOG", "720.50", "720.93"],
|
||||
["20160525 13:30:00.076", "AAPL", "98.55", "98.56"],
|
||||
["20160525 13:30:00.131", "AAPL", "98.61", "98.62"],
|
||||
["20160525 13:30:00.135", "MSFT", "51.92", "51.95"],
|
||||
["20160525 13:30:00.135", "AAPL", "98.61", "98.62"],
|
||||
],
|
||||
columns="time,ticker,bid,ask".split(","),
|
||||
)
|
||||
df2 = df.set_index(["ticker", "time"]).sort_index()
|
||||
|
||||
res = df2.loc[("AAPL", slice("2016-05-25 13:30:00")), :].droplevel(0)
|
||||
expected = df2.loc["AAPL"].loc[slice("2016-05-25 13:30:00"), :]
|
||||
tm.assert_frame_equal(res, expected)
|
||||
|
||||
|
||||
def test_3levels_leading_period_index():
|
||||
# GH#24091
|
||||
pi = pd.PeriodIndex(
|
||||
["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"],
|
||||
name="datetime",
|
||||
freq="D",
|
||||
)
|
||||
lev2 = ["A", "A", "Z", "W"]
|
||||
lev3 = ["B", "C", "Q", "F"]
|
||||
mi = MultiIndex.from_arrays([pi, lev2, lev3])
|
||||
|
||||
ser = Series(range(4), index=mi, dtype=np.float64)
|
||||
result = ser.loc[(pi[0], "A", "B")]
|
||||
assert result == 0.0
|
||||
|
||||
|
||||
class TestKeyErrorsWithMultiIndex:
|
||||
def test_missing_keys_raises_keyerror(self):
|
||||
# GH#27420 KeyError, not TypeError
|
||||
df = DataFrame(np.arange(12).reshape(4, 3), columns=["A", "B", "C"])
|
||||
df2 = df.set_index(["A", "B"])
|
||||
|
||||
with pytest.raises(KeyError, match="1"):
|
||||
df2.loc[(1, 6)]
|
||||
|
||||
def test_missing_key_raises_keyerror2(self):
|
||||
# GH#21168 KeyError, not "IndexingError: Too many indexers"
|
||||
ser = Series(-1, index=MultiIndex.from_product([[0, 1]] * 2))
|
||||
|
||||
with pytest.raises(KeyError, match=r"\(0, 3\)"):
|
||||
ser.loc[0, 3]
|
||||
|
||||
def test_missing_key_combination(self):
|
||||
# GH: 19556
|
||||
mi = MultiIndex.from_arrays(
|
||||
[
|
||||
np.array(["a", "a", "b", "b"]),
|
||||
np.array(["1", "2", "2", "3"]),
|
||||
np.array(["c", "d", "c", "d"]),
|
||||
],
|
||||
names=["one", "two", "three"],
|
||||
)
|
||||
df = DataFrame(np.random.default_rng(2).random((4, 3)), index=mi)
|
||||
msg = r"\('b', '1', slice\(None, None, None\)\)"
|
||||
with pytest.raises(KeyError, match=msg):
|
||||
df.loc[("b", "1", slice(None)), :]
|
||||
with pytest.raises(KeyError, match=msg):
|
||||
df.index.get_locs(("b", "1", slice(None)))
|
||||
with pytest.raises(KeyError, match=r"\('b', '1'\)"):
|
||||
df.loc[("b", "1"), :]
|
||||
|
||||
|
||||
def test_getitem_loc_commutability(multiindex_year_month_day_dataframe_random_data):
|
||||
df = multiindex_year_month_day_dataframe_random_data
|
||||
ser = df["A"]
|
||||
result = ser[2000, 5]
|
||||
expected = df.loc[2000, 5]["A"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_with_nan():
|
||||
# GH: 27104
|
||||
df = DataFrame(
|
||||
{"col": [1, 2, 5], "ind1": ["a", "d", np.nan], "ind2": [1, 4, 5]}
|
||||
).set_index(["ind1", "ind2"])
|
||||
result = df.loc[["a"]]
|
||||
expected = DataFrame(
|
||||
{"col": [1]}, index=MultiIndex.from_tuples([("a", 1)], names=["ind1", "ind2"])
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc["a"]
|
||||
expected = DataFrame({"col": [1]}, index=Index([1], name="ind2"))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_getitem_non_found_tuple():
|
||||
# GH: 25236
|
||||
df = DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"]).set_index(
|
||||
["a", "b", "c"]
|
||||
)
|
||||
with pytest.raises(KeyError, match=r"\(2\.0, 2\.0, 3\.0\)"):
|
||||
df.loc[(2.0, 2.0, 3.0)]
|
||||
|
||||
|
||||
def test_get_loc_datetime_index():
|
||||
# GH#24263
|
||||
index = pd.date_range("2001-01-01", periods=100)
|
||||
mi = MultiIndex.from_arrays([index])
|
||||
# Check if get_loc matches for Index and MultiIndex
|
||||
assert mi.get_loc("2001-01") == slice(0, 31, None)
|
||||
assert index.get_loc("2001-01") == slice(0, 31, None)
|
||||
|
||||
loc = mi[::2].get_loc("2001-01")
|
||||
expected = index[::2].get_loc("2001-01")
|
||||
assert loc == expected
|
||||
|
||||
loc = mi.repeat(2).get_loc("2001-01")
|
||||
expected = index.repeat(2).get_loc("2001-01")
|
||||
assert loc == expected
|
||||
|
||||
loc = mi.append(mi).get_loc("2001-01")
|
||||
expected = index.append(index).get_loc("2001-01")
|
||||
# TODO: standardize return type for MultiIndex.get_loc
|
||||
tm.assert_numpy_array_equal(loc.nonzero()[0], expected)
|
||||
|
||||
|
||||
def test_loc_setitem_indexer_differently_ordered():
|
||||
# GH#34603
|
||||
mi = MultiIndex.from_product([["a", "b"], [0, 1]])
|
||||
df = DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=mi)
|
||||
|
||||
indexer = ("a", [1, 0])
|
||||
df.loc[indexer, :] = np.array([[9, 10], [11, 12]])
|
||||
expected = DataFrame([[11, 12], [9, 10], [5, 6], [7, 8]], index=mi)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
|
||||
def test_loc_getitem_index_differently_ordered_slice_none():
|
||||
# GH#31330
|
||||
df = DataFrame(
|
||||
[[1, 2], [3, 4], [5, 6], [7, 8]],
|
||||
index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
|
||||
columns=["a", "b"],
|
||||
)
|
||||
result = df.loc[(slice(None), [2, 1]), :]
|
||||
expected = DataFrame(
|
||||
[[3, 4], [7, 8], [1, 2], [5, 6]],
|
||||
index=[["a", "b", "a", "b"], [2, 2, 1, 1]],
|
||||
columns=["a", "b"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("indexer", [[1, 2, 7, 6, 2, 3, 8, 7], [1, 2, 7, 6, 3, 8]])
|
||||
def test_loc_getitem_index_differently_ordered_slice_none_duplicates(indexer):
|
||||
# GH#40978
|
||||
df = DataFrame(
|
||||
[1] * 8,
|
||||
index=MultiIndex.from_tuples(
|
||||
[(1, 1), (1, 2), (1, 7), (1, 6), (2, 2), (2, 3), (2, 8), (2, 7)]
|
||||
),
|
||||
columns=["a"],
|
||||
)
|
||||
result = df.loc[(slice(None), indexer), :]
|
||||
expected = DataFrame(
|
||||
[1] * 8,
|
||||
index=[[1, 1, 2, 1, 2, 1, 2, 2], [1, 2, 2, 7, 7, 6, 3, 8]],
|
||||
columns=["a"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[df.index.isin(indexer, level=1), :]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
|
||||
def test_loc_getitem_drops_levels_for_one_row_dataframe():
|
||||
# GH#10521 "x" and "z" are both scalar indexing, so those levels are dropped
|
||||
mi = MultiIndex.from_arrays([["x"], ["y"], ["z"]], names=["a", "b", "c"])
|
||||
df = DataFrame({"d": [0]}, index=mi)
|
||||
expected = df.droplevel([0, 2])
|
||||
result = df.loc["x", :, "z"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
ser = Series([0], index=mi)
|
||||
result = ser.loc["x", :, "z"]
|
||||
expected = Series([0], index=Index(["y"], name="b"))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_mi_columns_loc_list_label_order():
|
||||
# GH 10710
|
||||
cols = MultiIndex.from_product([["A", "B", "C"], [1, 2]])
|
||||
df = DataFrame(np.zeros((5, 6)), columns=cols)
|
||||
result = df.loc[:, ["B", "A"]]
|
||||
expected = DataFrame(
|
||||
np.zeros((5, 4)),
|
||||
columns=MultiIndex.from_tuples([("B", 1), ("B", 2), ("A", 1), ("A", 2)]),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_mi_partial_indexing_list_raises():
|
||||
# GH 13501
|
||||
frame = DataFrame(
|
||||
np.arange(12).reshape((4, 3)),
|
||||
index=[["a", "a", "b", "b"], [1, 2, 1, 2]],
|
||||
columns=[["Ohio", "Ohio", "Colorado"], ["Green", "Red", "Green"]],
|
||||
)
|
||||
frame.index.names = ["key1", "key2"]
|
||||
frame.columns.names = ["state", "color"]
|
||||
with pytest.raises(KeyError, match="\\[2\\] not in index"):
|
||||
frame.loc[["b", 2], "Colorado"]
|
||||
|
||||
|
||||
def test_mi_indexing_list_nonexistent_raises():
|
||||
# GH 15452
|
||||
s = Series(range(4), index=MultiIndex.from_product([[1, 2], ["a", "b"]]))
|
||||
with pytest.raises(KeyError, match="\\['not' 'found'\\] not in index"):
|
||||
s.loc[["not", "found"]]
|
||||
|
||||
|
||||
def test_mi_add_cell_missing_row_non_unique():
|
||||
# GH 16018
|
||||
result = DataFrame(
|
||||
[[1, 2, 5, 6], [3, 4, 7, 8]],
|
||||
index=["a", "a"],
|
||||
columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
|
||||
)
|
||||
result.loc["c"] = -1
|
||||
result.loc["c", (1, "A")] = 3
|
||||
result.loc["d", (1, "A")] = 3
|
||||
expected = DataFrame(
|
||||
[
|
||||
[1.0, 2.0, 5.0, 6.0],
|
||||
[3.0, 4.0, 7.0, 8.0],
|
||||
[3.0, -1.0, -1, -1],
|
||||
[3.0, np.nan, np.nan, np.nan],
|
||||
],
|
||||
index=["a", "a", "c", "d"],
|
||||
columns=MultiIndex.from_product([[1, 2], ["A", "B"]]),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_get_scalar_casting_to_float():
|
||||
# GH#41369
|
||||
df = DataFrame(
|
||||
{"a": 1.0, "b": 2}, index=MultiIndex.from_arrays([[3], [4]], names=["c", "d"])
|
||||
)
|
||||
result = df.loc[(3, 4), "b"]
|
||||
assert result == 2
|
||||
assert isinstance(result, np.int64)
|
||||
result = df.loc[[(3, 4)], "b"].iloc[0]
|
||||
assert result == 2
|
||||
assert isinstance(result, np.int64)
|
||||
|
||||
|
||||
def test_loc_empty_single_selector_with_names():
|
||||
# GH 19517
|
||||
idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=[1, 0])
|
||||
s2 = Series(index=idx, dtype=np.float64)
|
||||
result = s2.loc["a"]
|
||||
expected = Series([np.nan, np.nan], index=Index(["A", "B"], name=0))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_keyerror_rightmost_key_missing():
|
||||
# GH 20951
|
||||
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": [100, 100, 200, 200, 300, 300],
|
||||
"B": [10, 10, 20, 21, 31, 33],
|
||||
"C": range(6),
|
||||
}
|
||||
)
|
||||
df = df.set_index(["A", "B"])
|
||||
with pytest.raises(KeyError, match="^1$"):
|
||||
df.loc[(100, 1)]
|
||||
|
||||
|
||||
def test_multindex_series_loc_with_tuple_label():
|
||||
# GH#43908
|
||||
mi = MultiIndex.from_tuples([(1, 2), (3, (4, 5))])
|
||||
ser = Series([1, 2], index=mi)
|
||||
result = ser.loc[(3, (4, 5))]
|
||||
assert result == 2
|
@ -0,0 +1,235 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas._libs.index as libindex
|
||||
from pandas.errors import PerformanceWarning
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
CategoricalDtype,
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.boolean import BooleanDtype
|
||||
|
||||
|
||||
class TestMultiIndexBasic:
|
||||
def test_multiindex_perf_warn(self):
|
||||
df = DataFrame(
|
||||
{
|
||||
"jim": [0, 0, 1, 1],
|
||||
"joe": ["x", "x", "z", "y"],
|
||||
"jolie": np.random.default_rng(2).random(4),
|
||||
}
|
||||
).set_index(["jim", "joe"])
|
||||
|
||||
with tm.assert_produces_warning(PerformanceWarning):
|
||||
df.loc[(1, "z")]
|
||||
|
||||
df = df.iloc[[2, 1, 3, 0]]
|
||||
with tm.assert_produces_warning(PerformanceWarning):
|
||||
df.loc[(0,)]
|
||||
|
||||
@pytest.mark.parametrize("offset", [-5, 5])
|
||||
def test_indexing_over_hashtable_size_cutoff(self, monkeypatch, offset):
|
||||
size_cutoff = 20
|
||||
n = size_cutoff + offset
|
||||
|
||||
with monkeypatch.context():
|
||||
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
|
||||
s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n))))
|
||||
|
||||
# hai it works!
|
||||
assert s[("a", 5)] == 5
|
||||
assert s[("a", 6)] == 6
|
||||
assert s[("a", 7)] == 7
|
||||
|
||||
def test_multi_nan_indexing(self):
|
||||
# GH 3588
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": ["R1", "R2", np.nan, "R4"],
|
||||
"b": ["C1", "C2", "C3", "C4"],
|
||||
"c": [10, 15, np.nan, 20],
|
||||
}
|
||||
)
|
||||
result = df.set_index(["a", "b"], drop=False)
|
||||
expected = DataFrame(
|
||||
{
|
||||
"a": ["R1", "R2", np.nan, "R4"],
|
||||
"b": ["C1", "C2", "C3", "C4"],
|
||||
"c": [10, 15, np.nan, 20],
|
||||
},
|
||||
index=[
|
||||
Index(["R1", "R2", np.nan, "R4"], name="a"),
|
||||
Index(["C1", "C2", "C3", "C4"], name="b"),
|
||||
],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_exclusive_nat_column_indexing(self):
|
||||
# GH 38025
|
||||
# test multi indexing when one column exclusively contains NaT values
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": [pd.NaT, pd.NaT, pd.NaT, pd.NaT],
|
||||
"b": ["C1", "C2", "C3", "C4"],
|
||||
"c": [10, 15, np.nan, 20],
|
||||
}
|
||||
)
|
||||
df = df.set_index(["a", "b"])
|
||||
expected = DataFrame(
|
||||
{
|
||||
"c": [10, 15, np.nan, 20],
|
||||
},
|
||||
index=[
|
||||
Index([pd.NaT, pd.NaT, pd.NaT, pd.NaT], name="a"),
|
||||
Index(["C1", "C2", "C3", "C4"], name="b"),
|
||||
],
|
||||
)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_nested_tuples_duplicates(self):
|
||||
# GH#30892
|
||||
|
||||
dti = pd.to_datetime(["20190101", "20190101", "20190102"])
|
||||
idx = Index(["a", "a", "c"])
|
||||
mi = MultiIndex.from_arrays([dti, idx], names=["index1", "index2"])
|
||||
|
||||
df = DataFrame({"c1": [1, 2, 3], "c2": [np.nan, np.nan, np.nan]}, index=mi)
|
||||
|
||||
expected = DataFrame({"c1": df["c1"], "c2": [1.0, 1.0, np.nan]}, index=mi)
|
||||
|
||||
df2 = df.copy(deep=True)
|
||||
df2.loc[(dti[0], "a"), "c2"] = 1.0
|
||||
tm.assert_frame_equal(df2, expected)
|
||||
|
||||
df3 = df.copy(deep=True)
|
||||
df3.loc[[(dti[0], "a")], "c2"] = 1.0
|
||||
tm.assert_frame_equal(df3, expected)
|
||||
|
||||
def test_multiindex_with_datatime_level_preserves_freq(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/35563
|
||||
idx = Index(range(2), name="A")
|
||||
dti = pd.date_range("2020-01-01", periods=7, freq="D", name="B")
|
||||
mi = MultiIndex.from_product([idx, dti])
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((14, 2)), index=mi)
|
||||
result = df.loc[0].index
|
||||
tm.assert_index_equal(result, dti)
|
||||
assert result.freq == dti.freq
|
||||
|
||||
def test_multiindex_complex(self):
|
||||
# GH#42145
|
||||
complex_data = [1 + 2j, 4 - 3j, 10 - 1j]
|
||||
non_complex_data = [3, 4, 5]
|
||||
result = DataFrame(
|
||||
{
|
||||
"x": complex_data,
|
||||
"y": non_complex_data,
|
||||
"z": non_complex_data,
|
||||
}
|
||||
)
|
||||
result.set_index(["x", "y"], inplace=True)
|
||||
expected = DataFrame(
|
||||
{"z": non_complex_data},
|
||||
index=MultiIndex.from_arrays(
|
||||
[complex_data, non_complex_data],
|
||||
names=("x", "y"),
|
||||
),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_rename_multiindex_with_duplicates(self):
|
||||
# GH 38015
|
||||
mi = MultiIndex.from_tuples([("A", "cat"), ("B", "cat"), ("B", "cat")])
|
||||
df = DataFrame(index=mi)
|
||||
df = df.rename(index={"A": "Apple"}, level=0)
|
||||
|
||||
mi2 = MultiIndex.from_tuples([("Apple", "cat"), ("B", "cat"), ("B", "cat")])
|
||||
expected = DataFrame(index=mi2)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_series_align_multiindex_with_nan_overlap_only(self):
|
||||
# GH 38439
|
||||
mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
|
||||
mi2 = MultiIndex.from_arrays([[np.nan, 82.0], [np.nan, np.nan]])
|
||||
ser1 = Series([1, 2], index=mi1)
|
||||
ser2 = Series([1, 2], index=mi2)
|
||||
result1, result2 = ser1.align(ser2)
|
||||
|
||||
mi = MultiIndex.from_arrays([[81.0, 82.0, np.nan], [np.nan, np.nan, np.nan]])
|
||||
expected1 = Series([1.0, np.nan, 2.0], index=mi)
|
||||
expected2 = Series([np.nan, 2.0, 1.0], index=mi)
|
||||
|
||||
tm.assert_series_equal(result1, expected1)
|
||||
tm.assert_series_equal(result2, expected2)
|
||||
|
||||
def test_series_align_multiindex_with_nan(self):
|
||||
# GH 38439
|
||||
mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
|
||||
mi2 = MultiIndex.from_arrays([[np.nan, 81.0], [np.nan, np.nan]])
|
||||
ser1 = Series([1, 2], index=mi1)
|
||||
ser2 = Series([1, 2], index=mi2)
|
||||
result1, result2 = ser1.align(ser2)
|
||||
|
||||
mi = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]])
|
||||
expected1 = Series([1, 2], index=mi)
|
||||
expected2 = Series([2, 1], index=mi)
|
||||
|
||||
tm.assert_series_equal(result1, expected1)
|
||||
tm.assert_series_equal(result2, expected2)
|
||||
|
||||
def test_nunique_smoke(self):
|
||||
# GH 34019
|
||||
n = DataFrame([[1, 2], [1, 2]]).set_index([0, 1]).index.nunique()
|
||||
assert n == 1
|
||||
|
||||
def test_multiindex_repeated_keys(self):
|
||||
# GH19414
|
||||
tm.assert_series_equal(
|
||||
Series([1, 2], MultiIndex.from_arrays([["a", "b"]])).loc[
|
||||
["a", "a", "b", "b"]
|
||||
],
|
||||
Series([1, 1, 2, 2], MultiIndex.from_arrays([["a", "a", "b", "b"]])),
|
||||
)
|
||||
|
||||
def test_multiindex_with_na_missing_key(self):
|
||||
# GH46173
|
||||
df = DataFrame.from_dict(
|
||||
{
|
||||
("foo",): [1, 2, 3],
|
||||
("bar",): [5, 6, 7],
|
||||
(None,): [8, 9, 0],
|
||||
}
|
||||
)
|
||||
with pytest.raises(KeyError, match="missing_key"):
|
||||
df[[("missing_key",)]]
|
||||
|
||||
def test_multiindex_dtype_preservation(self):
|
||||
# GH51261
|
||||
columns = MultiIndex.from_tuples([("A", "B")], names=["lvl1", "lvl2"])
|
||||
df = DataFrame(["value"], columns=columns).astype("category")
|
||||
df_no_multiindex = df["A"]
|
||||
assert isinstance(df_no_multiindex["B"].dtype, CategoricalDtype)
|
||||
|
||||
# geopandas 1763 analogue
|
||||
df = DataFrame(
|
||||
[[1, 0], [0, 1]],
|
||||
columns=[
|
||||
["foo", "foo"],
|
||||
["location", "location"],
|
||||
["x", "y"],
|
||||
],
|
||||
).assign(bools=Series([True, False], dtype="boolean"))
|
||||
assert isinstance(df["bools"].dtype, BooleanDtype)
|
||||
|
||||
def test_multiindex_from_tuples_with_nan(self):
|
||||
# GH#23578
|
||||
result = MultiIndex.from_tuples([("a", "b", "c"), np.nan, ("d", "", "")])
|
||||
expected = MultiIndex.from_tuples(
|
||||
[("a", "b", "c"), (np.nan, np.nan, np.nan), ("d", "", "")]
|
||||
)
|
||||
tm.assert_index_equal(result, expected)
|
@ -0,0 +1,269 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
DatetimeIndex,
|
||||
MultiIndex,
|
||||
date_range,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestMultiIndexPartial:
|
||||
def test_getitem_partial_int(self):
|
||||
# GH 12416
|
||||
# with single item
|
||||
l1 = [10, 20]
|
||||
l2 = ["a", "b"]
|
||||
df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2]))
|
||||
expected = DataFrame(index=range(2), columns=l2)
|
||||
result = df[20]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# with list
|
||||
expected = DataFrame(
|
||||
index=range(2), columns=MultiIndex.from_product([l1[1:], l2])
|
||||
)
|
||||
result = df[[20]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# missing item:
|
||||
with pytest.raises(KeyError, match="1"):
|
||||
df[1]
|
||||
with pytest.raises(KeyError, match=r"'\[1\] not in index'"):
|
||||
df[[1]]
|
||||
|
||||
def test_series_slice_partial(self):
|
||||
pass
|
||||
|
||||
def test_xs_partial(
|
||||
self,
|
||||
multiindex_dataframe_random_data,
|
||||
multiindex_year_month_day_dataframe_random_data,
|
||||
):
|
||||
frame = multiindex_dataframe_random_data
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
result = frame.xs("foo")
|
||||
result2 = frame.loc["foo"]
|
||||
expected = frame.T["foo"].T
|
||||
tm.assert_frame_equal(result, expected)
|
||||
tm.assert_frame_equal(result, result2)
|
||||
|
||||
result = ymd.xs((2000, 4))
|
||||
expected = ymd.loc[2000, 4]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# ex from #1796
|
||||
index = MultiIndex(
|
||||
levels=[["foo", "bar"], ["one", "two"], [-1, 1]],
|
||||
codes=[
|
||||
[0, 0, 0, 0, 1, 1, 1, 1],
|
||||
[0, 0, 1, 1, 0, 0, 1, 1],
|
||||
[0, 1, 0, 1, 0, 1, 0, 1],
|
||||
],
|
||||
)
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((8, 4)),
|
||||
index=index,
|
||||
columns=list("abcd"),
|
||||
)
|
||||
|
||||
result = df.xs(("foo", "one"))
|
||||
expected = df.loc["foo", "one"]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_getitem_partial(self, multiindex_year_month_day_dataframe_random_data):
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
ymd = ymd.T
|
||||
result = ymd[2000, 2]
|
||||
|
||||
expected = ymd.reindex(columns=ymd.columns[ymd.columns.codes[1] == 1])
|
||||
expected.columns = expected.columns.droplevel(0).droplevel(0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_fancy_slice_partial(
|
||||
self,
|
||||
multiindex_dataframe_random_data,
|
||||
multiindex_year_month_day_dataframe_random_data,
|
||||
):
|
||||
frame = multiindex_dataframe_random_data
|
||||
result = frame.loc["bar":"baz"]
|
||||
expected = frame[3:7]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
result = ymd.loc[(2000, 2):(2000, 4)]
|
||||
lev = ymd.index.codes[1]
|
||||
expected = ymd[(lev >= 1) & (lev <= 3)]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_getitem_partial_column_select(self):
|
||||
idx = MultiIndex(
|
||||
codes=[[0, 0, 0], [0, 1, 1], [1, 0, 1]],
|
||||
levels=[["a", "b"], ["x", "y"], ["p", "q"]],
|
||||
)
|
||||
df = DataFrame(np.random.default_rng(2).random((3, 2)), index=idx)
|
||||
|
||||
result = df.loc[("a", "y"), :]
|
||||
expected = df.loc[("a", "y")]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[("a", "y"), [1, 0]]
|
||||
expected = df.loc[("a", "y")][[1, 0]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
with pytest.raises(KeyError, match=r"\('a', 'foo'\)"):
|
||||
df.loc[("a", "foo"), :]
|
||||
|
||||
# TODO(ArrayManager) rewrite test to not use .values
|
||||
# exp.loc[2000, 4].values[:] select multiple columns -> .values is not a view
|
||||
@td.skip_array_manager_invalid_test
|
||||
def test_partial_set(
|
||||
self,
|
||||
multiindex_year_month_day_dataframe_random_data,
|
||||
using_copy_on_write,
|
||||
warn_copy_on_write,
|
||||
):
|
||||
# GH #397
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
df = ymd.copy()
|
||||
exp = ymd.copy()
|
||||
df.loc[2000, 4] = 0
|
||||
exp.iloc[65:85] = 0
|
||||
tm.assert_frame_equal(df, exp)
|
||||
|
||||
if using_copy_on_write:
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["A"].loc[2000, 4] = 1
|
||||
df.loc[(2000, 4), "A"] = 1
|
||||
else:
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["A"].loc[2000, 4] = 1
|
||||
exp.iloc[65:85, 0] = 1
|
||||
tm.assert_frame_equal(df, exp)
|
||||
|
||||
df.loc[2000] = 5
|
||||
exp.iloc[:100] = 5
|
||||
tm.assert_frame_equal(df, exp)
|
||||
|
||||
# this works...for now
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["A"].iloc[14] = 5
|
||||
if using_copy_on_write:
|
||||
assert df["A"].iloc[14] == exp["A"].iloc[14]
|
||||
else:
|
||||
assert df["A"].iloc[14] == 5
|
||||
|
||||
@pytest.mark.parametrize("dtype", [int, float])
|
||||
def test_getitem_intkey_leading_level(
|
||||
self, multiindex_year_month_day_dataframe_random_data, dtype
|
||||
):
|
||||
# GH#33355 dont fall-back to positional when leading level is int
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
levels = ymd.index.levels
|
||||
ymd.index = ymd.index.set_levels([levels[0].astype(dtype)] + levels[1:])
|
||||
ser = ymd["A"]
|
||||
mi = ser.index
|
||||
assert isinstance(mi, MultiIndex)
|
||||
if dtype is int:
|
||||
assert mi.levels[0].dtype == np.dtype(int)
|
||||
else:
|
||||
assert mi.levels[0].dtype == np.float64
|
||||
|
||||
assert 14 not in mi.levels[0]
|
||||
assert not mi.levels[0]._should_fallback_to_positional
|
||||
assert not mi._should_fallback_to_positional
|
||||
|
||||
with pytest.raises(KeyError, match="14"):
|
||||
ser[14]
|
||||
|
||||
# ---------------------------------------------------------------------
|
||||
|
||||
def test_setitem_multiple_partial(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
expected = frame.copy()
|
||||
result = frame.copy()
|
||||
result.loc[["foo", "bar"]] = 0
|
||||
expected.loc["foo"] = 0
|
||||
expected.loc["bar"] = 0
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = frame.copy()
|
||||
result = frame.copy()
|
||||
result.loc["foo":"bar"] = 0
|
||||
expected.loc["foo"] = 0
|
||||
expected.loc["bar"] = 0
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = frame["A"].copy()
|
||||
result = frame["A"].copy()
|
||||
result.loc[["foo", "bar"]] = 0
|
||||
expected.loc["foo"] = 0
|
||||
expected.loc["bar"] = 0
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
expected = frame["A"].copy()
|
||||
result = frame["A"].copy()
|
||||
result.loc["foo":"bar"] = 0
|
||||
expected.loc["foo"] = 0
|
||||
expected.loc["bar"] = 0
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"indexer, exp_idx, exp_values",
|
||||
[
|
||||
(
|
||||
slice("2019-2", None),
|
||||
DatetimeIndex(["2019-02-01"], dtype="M8[ns]"),
|
||||
[2, 3],
|
||||
),
|
||||
(
|
||||
slice(None, "2019-2"),
|
||||
date_range("2019", periods=2, freq="MS"),
|
||||
[0, 1, 2, 3],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_partial_getitem_loc_datetime(self, indexer, exp_idx, exp_values):
|
||||
# GH: 25165
|
||||
date_idx = date_range("2019", periods=2, freq="MS")
|
||||
df = DataFrame(
|
||||
list(range(4)),
|
||||
index=MultiIndex.from_product([date_idx, [0, 1]], names=["x", "y"]),
|
||||
)
|
||||
expected = DataFrame(
|
||||
exp_values,
|
||||
index=MultiIndex.from_product([exp_idx, [0, 1]], names=["x", "y"]),
|
||||
)
|
||||
result = df[indexer]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
result = df.loc[indexer]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc(axis=0)[indexer]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[indexer, :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df2 = df.swaplevel(0, 1).sort_index()
|
||||
expected = expected.swaplevel(0, 1).sort_index()
|
||||
|
||||
result = df2.loc[:, indexer, :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_loc_getitem_partial_both_axis():
|
||||
# gh-12660
|
||||
iterables = [["a", "b"], [2, 1]]
|
||||
columns = MultiIndex.from_product(iterables, names=["col1", "col2"])
|
||||
rows = MultiIndex.from_product(iterables, names=["row1", "row2"])
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((4, 4)), index=rows, columns=columns
|
||||
)
|
||||
expected = df.iloc[:2, 2:].droplevel("row1").droplevel("col1", axis=1)
|
||||
result = df.loc["a", "b"]
|
||||
tm.assert_frame_equal(result, expected)
|
@ -0,0 +1,589 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.errors import SettingWithCopyError
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
MultiIndex,
|
||||
Series,
|
||||
date_range,
|
||||
isna,
|
||||
notna,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
def assert_equal(a, b):
|
||||
assert a == b
|
||||
|
||||
|
||||
class TestMultiIndexSetItem:
|
||||
def check(self, target, indexers, value, compare_fn=assert_equal, expected=None):
|
||||
target.loc[indexers] = value
|
||||
result = target.loc[indexers]
|
||||
if expected is None:
|
||||
expected = value
|
||||
compare_fn(result, expected)
|
||||
|
||||
def test_setitem_multiindex(self):
|
||||
# GH#7190
|
||||
cols = ["A", "w", "l", "a", "x", "X", "d", "profit"]
|
||||
index = MultiIndex.from_product(
|
||||
[np.arange(0, 100), np.arange(0, 80)], names=["time", "firm"]
|
||||
)
|
||||
t, n = 0, 2
|
||||
|
||||
df = DataFrame(
|
||||
np.nan,
|
||||
columns=cols,
|
||||
index=index,
|
||||
)
|
||||
self.check(target=df, indexers=((t, n), "X"), value=0)
|
||||
|
||||
df = DataFrame(-999, columns=cols, index=index)
|
||||
self.check(target=df, indexers=((t, n), "X"), value=1)
|
||||
|
||||
df = DataFrame(columns=cols, index=index)
|
||||
self.check(target=df, indexers=((t, n), "X"), value=2)
|
||||
|
||||
# gh-7218: assigning with 0-dim arrays
|
||||
df = DataFrame(-999, columns=cols, index=index)
|
||||
self.check(
|
||||
target=df,
|
||||
indexers=((t, n), "X"),
|
||||
value=np.array(3),
|
||||
expected=3,
|
||||
)
|
||||
|
||||
def test_setitem_multiindex2(self):
|
||||
# GH#5206
|
||||
df = DataFrame(
|
||||
np.arange(25).reshape(5, 5), columns="A,B,C,D,E".split(","), dtype=float
|
||||
)
|
||||
df["F"] = 99
|
||||
row_selection = df["A"] % 2 == 0
|
||||
col_selection = ["B", "C"]
|
||||
df.loc[row_selection, col_selection] = df["F"]
|
||||
output = DataFrame(99.0, index=[0, 2, 4], columns=["B", "C"])
|
||||
tm.assert_frame_equal(df.loc[row_selection, col_selection], output)
|
||||
self.check(
|
||||
target=df,
|
||||
indexers=(row_selection, col_selection),
|
||||
value=df["F"],
|
||||
compare_fn=tm.assert_frame_equal,
|
||||
expected=output,
|
||||
)
|
||||
|
||||
def test_setitem_multiindex3(self):
|
||||
# GH#11372
|
||||
idx = MultiIndex.from_product(
|
||||
[["A", "B", "C"], date_range("2015-01-01", "2015-04-01", freq="MS")]
|
||||
)
|
||||
cols = MultiIndex.from_product(
|
||||
[["foo", "bar"], date_range("2016-01-01", "2016-02-01", freq="MS")]
|
||||
)
|
||||
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).random((12, 4)), index=idx, columns=cols
|
||||
)
|
||||
|
||||
subidx = MultiIndex.from_arrays(
|
||||
[["A", "A"], date_range("2015-01-01", "2015-02-01", freq="MS")]
|
||||
)
|
||||
subcols = MultiIndex.from_arrays(
|
||||
[["foo", "foo"], date_range("2016-01-01", "2016-02-01", freq="MS")]
|
||||
)
|
||||
|
||||
vals = DataFrame(
|
||||
np.random.default_rng(2).random((2, 2)), index=subidx, columns=subcols
|
||||
)
|
||||
self.check(
|
||||
target=df,
|
||||
indexers=(subidx, subcols),
|
||||
value=vals,
|
||||
compare_fn=tm.assert_frame_equal,
|
||||
)
|
||||
# set all columns
|
||||
vals = DataFrame(
|
||||
np.random.default_rng(2).random((2, 4)), index=subidx, columns=cols
|
||||
)
|
||||
self.check(
|
||||
target=df,
|
||||
indexers=(subidx, slice(None, None, None)),
|
||||
value=vals,
|
||||
compare_fn=tm.assert_frame_equal,
|
||||
)
|
||||
# identity
|
||||
copy = df.copy()
|
||||
self.check(
|
||||
target=df,
|
||||
indexers=(df.index, df.columns),
|
||||
value=df,
|
||||
compare_fn=tm.assert_frame_equal,
|
||||
expected=copy,
|
||||
)
|
||||
|
||||
# TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in
|
||||
# all NaNs -> doesn't work in the "split" path (also for BlockManager actually)
|
||||
@td.skip_array_manager_not_yet_implemented
|
||||
def test_multiindex_setitem(self):
|
||||
# GH 3738
|
||||
# setting with a multi-index right hand side
|
||||
arrays = [
|
||||
np.array(["bar", "bar", "baz", "qux", "qux", "bar"]),
|
||||
np.array(["one", "two", "one", "one", "two", "one"]),
|
||||
np.arange(0, 6, 1),
|
||||
]
|
||||
|
||||
df_orig = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((6, 3)),
|
||||
index=arrays,
|
||||
columns=["A", "B", "C"],
|
||||
).sort_index()
|
||||
|
||||
expected = df_orig.loc[["bar"]] * 2
|
||||
df = df_orig.copy()
|
||||
df.loc[["bar"]] *= 2
|
||||
tm.assert_frame_equal(df.loc[["bar"]], expected)
|
||||
|
||||
# raise because these have differing levels
|
||||
msg = "cannot align on a multi-index with out specifying the join levels"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
df.loc["bar"] *= 2
|
||||
|
||||
def test_multiindex_setitem2(self):
|
||||
# from SO
|
||||
# https://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation
|
||||
df_orig = DataFrame.from_dict(
|
||||
{
|
||||
"price": {
|
||||
("DE", "Coal", "Stock"): 2,
|
||||
("DE", "Gas", "Stock"): 4,
|
||||
("DE", "Elec", "Demand"): 1,
|
||||
("FR", "Gas", "Stock"): 5,
|
||||
("FR", "Solar", "SupIm"): 0,
|
||||
("FR", "Wind", "SupIm"): 0,
|
||||
}
|
||||
}
|
||||
)
|
||||
df_orig.index = MultiIndex.from_tuples(
|
||||
df_orig.index, names=["Sit", "Com", "Type"]
|
||||
)
|
||||
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 1, 3]] *= 2
|
||||
|
||||
idx = pd.IndexSlice
|
||||
df = df_orig.copy()
|
||||
df.loc[idx[:, :, "Stock"], :] *= 2
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc[idx[:, :, "Stock"], "price"] *= 2
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_multiindex_assignment(self):
|
||||
# GH3777 part 2
|
||||
|
||||
# mixed dtype
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3),
|
||||
columns=list("abc"),
|
||||
index=[[4, 4, 8], [8, 10, 12]],
|
||||
)
|
||||
df["d"] = np.nan
|
||||
arr = np.array([0.0, 1.0])
|
||||
|
||||
df.loc[4, "d"] = arr
|
||||
tm.assert_series_equal(df.loc[4, "d"], Series(arr, index=[8, 10], name="d"))
|
||||
|
||||
def test_multiindex_assignment_single_dtype(
|
||||
self, using_copy_on_write, warn_copy_on_write
|
||||
):
|
||||
# GH3777 part 2b
|
||||
# single dtype
|
||||
arr = np.array([0.0, 1.0])
|
||||
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3),
|
||||
columns=list("abc"),
|
||||
index=[[4, 4, 8], [8, 10, 12]],
|
||||
dtype=np.int64,
|
||||
)
|
||||
view = df["c"].iloc[:2].values
|
||||
|
||||
# arr can be losslessly cast to int, so this setitem is inplace
|
||||
# INFO(CoW-warn) this does not warn because we directly took .values
|
||||
# above, so no reference to a pandas object is alive for `view`
|
||||
df.loc[4, "c"] = arr
|
||||
exp = Series(arr, index=[8, 10], name="c", dtype="int64")
|
||||
result = df.loc[4, "c"]
|
||||
tm.assert_series_equal(result, exp)
|
||||
|
||||
# extra check for inplace-ness
|
||||
if not using_copy_on_write:
|
||||
tm.assert_numpy_array_equal(view, exp.values)
|
||||
|
||||
# arr + 0.5 cannot be cast losslessly to int, so we upcast
|
||||
with tm.assert_produces_warning(
|
||||
FutureWarning, match="item of incompatible dtype"
|
||||
):
|
||||
df.loc[4, "c"] = arr + 0.5
|
||||
result = df.loc[4, "c"]
|
||||
exp = exp + 0.5
|
||||
tm.assert_series_equal(result, exp)
|
||||
|
||||
# scalar ok
|
||||
with tm.assert_cow_warning(warn_copy_on_write):
|
||||
df.loc[4, "c"] = 10
|
||||
exp = Series(10, index=[8, 10], name="c", dtype="float64")
|
||||
tm.assert_series_equal(df.loc[4, "c"], exp)
|
||||
|
||||
# invalid assignments
|
||||
msg = "Must have equal len keys and value when setting with an iterable"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.loc[4, "c"] = [0, 1, 2, 3]
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.loc[4, "c"] = [0]
|
||||
|
||||
# But with a length-1 listlike column indexer this behaves like
|
||||
# `df.loc[4, "c"] = 0
|
||||
with tm.assert_cow_warning(warn_copy_on_write):
|
||||
df.loc[4, ["c"]] = [0]
|
||||
assert (df.loc[4, "c"] == 0).all()
|
||||
|
||||
def test_groupby_example(self):
|
||||
# groupby example
|
||||
NUM_ROWS = 100
|
||||
NUM_COLS = 10
|
||||
col_names = ["A" + num for num in map(str, np.arange(NUM_COLS).tolist())]
|
||||
index_cols = col_names[:5]
|
||||
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).integers(5, size=(NUM_ROWS, NUM_COLS)),
|
||||
dtype=np.int64,
|
||||
columns=col_names,
|
||||
)
|
||||
df = df.set_index(index_cols).sort_index()
|
||||
grp = df.groupby(level=index_cols[:4])
|
||||
df["new_col"] = np.nan
|
||||
|
||||
# we are actually operating on a copy here
|
||||
# but in this case, that's ok
|
||||
for name, df2 in grp:
|
||||
new_vals = np.arange(df2.shape[0])
|
||||
df.loc[name, "new_col"] = new_vals
|
||||
|
||||
def test_series_setitem(
|
||||
self, multiindex_year_month_day_dataframe_random_data, warn_copy_on_write
|
||||
):
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
s = ymd["A"]
|
||||
|
||||
with tm.assert_cow_warning(warn_copy_on_write):
|
||||
s[2000, 3] = np.nan
|
||||
assert isna(s.values[42:65]).all()
|
||||
assert notna(s.values[:42]).all()
|
||||
assert notna(s.values[65:]).all()
|
||||
|
||||
with tm.assert_cow_warning(warn_copy_on_write):
|
||||
s[2000, 3, 10] = np.nan
|
||||
assert isna(s.iloc[49])
|
||||
|
||||
with pytest.raises(KeyError, match="49"):
|
||||
# GH#33355 dont fall-back to positional when leading level is int
|
||||
s[49]
|
||||
|
||||
def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
df = frame.T.copy()
|
||||
values = df.values.copy()
|
||||
|
||||
result = df[df > 0]
|
||||
expected = df.where(df > 0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df[df > 0] = 5
|
||||
values[values > 0] = 5
|
||||
tm.assert_almost_equal(df.values, values)
|
||||
|
||||
df[df == 5] = 0
|
||||
values[values == 5] = 0
|
||||
tm.assert_almost_equal(df.values, values)
|
||||
|
||||
# a df that needs alignment first
|
||||
df[df[:-1] < 0] = 2
|
||||
np.putmask(values[:-1], values[:-1] < 0, 2)
|
||||
tm.assert_almost_equal(df.values, values)
|
||||
|
||||
with pytest.raises(TypeError, match="boolean values only"):
|
||||
df[df * 0] = 2
|
||||
|
||||
def test_frame_getitem_setitem_multislice(self):
|
||||
levels = [["t1", "t2"], ["a", "b", "c"]]
|
||||
codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]]
|
||||
midx = MultiIndex(codes=codes, levels=levels, names=[None, "id"])
|
||||
df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx)
|
||||
|
||||
result = df.loc[:, "value"]
|
||||
tm.assert_series_equal(df["value"], result)
|
||||
|
||||
result = df.loc[df.index[1:3], "value"]
|
||||
tm.assert_series_equal(df["value"][1:3], result)
|
||||
|
||||
result = df.loc[:, :]
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
result = df
|
||||
df.loc[:, "value"] = 10
|
||||
result["value"] = 10
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
df.loc[:, :] = 10
|
||||
tm.assert_frame_equal(df, result)
|
||||
|
||||
def test_frame_setitem_multi_column(self):
|
||||
df = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((10, 4)),
|
||||
columns=[["a", "a", "b", "b"], [0, 1, 0, 1]],
|
||||
)
|
||||
|
||||
cp = df.copy()
|
||||
cp["a"] = cp["b"]
|
||||
tm.assert_frame_equal(cp["a"], cp["b"])
|
||||
|
||||
# set with ndarray
|
||||
cp = df.copy()
|
||||
cp["a"] = cp["b"].values
|
||||
tm.assert_frame_equal(cp["a"], cp["b"])
|
||||
|
||||
def test_frame_setitem_multi_column2(self):
|
||||
# ---------------------------------------
|
||||
# GH#1803
|
||||
columns = MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")])
|
||||
df = DataFrame(index=[1, 3, 5], columns=columns)
|
||||
|
||||
# Works, but adds a column instead of updating the two existing ones
|
||||
df["A"] = 0.0 # Doesn't work
|
||||
assert (df["A"].values == 0).all()
|
||||
|
||||
# it broadcasts
|
||||
df["B", "1"] = [1, 2, 3]
|
||||
df["A"] = df["B", "1"]
|
||||
|
||||
sliced_a1 = df["A", "1"]
|
||||
sliced_a2 = df["A", "2"]
|
||||
sliced_b1 = df["B", "1"]
|
||||
tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False)
|
||||
tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False)
|
||||
assert sliced_a1.name == ("A", "1")
|
||||
assert sliced_a2.name == ("A", "2")
|
||||
assert sliced_b1.name == ("B", "1")
|
||||
|
||||
def test_loc_getitem_tuple_plus_columns(
|
||||
self, multiindex_year_month_day_dataframe_random_data
|
||||
):
|
||||
# GH #1013
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
df = ymd[:5]
|
||||
|
||||
result = df.loc[(2000, 1, 6), ["A", "B", "C"]]
|
||||
expected = df.loc[2000, 1, 6][["A", "B", "C"]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning")
|
||||
def test_loc_getitem_setitem_slice_integers(self, frame_or_series):
|
||||
index = MultiIndex(
|
||||
levels=[[0, 1, 2], [0, 2]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]
|
||||
)
|
||||
|
||||
obj = DataFrame(
|
||||
np.random.default_rng(2).standard_normal((len(index), 4)),
|
||||
index=index,
|
||||
columns=["a", "b", "c", "d"],
|
||||
)
|
||||
obj = tm.get_obj(obj, frame_or_series)
|
||||
|
||||
res = obj.loc[1:2]
|
||||
exp = obj.reindex(obj.index[2:])
|
||||
tm.assert_equal(res, exp)
|
||||
|
||||
obj.loc[1:2] = 7
|
||||
assert (obj.loc[1:2] == 7).values.all()
|
||||
|
||||
def test_setitem_change_dtype(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
dft = frame.T
|
||||
s = dft["foo", "two"]
|
||||
dft["foo", "two"] = s > s.median()
|
||||
tm.assert_series_equal(dft["foo", "two"], s > s.median())
|
||||
# assert isinstance(dft._data.blocks[1].items, MultiIndex)
|
||||
|
||||
reindexed = dft.reindex(columns=[("foo", "two")])
|
||||
tm.assert_series_equal(reindexed["foo", "two"], s > s.median())
|
||||
|
||||
def test_set_column_scalar_with_loc(
|
||||
self, multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
|
||||
):
|
||||
frame = multiindex_dataframe_random_data
|
||||
subset = frame.index[[1, 4, 5]]
|
||||
|
||||
frame.loc[subset] = 99
|
||||
assert (frame.loc[subset].values == 99).all()
|
||||
|
||||
frame_original = frame.copy()
|
||||
col = frame["B"]
|
||||
with tm.assert_cow_warning(warn_copy_on_write):
|
||||
col[subset] = 97
|
||||
if using_copy_on_write:
|
||||
# chained setitem doesn't work with CoW
|
||||
tm.assert_frame_equal(frame, frame_original)
|
||||
else:
|
||||
assert (frame.loc[subset, "B"] == 97).all()
|
||||
|
||||
def test_nonunique_assignment_1750(self):
|
||||
df = DataFrame(
|
||||
[[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")
|
||||
)
|
||||
|
||||
df = df.set_index(["A", "B"])
|
||||
mi = MultiIndex.from_tuples([(1, 1)])
|
||||
|
||||
df.loc[mi, "C"] = "_"
|
||||
|
||||
assert (df.xs((1, 1))["C"] == "_").all()
|
||||
|
||||
def test_astype_assignment_with_dups(self):
|
||||
# GH 4686
|
||||
# assignment with dups that has a dtype change
|
||||
cols = MultiIndex.from_tuples([("A", "1"), ("B", "1"), ("A", "2")])
|
||||
df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object)
|
||||
index = df.index.copy()
|
||||
|
||||
df["A"] = df["A"].astype(np.float64)
|
||||
tm.assert_index_equal(df.index, index)
|
||||
|
||||
def test_setitem_nonmonotonic(self):
|
||||
# https://github.com/pandas-dev/pandas/issues/31449
|
||||
index = MultiIndex.from_tuples(
|
||||
[("a", "c"), ("b", "x"), ("a", "d")], names=["l1", "l2"]
|
||||
)
|
||||
df = DataFrame(data=[0, 1, 2], index=index, columns=["e"])
|
||||
df.loc["a", "e"] = np.arange(99, 101, dtype="int64")
|
||||
expected = DataFrame({"e": [99, 1, 100]}, index=index)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
|
||||
class TestSetitemWithExpansionMultiIndex:
|
||||
def test_setitem_new_column_mixed_depth(self):
|
||||
arrays = [
|
||||
["a", "top", "top", "routine1", "routine1", "routine2"],
|
||||
["", "OD", "OD", "result1", "result2", "result1"],
|
||||
["", "wx", "wy", "", "", ""],
|
||||
]
|
||||
|
||||
tuples = sorted(zip(*arrays))
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
|
||||
|
||||
result = df.copy()
|
||||
expected = df.copy()
|
||||
result["b"] = [1, 2, 3, 4]
|
||||
expected["b", "", ""] = [1, 2, 3, 4]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_setitem_new_column_all_na(self):
|
||||
# GH#1534
|
||||
mix = MultiIndex.from_tuples([("1a", "2a"), ("1a", "2b"), ("1a", "2c")])
|
||||
df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix)
|
||||
s = Series({(1, 1): 1, (1, 2): 2})
|
||||
df["new"] = s
|
||||
assert df["new"].isna().all()
|
||||
|
||||
def test_setitem_enlargement_keep_index_names(self):
|
||||
# GH#53053
|
||||
mi = MultiIndex.from_tuples([(1, 2, 3)], names=["i1", "i2", "i3"])
|
||||
df = DataFrame(data=[[10, 20, 30]], index=mi, columns=["A", "B", "C"])
|
||||
df.loc[(0, 0, 0)] = df.loc[(1, 2, 3)]
|
||||
mi_expected = MultiIndex.from_tuples(
|
||||
[(1, 2, 3), (0, 0, 0)], names=["i1", "i2", "i3"]
|
||||
)
|
||||
expected = DataFrame(
|
||||
data=[[10, 20, 30], [10, 20, 30]],
|
||||
index=mi_expected,
|
||||
columns=["A", "B", "C"],
|
||||
)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
|
||||
@td.skip_array_manager_invalid_test # df["foo"] select multiple columns -> .values
|
||||
# is not a view
|
||||
def test_frame_setitem_view_direct(
|
||||
multiindex_dataframe_random_data, using_copy_on_write
|
||||
):
|
||||
# this works because we are modifying the underlying array
|
||||
# really a no-no
|
||||
df = multiindex_dataframe_random_data.T
|
||||
if using_copy_on_write:
|
||||
with pytest.raises(ValueError, match="read-only"):
|
||||
df["foo"].values[:] = 0
|
||||
assert (df["foo"].values != 0).all()
|
||||
else:
|
||||
df["foo"].values[:] = 0
|
||||
assert (df["foo"].values == 0).all()
|
||||
|
||||
|
||||
def test_frame_setitem_copy_raises(
|
||||
multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
|
||||
):
|
||||
# will raise/warn as its chained assignment
|
||||
df = multiindex_dataframe_random_data.T
|
||||
if using_copy_on_write or warn_copy_on_write:
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["foo"]["one"] = 2
|
||||
else:
|
||||
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
|
||||
with pytest.raises(SettingWithCopyError, match=msg):
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["foo"]["one"] = 2
|
||||
|
||||
|
||||
def test_frame_setitem_copy_no_write(
|
||||
multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write
|
||||
):
|
||||
frame = multiindex_dataframe_random_data.T
|
||||
expected = frame
|
||||
df = frame.copy()
|
||||
if using_copy_on_write or warn_copy_on_write:
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["foo"]["one"] = 2
|
||||
else:
|
||||
msg = "A value is trying to be set on a copy of a slice from a DataFrame"
|
||||
with pytest.raises(SettingWithCopyError, match=msg):
|
||||
with tm.raises_chained_assignment_error():
|
||||
df["foo"]["one"] = 2
|
||||
|
||||
result = df
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_frame_setitem_partial_multiindex():
|
||||
# GH 54875
|
||||
df = DataFrame(
|
||||
{
|
||||
"a": [1, 2, 3],
|
||||
"b": [3, 4, 5],
|
||||
"c": 6,
|
||||
"d": 7,
|
||||
}
|
||||
).set_index(["a", "b", "c"])
|
||||
ser = Series(8, index=df.index.droplevel("c"))
|
||||
result = df.copy()
|
||||
result["d"] = ser
|
||||
expected = df.copy()
|
||||
expected["d"] = 8
|
||||
tm.assert_frame_equal(result, expected)
|
@ -0,0 +1,796 @@
|
||||
from datetime import (
|
||||
datetime,
|
||||
timedelta,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.errors import UnsortedIndexError
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
Series,
|
||||
Timestamp,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
from pandas.tests.indexing.common import _mklbl
|
||||
|
||||
|
||||
class TestMultiIndexSlicers:
|
||||
def test_per_axis_per_level_getitem(self):
|
||||
# GH6134
|
||||
# example test case
|
||||
ix = MultiIndex.from_product(
|
||||
[_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)]
|
||||
)
|
||||
df = DataFrame(np.arange(len(ix.to_numpy())), index=ix)
|
||||
|
||||
result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
|
||||
expected = df.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in df.index.values
|
||||
if a in ("A1", "A2", "A3") and c in ("C1", "C3")
|
||||
]
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = df.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in df.index.values
|
||||
if a in ("A1", "A2", "A3") and c in ("C1", "C2", "C3")
|
||||
]
|
||||
]
|
||||
result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# test multi-index slicing with per axis and per index controls
|
||||
index = MultiIndex.from_tuples(
|
||||
[("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
|
||||
)
|
||||
columns = MultiIndex.from_tuples(
|
||||
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
|
||||
names=["lvl0", "lvl1"],
|
||||
)
|
||||
|
||||
df = DataFrame(
|
||||
np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
|
||||
)
|
||||
df = df.sort_index(axis=0).sort_index(axis=1)
|
||||
|
||||
# identity
|
||||
result = df.loc[(slice(None), slice(None)), :]
|
||||
tm.assert_frame_equal(result, df)
|
||||
result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))]
|
||||
tm.assert_frame_equal(result, df)
|
||||
result = df.loc[:, (slice(None), slice(None))]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
# index
|
||||
result = df.loc[(slice(None), [1]), :]
|
||||
expected = df.iloc[[0, 3]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[(slice(None), 1), :]
|
||||
expected = df.iloc[[0, 3]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# columns
|
||||
result = df.loc[:, (slice(None), ["foo"])]
|
||||
expected = df.iloc[:, [1, 3]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# both
|
||||
result = df.loc[(slice(None), 1), (slice(None), ["foo"])]
|
||||
expected = df.iloc[[0, 3], [1, 3]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc["A", "a"]
|
||||
expected = DataFrame(
|
||||
{"bar": [1, 5, 9], "foo": [0, 4, 8]},
|
||||
index=Index([1, 2, 3], name="two"),
|
||||
columns=Index(["bar", "foo"], name="lvl1"),
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[(slice(None), [1, 2]), :]
|
||||
expected = df.iloc[[0, 1, 3]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# multi-level series
|
||||
s = Series(np.arange(len(ix.to_numpy())), index=ix)
|
||||
result = s.loc["A1":"A3", :, ["C1", "C3"]]
|
||||
expected = s.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in s.index.values
|
||||
if a in ("A1", "A2", "A3") and c in ("C1", "C3")
|
||||
]
|
||||
]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# boolean indexers
|
||||
result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
|
||||
expected = df.iloc[[2, 3]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
msg = (
|
||||
"cannot index with a boolean indexer "
|
||||
"that is not the same length as the index"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.loc[(slice(None), np.array([True, False])), :]
|
||||
|
||||
with pytest.raises(KeyError, match=r"\[1\] not in index"):
|
||||
# slice(None) is on the index, [1] is on the columns, but 1 is
|
||||
# not in the columns, so we raise
|
||||
# This used to treat [1] as positional GH#16396
|
||||
df.loc[slice(None), [1]]
|
||||
|
||||
# not lexsorted
|
||||
assert df.index._lexsort_depth == 2
|
||||
df = df.sort_index(level=1, axis=0)
|
||||
assert df.index._lexsort_depth == 0
|
||||
|
||||
msg = (
|
||||
"MultiIndex slicing requires the index to be "
|
||||
r"lexsorted: slicing on levels \[1\], lexsort depth 0"
|
||||
)
|
||||
with pytest.raises(UnsortedIndexError, match=msg):
|
||||
df.loc[(slice(None), slice("bar")), :]
|
||||
|
||||
# GH 16734: not sorted, but no real slicing
|
||||
result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :]
|
||||
tm.assert_frame_equal(result, df.iloc[[1, 3], :])
|
||||
|
||||
def test_multiindex_slicers_non_unique(self):
|
||||
# GH 7106
|
||||
# non-unique mi index support
|
||||
df = (
|
||||
DataFrame(
|
||||
{
|
||||
"A": ["foo", "foo", "foo", "foo"],
|
||||
"B": ["a", "a", "a", "a"],
|
||||
"C": [1, 2, 1, 3],
|
||||
"D": [1, 2, 3, 4],
|
||||
}
|
||||
)
|
||||
.set_index(["A", "B", "C"])
|
||||
.sort_index()
|
||||
)
|
||||
assert not df.index.is_unique
|
||||
expected = (
|
||||
DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
|
||||
.set_index(["A", "B", "C"])
|
||||
.sort_index()
|
||||
)
|
||||
result = df.loc[(slice(None), slice(None), 1), :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# this is equivalent of an xs expression
|
||||
result = df.xs(1, level=2, drop_level=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
df = (
|
||||
DataFrame(
|
||||
{
|
||||
"A": ["foo", "foo", "foo", "foo"],
|
||||
"B": ["a", "a", "a", "a"],
|
||||
"C": [1, 2, 1, 2],
|
||||
"D": [1, 2, 3, 4],
|
||||
}
|
||||
)
|
||||
.set_index(["A", "B", "C"])
|
||||
.sort_index()
|
||||
)
|
||||
assert not df.index.is_unique
|
||||
expected = (
|
||||
DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]})
|
||||
.set_index(["A", "B", "C"])
|
||||
.sort_index()
|
||||
)
|
||||
result = df.loc[(slice(None), slice(None), 1), :]
|
||||
assert not result.index.is_unique
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# GH12896
|
||||
# numpy-implementation dependent bug
|
||||
ints = [
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
4,
|
||||
5,
|
||||
6,
|
||||
7,
|
||||
8,
|
||||
9,
|
||||
10,
|
||||
11,
|
||||
12,
|
||||
12,
|
||||
13,
|
||||
14,
|
||||
14,
|
||||
16,
|
||||
17,
|
||||
18,
|
||||
19,
|
||||
200000,
|
||||
200000,
|
||||
]
|
||||
n = len(ints)
|
||||
idx = MultiIndex.from_arrays([["a"] * n, ints])
|
||||
result = Series([1] * n, index=idx)
|
||||
result = result.sort_index()
|
||||
result = result.loc[(slice(None), slice(100000))]
|
||||
expected = Series([1] * (n - 2), index=idx[:-2]).sort_index()
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_multiindex_slicers_datetimelike(self):
|
||||
# GH 7429
|
||||
# buggy/inconsistent behavior when slicing with datetime-like
|
||||
dates = [datetime(2012, 1, 1, 12, 12, 12) + timedelta(days=i) for i in range(6)]
|
||||
freq = [1, 2]
|
||||
index = MultiIndex.from_product([dates, freq], names=["date", "frequency"])
|
||||
|
||||
df = DataFrame(
|
||||
np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4),
|
||||
index=index,
|
||||
columns=list("ABCD"),
|
||||
)
|
||||
|
||||
# multi-axis slicing
|
||||
idx = pd.IndexSlice
|
||||
expected = df.iloc[[0, 2, 4], [0, 1]]
|
||||
result = df.loc[
|
||||
(
|
||||
slice(
|
||||
Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
|
||||
),
|
||||
slice(1, 1),
|
||||
),
|
||||
slice("A", "B"),
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[
|
||||
(
|
||||
idx[
|
||||
Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12")
|
||||
],
|
||||
idx[1:1],
|
||||
),
|
||||
slice("A", "B"),
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[
|
||||
(
|
||||
slice(
|
||||
Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12")
|
||||
),
|
||||
1,
|
||||
),
|
||||
slice("A", "B"),
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# with strings
|
||||
result = df.loc[
|
||||
(slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)),
|
||||
slice("A", "B"),
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[
|
||||
(idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"]
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_multiindex_slicers_edges(self):
|
||||
# GH 8132
|
||||
# various edge cases
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5,
|
||||
"B": ["B0", "B0", "B1", "B1", "B2"] * 3,
|
||||
"DATE": [
|
||||
"2013-06-11",
|
||||
"2013-07-02",
|
||||
"2013-07-09",
|
||||
"2013-07-30",
|
||||
"2013-08-06",
|
||||
"2013-06-11",
|
||||
"2013-07-02",
|
||||
"2013-07-09",
|
||||
"2013-07-30",
|
||||
"2013-08-06",
|
||||
"2013-09-03",
|
||||
"2013-10-01",
|
||||
"2013-07-09",
|
||||
"2013-08-06",
|
||||
"2013-09-03",
|
||||
],
|
||||
"VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2],
|
||||
}
|
||||
)
|
||||
|
||||
df["DATE"] = pd.to_datetime(df["DATE"])
|
||||
df1 = df.set_index(["A", "B", "DATE"])
|
||||
df1 = df1.sort_index()
|
||||
|
||||
# A1 - Get all values under "A0" and "A1"
|
||||
result = df1.loc[(slice("A1")), :]
|
||||
expected = df1.iloc[0:10]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# A2 - Get all values from the start to "A2"
|
||||
result = df1.loc[(slice("A2")), :]
|
||||
expected = df1
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# A3 - Get all values under "B1" or "B2"
|
||||
result = df1.loc[(slice(None), slice("B1", "B2")), :]
|
||||
expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# A4 - Get all values between 2013-07-02 and 2013-07-09
|
||||
result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :]
|
||||
expected = df1.iloc[[1, 2, 6, 7, 12]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# B1 - Get all values in B0 that are also under A0, A1 and A2
|
||||
result = df1.loc[(slice("A2"), slice("B0")), :]
|
||||
expected = df1.iloc[[0, 1, 5, 6, 10, 11]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for
|
||||
# the As)
|
||||
result = df1.loc[(slice(None), slice("B2")), :]
|
||||
expected = df1
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# B3 - Get all values from B1 to B2 and up to 2013-08-06
|
||||
result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :]
|
||||
expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# B4 - Same as A4 but the start of the date slice is not a key.
|
||||
# shows indexing on a partial selection slice
|
||||
result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :]
|
||||
expected = df1.iloc[[1, 2, 6, 7, 12]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_per_axis_per_level_doc_examples(self):
|
||||
# test index maker
|
||||
idx = pd.IndexSlice
|
||||
|
||||
# from indexing.rst / advanced
|
||||
index = MultiIndex.from_product(
|
||||
[_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
|
||||
)
|
||||
columns = MultiIndex.from_tuples(
|
||||
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
|
||||
names=["lvl0", "lvl1"],
|
||||
)
|
||||
df = DataFrame(
|
||||
np.arange(len(index) * len(columns), dtype="int64").reshape(
|
||||
(len(index), len(columns))
|
||||
),
|
||||
index=index,
|
||||
columns=columns,
|
||||
)
|
||||
result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :]
|
||||
expected = df.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in df.index.values
|
||||
if a in ("A1", "A2", "A3") and c in ("C1", "C3")
|
||||
]
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :]
|
||||
expected = df.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in df.index.values
|
||||
if c in ("C1", "C3")
|
||||
]
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
result = df.loc[idx[:, :, ["C1", "C3"]], :]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# not sorted
|
||||
msg = (
|
||||
"MultiIndex slicing requires the index to be lexsorted: "
|
||||
r"slicing on levels \[1\], lexsort depth 1"
|
||||
)
|
||||
with pytest.raises(UnsortedIndexError, match=msg):
|
||||
df.loc["A1", ("a", slice("foo"))]
|
||||
|
||||
# GH 16734: not sorted, but no real slicing
|
||||
tm.assert_frame_equal(
|
||||
df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]]
|
||||
)
|
||||
|
||||
df = df.sort_index(axis=1)
|
||||
|
||||
# slicing
|
||||
df.loc["A1", (slice(None), "foo")]
|
||||
df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")]
|
||||
|
||||
# setitem
|
||||
df.loc(axis=0)[:, :, ["C1", "C3"]] = -10
|
||||
|
||||
def test_loc_axis_arguments(self):
|
||||
index = MultiIndex.from_product(
|
||||
[_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)]
|
||||
)
|
||||
columns = MultiIndex.from_tuples(
|
||||
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
|
||||
names=["lvl0", "lvl1"],
|
||||
)
|
||||
df = (
|
||||
DataFrame(
|
||||
np.arange(len(index) * len(columns), dtype="int64").reshape(
|
||||
(len(index), len(columns))
|
||||
),
|
||||
index=index,
|
||||
columns=columns,
|
||||
)
|
||||
.sort_index()
|
||||
.sort_index(axis=1)
|
||||
)
|
||||
|
||||
# axis 0
|
||||
result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]]
|
||||
expected = df.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in df.index.values
|
||||
if a in ("A1", "A2", "A3") and c in ("C1", "C3")
|
||||
]
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc(axis="index")[:, :, ["C1", "C3"]]
|
||||
expected = df.loc[
|
||||
[
|
||||
(
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d,
|
||||
)
|
||||
for a, b, c, d in df.index.values
|
||||
if c in ("C1", "C3")
|
||||
]
|
||||
]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# axis 1
|
||||
result = df.loc(axis=1)[:, "foo"]
|
||||
expected = df.loc[:, (slice(None), "foo")]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.loc(axis="columns")[:, "foo"]
|
||||
expected = df.loc[:, (slice(None), "foo")]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# invalid axis
|
||||
for i in [-1, 2, "foo"]:
|
||||
msg = f"No axis named {i} for object type DataFrame"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.loc(axis=i)[:, :, ["C1", "C3"]]
|
||||
|
||||
def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self):
|
||||
# GH29519
|
||||
df = DataFrame(
|
||||
np.arange(27).reshape(3, 9),
|
||||
columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
|
||||
)
|
||||
result = df.loc(axis=1)["a1":"a2"]
|
||||
expected = df.iloc[:, :-3]
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self):
|
||||
# GH29519
|
||||
df = DataFrame(
|
||||
np.arange(27).reshape(3, 9),
|
||||
columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]),
|
||||
)
|
||||
result = df.loc(axis=1)["a1"]
|
||||
expected = df.iloc[:, :3]
|
||||
expected.columns = ["b1", "b2", "b3"]
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_loc_ax_single_level_indexer_simple_df(self):
|
||||
# GH29519
|
||||
# test single level indexing on single index column data frame
|
||||
df = DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"])
|
||||
result = df.loc(axis=1)["a"]
|
||||
expected = Series(np.array([0, 3, 6]), name="a")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_per_axis_per_level_setitem(self):
|
||||
# test index maker
|
||||
idx = pd.IndexSlice
|
||||
|
||||
# test multi-index slicing with per axis and per index controls
|
||||
index = MultiIndex.from_tuples(
|
||||
[("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"]
|
||||
)
|
||||
columns = MultiIndex.from_tuples(
|
||||
[("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")],
|
||||
names=["lvl0", "lvl1"],
|
||||
)
|
||||
|
||||
df_orig = DataFrame(
|
||||
np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns
|
||||
)
|
||||
df_orig = df_orig.sort_index(axis=0).sort_index(axis=1)
|
||||
|
||||
# identity
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), slice(None)), :] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[:, :] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc(axis=0)[:, :] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[:, :] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[:, :] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc[:, (slice(None), slice(None))] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[:, :] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
# index
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), [1]), :] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), 1), :] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc(axis=0)[:, 1] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
# columns
|
||||
df = df_orig.copy()
|
||||
df.loc[:, (slice(None), ["foo"])] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[:, [1, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
# both
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3], [1, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc[idx[:, 1], idx[:, ["foo"]]] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3], [1, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc["A", "a"] = 100
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[0:3, 0:2] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
# setting with a list-like
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
|
||||
[[100, 100], [100, 100]], dtype="int64"
|
||||
)
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3], [1, 3]] = 100
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
# not enough values
|
||||
df = df_orig.copy()
|
||||
|
||||
msg = "setting an array element with a sequence."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
|
||||
[[100], [100, 100]], dtype="int64"
|
||||
)
|
||||
|
||||
msg = "Must have equal len keys and value when setting with an iterable"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array(
|
||||
[100, 100, 100, 100], dtype="int64"
|
||||
)
|
||||
|
||||
# with an alignable rhs
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] = (
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5
|
||||
)
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[
|
||||
(slice(None), 1), (slice(None), ["foo"])
|
||||
]
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy()
|
||||
rhs.loc[:, ("c", "bah")] = 10
|
||||
df = df_orig.copy()
|
||||
df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs
|
||||
expected = df_orig.copy()
|
||||
expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]]
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_multiindex_label_slicing_with_negative_step(self):
|
||||
ser = Series(
|
||||
np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)])
|
||||
)
|
||||
SLC = pd.IndexSlice
|
||||
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1])
|
||||
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[("d",)::-1], SLC[15::-1])
|
||||
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[:("d",):-1], SLC[:11:-1])
|
||||
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1], SLC[15:3:-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[("d",):"b":-1], SLC[15:3:-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC["d":("b",):-1], SLC[15:3:-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[("d",):("b",):-1], SLC[15:3:-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0])
|
||||
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1], SLC[10::-1])
|
||||
tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1], SLC[:9:-1])
|
||||
tm.assert_indexing_slices_equivalent(
|
||||
ser, SLC[("e", 0):("c", 2):-1], SLC[16:9:-1]
|
||||
)
|
||||
|
||||
def test_multiindex_slice_first_level(self):
|
||||
# GH 12697
|
||||
freq = ["a", "b", "c", "d"]
|
||||
idx = MultiIndex.from_product([freq, range(500)])
|
||||
df = DataFrame(list(range(2000)), index=idx, columns=["Test"])
|
||||
df_slice = df.loc[pd.IndexSlice[:, 30:70], :]
|
||||
result = df_slice.loc["a"]
|
||||
expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
result = df_slice.loc["d"]
|
||||
expected = DataFrame(
|
||||
list(range(1530, 1571)), columns=["Test"], index=range(30, 71)
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data):
|
||||
ymd = multiindex_year_month_day_dataframe_random_data
|
||||
s = ymd["A"]
|
||||
result = s[5:]
|
||||
expected = s.reindex(s.index[5:])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
s = ymd["A"].copy()
|
||||
exp = ymd["A"].copy()
|
||||
s[5:] = 0
|
||||
exp.iloc[5:] = 0
|
||||
tm.assert_numpy_array_equal(s.values, exp.values)
|
||||
|
||||
result = ymd[5:]
|
||||
expected = ymd.reindex(s.index[5:])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, loc, iloc",
|
||||
[
|
||||
# dtype = int, step = -1
|
||||
("int", slice(None, None, -1), slice(None, None, -1)),
|
||||
("int", slice(3, None, -1), slice(3, None, -1)),
|
||||
("int", slice(None, 1, -1), slice(None, 0, -1)),
|
||||
("int", slice(3, 1, -1), slice(3, 0, -1)),
|
||||
# dtype = int, step = -2
|
||||
("int", slice(None, None, -2), slice(None, None, -2)),
|
||||
("int", slice(3, None, -2), slice(3, None, -2)),
|
||||
("int", slice(None, 1, -2), slice(None, 0, -2)),
|
||||
("int", slice(3, 1, -2), slice(3, 0, -2)),
|
||||
# dtype = str, step = -1
|
||||
("str", slice(None, None, -1), slice(None, None, -1)),
|
||||
("str", slice("d", None, -1), slice(3, None, -1)),
|
||||
("str", slice(None, "b", -1), slice(None, 0, -1)),
|
||||
("str", slice("d", "b", -1), slice(3, 0, -1)),
|
||||
# dtype = str, step = -2
|
||||
("str", slice(None, None, -2), slice(None, None, -2)),
|
||||
("str", slice("d", None, -2), slice(3, None, -2)),
|
||||
("str", slice(None, "b", -2), slice(None, 0, -2)),
|
||||
("str", slice("d", "b", -2), slice(3, 0, -2)),
|
||||
],
|
||||
)
|
||||
def test_loc_slice_negative_stepsize(self, dtype, loc, iloc):
|
||||
# GH#38071
|
||||
labels = {
|
||||
"str": list("abcde"),
|
||||
"int": range(5),
|
||||
}[dtype]
|
||||
|
||||
mi = MultiIndex.from_arrays([labels] * 2)
|
||||
df = DataFrame(1.0, index=mi, columns=["A"])
|
||||
|
||||
SLC = pd.IndexSlice
|
||||
|
||||
expected = df.iloc[iloc, :]
|
||||
result_get_loc = df.loc[SLC[loc], :]
|
||||
result_get_locs_level_0 = df.loc[SLC[loc, :], :]
|
||||
result_get_locs_level_1 = df.loc[SLC[:, loc], :]
|
||||
|
||||
tm.assert_frame_equal(result_get_loc, expected)
|
||||
tm.assert_frame_equal(result_get_locs_level_0, expected)
|
||||
tm.assert_frame_equal(result_get_locs_level_1, expected)
|
@ -0,0 +1,153 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas import (
|
||||
NA,
|
||||
DataFrame,
|
||||
MultiIndex,
|
||||
Series,
|
||||
array,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestMultiIndexSorted:
|
||||
def test_getitem_multilevel_index_tuple_not_sorted(self):
|
||||
index_columns = list("abc")
|
||||
df = DataFrame(
|
||||
[[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]
|
||||
)
|
||||
df = df.set_index(index_columns)
|
||||
query_index = df.index[:1]
|
||||
rs = df.loc[query_index, "data"]
|
||||
|
||||
xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=["a", "b", "c"])
|
||||
xp = Series(["x"], index=xp_idx, name="data")
|
||||
tm.assert_series_equal(rs, xp)
|
||||
|
||||
def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
df = frame.sort_index(level=1).T
|
||||
|
||||
# buglet with int typechecking
|
||||
result = df.iloc[:, : np.int32(3)]
|
||||
expected = df.reindex(columns=df.columns[:3])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("key", [None, lambda x: x])
|
||||
def test_frame_getitem_not_sorted2(self, key):
|
||||
# 13431
|
||||
df = DataFrame(
|
||||
{
|
||||
"col1": ["b", "d", "b", "a"],
|
||||
"col2": [3, 1, 1, 2],
|
||||
"data": ["one", "two", "three", "four"],
|
||||
}
|
||||
)
|
||||
|
||||
df2 = df.set_index(["col1", "col2"])
|
||||
df2_original = df2.copy()
|
||||
|
||||
df2.index = df2.index.set_levels(["b", "d", "a"], level="col1")
|
||||
df2.index = df2.index.set_codes([0, 1, 0, 2], level="col1")
|
||||
assert not df2.index.is_monotonic_increasing
|
||||
|
||||
assert df2_original.index.equals(df2.index)
|
||||
expected = df2.sort_index(key=key)
|
||||
assert expected.index.is_monotonic_increasing
|
||||
|
||||
result = df2.sort_index(level=0, key=key)
|
||||
assert result.index.is_monotonic_increasing
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_sort_values_key(self):
|
||||
arrays = [
|
||||
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
|
||||
["one", "two", "one", "two", "one", "two", "one", "two"],
|
||||
]
|
||||
tuples = zip(*arrays)
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
index = index.sort_values( # sort by third letter
|
||||
key=lambda x: x.map(lambda entry: entry[2])
|
||||
)
|
||||
result = DataFrame(range(8), index=index)
|
||||
|
||||
arrays = [
|
||||
["foo", "foo", "bar", "bar", "qux", "qux", "baz", "baz"],
|
||||
["one", "two", "one", "two", "one", "two", "one", "two"],
|
||||
]
|
||||
tuples = zip(*arrays)
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
expected = DataFrame(range(8), index=index)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_argsort_with_na(self):
|
||||
# GH48495
|
||||
arrays = [
|
||||
array([2, NA, 1], dtype="Int64"),
|
||||
array([1, 2, 3], dtype="Int64"),
|
||||
]
|
||||
index = MultiIndex.from_arrays(arrays)
|
||||
result = index.argsort()
|
||||
expected = np.array([2, 0, 1], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_sort_values_with_na(self):
|
||||
# GH48495
|
||||
arrays = [
|
||||
array([2, NA, 1], dtype="Int64"),
|
||||
array([1, 2, 3], dtype="Int64"),
|
||||
]
|
||||
index = MultiIndex.from_arrays(arrays)
|
||||
index = index.sort_values()
|
||||
result = DataFrame(range(3), index=index)
|
||||
|
||||
arrays = [
|
||||
array([1, 2, NA], dtype="Int64"),
|
||||
array([3, 1, 2], dtype="Int64"),
|
||||
]
|
||||
index = MultiIndex.from_arrays(arrays)
|
||||
expected = DataFrame(range(3), index=index)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data):
|
||||
frame = multiindex_dataframe_random_data
|
||||
df = frame.T
|
||||
df["foo", "four"] = "foo"
|
||||
|
||||
arrays = [np.array(x) for x in zip(*df.columns.values)]
|
||||
|
||||
result = df["foo"]
|
||||
result2 = df.loc[:, "foo"]
|
||||
expected = df.reindex(columns=df.columns[arrays[0] == "foo"])
|
||||
expected.columns = expected.columns.droplevel(0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
tm.assert_frame_equal(result2, expected)
|
||||
|
||||
df = df.T
|
||||
result = df.xs("foo")
|
||||
result2 = df.loc["foo"]
|
||||
expected = df.reindex(df.index[arrays[0] == "foo"])
|
||||
expected.index = expected.index.droplevel(0)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
tm.assert_frame_equal(result2, expected)
|
||||
|
||||
def test_series_getitem_not_sorted(self):
|
||||
arrays = [
|
||||
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
|
||||
["one", "two", "one", "two", "one", "two", "one", "two"],
|
||||
]
|
||||
tuples = zip(*arrays)
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
s = Series(np.random.default_rng(2).standard_normal(8), index=index)
|
||||
|
||||
arrays = [np.array(x) for x in zip(*index.values)]
|
||||
|
||||
result = s["qux"]
|
||||
result2 = s.loc["qux"]
|
||||
expected = s[arrays[0] == "qux"]
|
||||
expected.index = expected.index.droplevel(0)
|
||||
tm.assert_series_equal(result, expected)
|
||||
tm.assert_series_equal(result2, expected)
|
Reference in New Issue
Block a user