Updated script that can be controled by Nodejs web app
This commit is contained in:
@@ -0,0 +1,284 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.errors import NumbaUtilError
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
option_context,
|
||||
)
|
||||
import pandas._testing as tm
|
||||
|
||||
pytestmark = pytest.mark.single_cpu
|
||||
|
||||
|
||||
def test_correct_function_signature():
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def incorrect_function(x):
|
||||
return x + 1
|
||||
|
||||
data = DataFrame(
|
||||
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
||||
columns=["key", "data"],
|
||||
)
|
||||
with pytest.raises(NumbaUtilError, match="The first 2"):
|
||||
data.groupby("key").transform(incorrect_function, engine="numba")
|
||||
|
||||
with pytest.raises(NumbaUtilError, match="The first 2"):
|
||||
data.groupby("key")["data"].transform(incorrect_function, engine="numba")
|
||||
|
||||
|
||||
def test_check_nopython_kwargs():
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def incorrect_function(values, index):
|
||||
return values + 1
|
||||
|
||||
data = DataFrame(
|
||||
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
||||
columns=["key", "data"],
|
||||
)
|
||||
with pytest.raises(NumbaUtilError, match="numba does not support"):
|
||||
data.groupby("key").transform(incorrect_function, engine="numba", a=1)
|
||||
|
||||
with pytest.raises(NumbaUtilError, match="numba does not support"):
|
||||
data.groupby("key")["data"].transform(incorrect_function, engine="numba", a=1)
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore")
|
||||
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
||||
@pytest.mark.parametrize("jit", [True, False])
|
||||
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
|
||||
@pytest.mark.parametrize("as_index", [True, False])
|
||||
def test_numba_vs_cython(jit, pandas_obj, nogil, parallel, nopython, as_index):
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def func(values, index):
|
||||
return values + 1
|
||||
|
||||
if jit:
|
||||
# Test accepted jitted functions
|
||||
import numba
|
||||
|
||||
func = numba.jit(func)
|
||||
|
||||
data = DataFrame(
|
||||
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
||||
)
|
||||
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
||||
grouped = data.groupby(0, as_index=as_index)
|
||||
if pandas_obj == "Series":
|
||||
grouped = grouped[1]
|
||||
|
||||
result = grouped.transform(func, engine="numba", engine_kwargs=engine_kwargs)
|
||||
expected = grouped.transform(lambda x: x + 1, engine="cython")
|
||||
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore")
|
||||
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
||||
@pytest.mark.parametrize("jit", [True, False])
|
||||
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
|
||||
def test_cache(jit, pandas_obj, nogil, parallel, nopython):
|
||||
# Test that the functions are cached correctly if we switch functions
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def func_1(values, index):
|
||||
return values + 1
|
||||
|
||||
def func_2(values, index):
|
||||
return values * 5
|
||||
|
||||
if jit:
|
||||
import numba
|
||||
|
||||
func_1 = numba.jit(func_1)
|
||||
func_2 = numba.jit(func_2)
|
||||
|
||||
data = DataFrame(
|
||||
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
||||
)
|
||||
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
||||
grouped = data.groupby(0)
|
||||
if pandas_obj == "Series":
|
||||
grouped = grouped[1]
|
||||
|
||||
result = grouped.transform(func_1, engine="numba", engine_kwargs=engine_kwargs)
|
||||
expected = grouped.transform(lambda x: x + 1, engine="cython")
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = grouped.transform(func_2, engine="numba", engine_kwargs=engine_kwargs)
|
||||
expected = grouped.transform(lambda x: x * 5, engine="cython")
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
# Retest func_1 which should use the cache
|
||||
result = grouped.transform(func_1, engine="numba", engine_kwargs=engine_kwargs)
|
||||
expected = grouped.transform(lambda x: x + 1, engine="cython")
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
def test_use_global_config():
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def func_1(values, index):
|
||||
return values + 1
|
||||
|
||||
data = DataFrame(
|
||||
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
||||
)
|
||||
grouped = data.groupby(0)
|
||||
expected = grouped.transform(func_1, engine="numba")
|
||||
with option_context("compute.use_numba", True):
|
||||
result = grouped.transform(func_1, engine=None)
|
||||
tm.assert_frame_equal(expected, result)
|
||||
|
||||
|
||||
# TODO: Test more than just reductions (e.g. actually test transformations once we have
|
||||
@pytest.mark.parametrize(
|
||||
"agg_func", [["min", "max"], "min", {"B": ["min", "max"], "C": "sum"}]
|
||||
)
|
||||
def test_string_cython_vs_numba(agg_func, numba_supported_reductions):
|
||||
pytest.importorskip("numba")
|
||||
agg_func, kwargs = numba_supported_reductions
|
||||
data = DataFrame(
|
||||
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
||||
)
|
||||
grouped = data.groupby(0)
|
||||
|
||||
result = grouped.transform(agg_func, engine="numba", **kwargs)
|
||||
expected = grouped.transform(agg_func, engine="cython", **kwargs)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = grouped[1].transform(agg_func, engine="numba", **kwargs)
|
||||
expected = grouped[1].transform(agg_func, engine="cython", **kwargs)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_args_not_cached():
|
||||
# GH 41647
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def sum_last(values, index, n):
|
||||
return values[-n:].sum()
|
||||
|
||||
df = DataFrame({"id": [0, 0, 1, 1], "x": [1, 1, 1, 1]})
|
||||
grouped_x = df.groupby("id")["x"]
|
||||
result = grouped_x.transform(sum_last, 1, engine="numba")
|
||||
expected = Series([1.0] * 4, name="x")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = grouped_x.transform(sum_last, 2, engine="numba")
|
||||
expected = Series([2.0] * 4, name="x")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_index_data_correctly_passed():
|
||||
# GH 43133
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def f(values, index):
|
||||
return index - 1
|
||||
|
||||
df = DataFrame({"group": ["A", "A", "B"], "v": [4, 5, 6]}, index=[-1, -2, -3])
|
||||
result = df.groupby("group").transform(f, engine="numba")
|
||||
expected = DataFrame([-4.0, -3.0, -2.0], columns=["v"], index=[-1, -2, -3])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_engine_kwargs_not_cached():
|
||||
# If the user passes a different set of engine_kwargs don't return the same
|
||||
# jitted function
|
||||
pytest.importorskip("numba")
|
||||
nogil = True
|
||||
parallel = False
|
||||
nopython = True
|
||||
|
||||
def func_kwargs(values, index):
|
||||
return nogil + parallel + nopython
|
||||
|
||||
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
||||
df = DataFrame({"value": [0, 0, 0]})
|
||||
result = df.groupby(level=0).transform(
|
||||
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
|
||||
)
|
||||
expected = DataFrame({"value": [2.0, 2.0, 2.0]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
nogil = False
|
||||
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
||||
result = df.groupby(level=0).transform(
|
||||
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
|
||||
)
|
||||
expected = DataFrame({"value": [1.0, 1.0, 1.0]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore")
|
||||
def test_multiindex_one_key(nogil, parallel, nopython):
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def numba_func(values, index):
|
||||
return 1
|
||||
|
||||
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
|
||||
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
||||
result = df.groupby("A").transform(
|
||||
numba_func, engine="numba", engine_kwargs=engine_kwargs
|
||||
)
|
||||
expected = DataFrame([{"A": 1, "B": 2, "C": 1.0}]).set_index(["A", "B"])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
|
||||
def test_multiindex_multi_key_not_supported(nogil, parallel, nopython):
|
||||
pytest.importorskip("numba")
|
||||
|
||||
def numba_func(values, index):
|
||||
return 1
|
||||
|
||||
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
|
||||
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
||||
with pytest.raises(NotImplementedError, match="more than 1 grouping labels"):
|
||||
df.groupby(["A", "B"]).transform(
|
||||
numba_func, engine="numba", engine_kwargs=engine_kwargs
|
||||
)
|
||||
|
||||
|
||||
def test_multilabel_numba_vs_cython(numba_supported_reductions):
|
||||
pytest.importorskip("numba")
|
||||
reduction, kwargs = numba_supported_reductions
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
||||
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
||||
"C": np.random.default_rng(2).standard_normal(8),
|
||||
"D": np.random.default_rng(2).standard_normal(8),
|
||||
}
|
||||
)
|
||||
gb = df.groupby(["A", "B"])
|
||||
res_agg = gb.transform(reduction, engine="numba", **kwargs)
|
||||
expected_agg = gb.transform(reduction, engine="cython", **kwargs)
|
||||
tm.assert_frame_equal(res_agg, expected_agg)
|
||||
|
||||
|
||||
def test_multilabel_udf_numba_vs_cython():
|
||||
pytest.importorskip("numba")
|
||||
df = DataFrame(
|
||||
{
|
||||
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
||||
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
||||
"C": np.random.default_rng(2).standard_normal(8),
|
||||
"D": np.random.default_rng(2).standard_normal(8),
|
||||
}
|
||||
)
|
||||
gb = df.groupby(["A", "B"])
|
||||
result = gb.transform(
|
||||
lambda values, index: (values - values.min()) / (values.max() - values.min()),
|
||||
engine="numba",
|
||||
)
|
||||
expected = gb.transform(
|
||||
lambda x: (x - x.min()) / (x.max() - x.min()), engine="cython"
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user