Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,131 @@
"""
Base test suite for extension arrays.
These tests are intended for third-party libraries to subclass to validate
that their extension arrays and dtypes satisfy the interface. Moving or
renaming the tests should not be done lightly.
Libraries are expected to implement a few pytest fixtures to provide data
for the tests. The fixtures may be located in either
* The same module as your test class.
* A ``conftest.py`` in the same directory as your test class.
The full list of fixtures may be found in the ``conftest.py`` next to this
file.
.. code-block:: python
import pytest
from pandas.tests.extension.base import BaseDtypeTests
@pytest.fixture
def dtype():
return MyDtype()
class TestMyDtype(BaseDtypeTests):
pass
Your class ``TestDtype`` will inherit all the tests defined on
``BaseDtypeTests``. pytest's fixture discover will supply your ``dtype``
wherever the test requires it. You're free to implement additional tests.
"""
from pandas.tests.extension.base.accumulate import BaseAccumulateTests
from pandas.tests.extension.base.casting import BaseCastingTests
from pandas.tests.extension.base.constructors import BaseConstructorsTests
from pandas.tests.extension.base.dim2 import ( # noqa: F401
Dim2CompatTests,
NDArrayBacked2DTests,
)
from pandas.tests.extension.base.dtype import BaseDtypeTests
from pandas.tests.extension.base.getitem import BaseGetitemTests
from pandas.tests.extension.base.groupby import BaseGroupbyTests
from pandas.tests.extension.base.index import BaseIndexTests
from pandas.tests.extension.base.interface import BaseInterfaceTests
from pandas.tests.extension.base.io import BaseParsingTests
from pandas.tests.extension.base.methods import BaseMethodsTests
from pandas.tests.extension.base.missing import BaseMissingTests
from pandas.tests.extension.base.ops import ( # noqa: F401
BaseArithmeticOpsTests,
BaseComparisonOpsTests,
BaseOpsUtil,
BaseUnaryOpsTests,
)
from pandas.tests.extension.base.printing import BasePrintingTests
from pandas.tests.extension.base.reduce import BaseReduceTests
from pandas.tests.extension.base.reshaping import BaseReshapingTests
from pandas.tests.extension.base.setitem import BaseSetitemTests
# One test class that you can inherit as an alternative to inheriting all the
# test classes above.
# Note 1) this excludes Dim2CompatTests and NDArrayBacked2DTests.
# Note 2) this uses BaseReduceTests and and _not_ BaseBooleanReduceTests,
# BaseNoReduceTests, or BaseNumericReduceTests
class ExtensionTests(
BaseAccumulateTests,
BaseCastingTests,
BaseConstructorsTests,
BaseDtypeTests,
BaseGetitemTests,
BaseGroupbyTests,
BaseIndexTests,
BaseInterfaceTests,
BaseParsingTests,
BaseMethodsTests,
BaseMissingTests,
BaseArithmeticOpsTests,
BaseComparisonOpsTests,
BaseUnaryOpsTests,
BasePrintingTests,
BaseReduceTests,
BaseReshapingTests,
BaseSetitemTests,
Dim2CompatTests,
):
pass
def __getattr__(name: str):
import warnings
if name == "BaseNoReduceTests":
warnings.warn(
"BaseNoReduceTests is deprecated and will be removed in a "
"future version. Use BaseReduceTests and override "
"`_supports_reduction` instead.",
FutureWarning,
)
from pandas.tests.extension.base.reduce import BaseNoReduceTests
return BaseNoReduceTests
elif name == "BaseNumericReduceTests":
warnings.warn(
"BaseNumericReduceTests is deprecated and will be removed in a "
"future version. Use BaseReduceTests and override "
"`_supports_reduction` instead.",
FutureWarning,
)
from pandas.tests.extension.base.reduce import BaseNumericReduceTests
return BaseNumericReduceTests
elif name == "BaseBooleanReduceTests":
warnings.warn(
"BaseBooleanReduceTests is deprecated and will be removed in a "
"future version. Use BaseReduceTests and override "
"`_supports_reduction` instead.",
FutureWarning,
)
from pandas.tests.extension.base.reduce import BaseBooleanReduceTests
return BaseBooleanReduceTests
raise AttributeError(
f"module 'pandas.tests.extension.base' has no attribute '{name}'"
)

View File

@ -0,0 +1,39 @@
import pytest
import pandas as pd
import pandas._testing as tm
class BaseAccumulateTests:
"""
Accumulation specific tests. Generally these only
make sense for numeric/boolean operations.
"""
def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
# Do we expect this accumulation to be supported for this dtype?
# We default to assuming "no"; subclass authors should override here.
return False
def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
try:
alt = ser.astype("float64")
except TypeError:
# e.g. Period can't be cast to float64
alt = ser.astype(object)
result = getattr(ser, op_name)(skipna=skipna)
expected = getattr(alt, op_name)(skipna=skipna)
tm.assert_series_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize("skipna", [True, False])
def test_accumulate_series(self, data, all_numeric_accumulations, skipna):
op_name = all_numeric_accumulations
ser = pd.Series(data)
if self._supports_accumulation(ser, op_name):
self.check_accumulate(ser, op_name, skipna)
else:
with pytest.raises((NotImplementedError, TypeError)):
# TODO: require TypeError for things that will _never_ work?
getattr(ser, op_name)(skipna=skipna)

View File

@ -0,0 +1,2 @@
class BaseExtensionTests:
pass

View File

@ -0,0 +1,87 @@
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
from pandas.core.internals.blocks import NumpyBlock
class BaseCastingTests:
"""Casting to and from ExtensionDtypes"""
def test_astype_object_series(self, all_data):
ser = pd.Series(all_data, name="A")
result = ser.astype(object)
assert result.dtype == np.dtype(object)
if hasattr(result._mgr, "blocks"):
blk = result._mgr.blocks[0]
assert isinstance(blk, NumpyBlock)
assert blk.is_object
assert isinstance(result._mgr.array, np.ndarray)
assert result._mgr.array.dtype == np.dtype(object)
def test_astype_object_frame(self, all_data):
df = pd.DataFrame({"A": all_data})
result = df.astype(object)
if hasattr(result._mgr, "blocks"):
blk = result._mgr.blocks[0]
assert isinstance(blk, NumpyBlock), type(blk)
assert blk.is_object
assert isinstance(result._mgr.arrays[0], np.ndarray)
assert result._mgr.arrays[0].dtype == np.dtype(object)
# check that we can compare the dtypes
comp = result.dtypes == df.dtypes
assert not comp.any()
def test_tolist(self, data):
result = pd.Series(data).tolist()
expected = list(data)
assert result == expected
def test_astype_str(self, data):
result = pd.Series(data[:5]).astype(str)
expected = pd.Series([str(x) for x in data[:5]], dtype=str)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"nullable_string_dtype",
[
"string[python]",
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
],
)
def test_astype_string(self, data, nullable_string_dtype):
# GH-33465, GH#45326 as of 2.0 we decode bytes instead of calling str(obj)
result = pd.Series(data[:5]).astype(nullable_string_dtype)
expected = pd.Series(
[str(x) if not isinstance(x, bytes) else x.decode() for x in data[:5]],
dtype=nullable_string_dtype,
)
tm.assert_series_equal(result, expected)
def test_to_numpy(self, data):
expected = np.asarray(data)
result = data.to_numpy()
tm.assert_equal(result, expected)
result = pd.Series(data).to_numpy()
tm.assert_equal(result, expected)
def test_astype_empty_dataframe(self, dtype):
# https://github.com/pandas-dev/pandas/issues/33113
df = pd.DataFrame()
result = df.astype(dtype)
tm.assert_frame_equal(result, df)
@pytest.mark.parametrize("copy", [True, False])
def test_astype_own_type(self, data, copy):
# ensure that astype returns the original object for equal dtype and copy=False
# https://github.com/pandas-dev/pandas/issues/28488
result = data.astype(data.dtype, copy=copy)
assert (result is data) is (not copy)
tm.assert_extension_array_equal(result, data)

View File

@ -0,0 +1,142 @@
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.extensions import ExtensionArray
from pandas.core.internals.blocks import EABackedBlock
class BaseConstructorsTests:
def test_from_sequence_from_cls(self, data):
result = type(data)._from_sequence(data, dtype=data.dtype)
tm.assert_extension_array_equal(result, data)
data = data[:0]
result = type(data)._from_sequence(data, dtype=data.dtype)
tm.assert_extension_array_equal(result, data)
def test_array_from_scalars(self, data):
scalars = [data[0], data[1], data[2]]
result = data._from_sequence(scalars, dtype=data.dtype)
assert isinstance(result, type(data))
def test_series_constructor(self, data):
result = pd.Series(data, copy=False)
assert result.dtype == data.dtype
assert len(result) == len(data)
if hasattr(result._mgr, "blocks"):
assert isinstance(result._mgr.blocks[0], EABackedBlock)
assert result._mgr.array is data
# Series[EA] is unboxed / boxed correctly
result2 = pd.Series(result)
assert result2.dtype == data.dtype
if hasattr(result._mgr, "blocks"):
assert isinstance(result2._mgr.blocks[0], EABackedBlock)
def test_series_constructor_no_data_with_index(self, dtype, na_value):
result = pd.Series(index=[1, 2, 3], dtype=dtype)
expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
tm.assert_series_equal(result, expected)
# GH 33559 - empty index
result = pd.Series(index=[], dtype=dtype)
expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype)
tm.assert_series_equal(result, expected)
def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
result = pd.Series(na_value, index=[1, 2, 3], dtype=dtype)
expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
tm.assert_series_equal(result, expected)
def test_series_constructor_scalar_with_index(self, data, dtype):
scalar = data[0]
result = pd.Series(scalar, index=[1, 2, 3], dtype=dtype)
expected = pd.Series([scalar] * 3, index=[1, 2, 3], dtype=dtype)
tm.assert_series_equal(result, expected)
result = pd.Series(scalar, index=["foo"], dtype=dtype)
expected = pd.Series([scalar], index=["foo"], dtype=dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("from_series", [True, False])
def test_dataframe_constructor_from_dict(self, data, from_series):
if from_series:
data = pd.Series(data)
result = pd.DataFrame({"A": data})
assert result.dtypes["A"] == data.dtype
assert result.shape == (len(data), 1)
if hasattr(result._mgr, "blocks"):
assert isinstance(result._mgr.blocks[0], EABackedBlock)
assert isinstance(result._mgr.arrays[0], ExtensionArray)
def test_dataframe_from_series(self, data):
result = pd.DataFrame(pd.Series(data))
assert result.dtypes[0] == data.dtype
assert result.shape == (len(data), 1)
if hasattr(result._mgr, "blocks"):
assert isinstance(result._mgr.blocks[0], EABackedBlock)
assert isinstance(result._mgr.arrays[0], ExtensionArray)
def test_series_given_mismatched_index_raises(self, data):
msg = r"Length of values \(3\) does not match length of index \(5\)"
with pytest.raises(ValueError, match=msg):
pd.Series(data[:3], index=[0, 1, 2, 3, 4])
def test_from_dtype(self, data):
# construct from our dtype & string dtype
dtype = data.dtype
expected = pd.Series(data)
result = pd.Series(list(data), dtype=dtype)
tm.assert_series_equal(result, expected)
result = pd.Series(list(data), dtype=str(dtype))
tm.assert_series_equal(result, expected)
# gh-30280
expected = pd.DataFrame(data).astype(dtype)
result = pd.DataFrame(list(data), dtype=dtype)
tm.assert_frame_equal(result, expected)
result = pd.DataFrame(list(data), dtype=str(dtype))
tm.assert_frame_equal(result, expected)
def test_pandas_array(self, data):
# pd.array(extension_array) should be idempotent...
result = pd.array(data)
tm.assert_extension_array_equal(result, data)
def test_pandas_array_dtype(self, data):
# ... but specifying dtype will override idempotency
result = pd.array(data, dtype=np.dtype(object))
expected = pd.arrays.NumpyExtensionArray(np.asarray(data, dtype=object))
tm.assert_equal(result, expected)
def test_construct_empty_dataframe(self, dtype):
# GH 33623
result = pd.DataFrame(columns=["a"], dtype=dtype)
expected = pd.DataFrame(
{"a": pd.array([], dtype=dtype)}, index=pd.RangeIndex(0)
)
tm.assert_frame_equal(result, expected)
def test_empty(self, dtype):
cls = dtype.construct_array_type()
result = cls._empty((4,), dtype=dtype)
assert isinstance(result, cls)
assert result.dtype == dtype
assert result.shape == (4,)
# GH#19600 method on ExtensionDtype
result2 = dtype.empty((4,))
assert isinstance(result2, cls)
assert result2.dtype == dtype
assert result2.shape == (4,)
result2 = dtype.empty(4)
assert isinstance(result2, cls)
assert result2.dtype == dtype
assert result2.shape == (4,)

View File

@ -0,0 +1,345 @@
"""
Tests for 2D compatibility.
"""
import numpy as np
import pytest
from pandas._libs.missing import is_matching_na
from pandas.core.dtypes.common import (
is_bool_dtype,
is_integer_dtype,
)
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE
class Dim2CompatTests:
# Note: these are ONLY for ExtensionArray subclasses that support 2D arrays.
# i.e. not for pyarrow-backed EAs.
@pytest.fixture(autouse=True)
def skip_if_doesnt_support_2d(self, dtype, request):
if not dtype._supports_2d:
node = request.node
# In cases where we are mixed in to ExtensionTests, we only want to
# skip tests that are defined in Dim2CompatTests
test_func = node._obj
if test_func.__qualname__.startswith("Dim2CompatTests"):
# TODO: is there a less hacky way of checking this?
pytest.skip(f"{dtype} does not support 2D.")
def test_transpose(self, data):
arr2d = data.repeat(2).reshape(-1, 2)
shape = arr2d.shape
assert shape[0] != shape[-1] # otherwise the rest of the test is useless
assert arr2d.T.shape == shape[::-1]
def test_frame_from_2d_array(self, data):
arr2d = data.repeat(2).reshape(-1, 2)
df = pd.DataFrame(arr2d)
expected = pd.DataFrame({0: arr2d[:, 0], 1: arr2d[:, 1]})
tm.assert_frame_equal(df, expected)
def test_swapaxes(self, data):
arr2d = data.repeat(2).reshape(-1, 2)
result = arr2d.swapaxes(0, 1)
expected = arr2d.T
tm.assert_extension_array_equal(result, expected)
def test_delete_2d(self, data):
arr2d = data.repeat(3).reshape(-1, 3)
# axis = 0
result = arr2d.delete(1, axis=0)
expected = data.delete(1).repeat(3).reshape(-1, 3)
tm.assert_extension_array_equal(result, expected)
# axis = 1
result = arr2d.delete(1, axis=1)
expected = data.repeat(2).reshape(-1, 2)
tm.assert_extension_array_equal(result, expected)
def test_take_2d(self, data):
arr2d = data.reshape(-1, 1)
result = arr2d.take([0, 0, -1], axis=0)
expected = data.take([0, 0, -1]).reshape(-1, 1)
tm.assert_extension_array_equal(result, expected)
def test_repr_2d(self, data):
# this could fail in a corner case where an element contained the name
res = repr(data.reshape(1, -1))
assert res.count(f"<{type(data).__name__}") == 1
res = repr(data.reshape(-1, 1))
assert res.count(f"<{type(data).__name__}") == 1
def test_reshape(self, data):
arr2d = data.reshape(-1, 1)
assert arr2d.shape == (data.size, 1)
assert len(arr2d) == len(data)
arr2d = data.reshape((-1, 1))
assert arr2d.shape == (data.size, 1)
assert len(arr2d) == len(data)
with pytest.raises(ValueError):
data.reshape((data.size, 2))
with pytest.raises(ValueError):
data.reshape(data.size, 2)
def test_getitem_2d(self, data):
arr2d = data.reshape(1, -1)
result = arr2d[0]
tm.assert_extension_array_equal(result, data)
with pytest.raises(IndexError):
arr2d[1]
with pytest.raises(IndexError):
arr2d[-2]
result = arr2d[:]
tm.assert_extension_array_equal(result, arr2d)
result = arr2d[:, :]
tm.assert_extension_array_equal(result, arr2d)
result = arr2d[:, 0]
expected = data[[0]]
tm.assert_extension_array_equal(result, expected)
# dimension-expanding getitem on 1D
result = data[:, np.newaxis]
tm.assert_extension_array_equal(result, arr2d.T)
def test_iter_2d(self, data):
arr2d = data.reshape(1, -1)
objs = list(iter(arr2d))
assert len(objs) == arr2d.shape[0]
for obj in objs:
assert isinstance(obj, type(data))
assert obj.dtype == data.dtype
assert obj.ndim == 1
assert len(obj) == arr2d.shape[1]
def test_tolist_2d(self, data):
arr2d = data.reshape(1, -1)
result = arr2d.tolist()
expected = [data.tolist()]
assert isinstance(result, list)
assert all(isinstance(x, list) for x in result)
assert result == expected
def test_concat_2d(self, data):
left = type(data)._concat_same_type([data, data]).reshape(-1, 2)
right = left.copy()
# axis=0
result = left._concat_same_type([left, right], axis=0)
expected = data._concat_same_type([data] * 4).reshape(-1, 2)
tm.assert_extension_array_equal(result, expected)
# axis=1
result = left._concat_same_type([left, right], axis=1)
assert result.shape == (len(data), 4)
tm.assert_extension_array_equal(result[:, :2], left)
tm.assert_extension_array_equal(result[:, 2:], right)
# axis > 1 -> invalid
msg = "axis 2 is out of bounds for array of dimension 2"
with pytest.raises(ValueError, match=msg):
left._concat_same_type([left, right], axis=2)
@pytest.mark.parametrize("method", ["backfill", "pad"])
def test_fillna_2d_method(self, data_missing, method):
# pad_or_backfill is always along axis=0
arr = data_missing.repeat(2).reshape(2, 2)
assert arr[0].isna().all()
assert not arr[1].isna().any()
result = arr._pad_or_backfill(method=method, limit=None)
expected = data_missing._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
tm.assert_extension_array_equal(result, expected)
# Reverse so that backfill is not a no-op.
arr2 = arr[::-1]
assert not arr2[0].isna().any()
assert arr2[1].isna().all()
result2 = arr2._pad_or_backfill(method=method, limit=None)
expected2 = (
data_missing[::-1]._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
)
tm.assert_extension_array_equal(result2, expected2)
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
def test_reductions_2d_axis_none(self, data, method):
arr2d = data.reshape(1, -1)
err_expected = None
err_result = None
try:
expected = getattr(data, method)()
except Exception as err:
# if the 1D reduction is invalid, the 2D reduction should be as well
err_expected = err
try:
result = getattr(arr2d, method)(axis=None)
except Exception as err2:
err_result = err2
else:
result = getattr(arr2d, method)(axis=None)
if err_result is not None or err_expected is not None:
assert type(err_result) == type(err_expected)
return
assert is_matching_na(result, expected) or result == expected
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
@pytest.mark.parametrize("min_count", [0, 1])
def test_reductions_2d_axis0(self, data, method, min_count):
if min_count == 1 and method not in ["sum", "prod"]:
pytest.skip(f"min_count not relevant for {method}")
arr2d = data.reshape(1, -1)
kwargs = {}
if method in ["std", "var"]:
# pass ddof=0 so we get all-zero std instead of all-NA std
kwargs["ddof"] = 0
elif method in ["prod", "sum"]:
kwargs["min_count"] = min_count
try:
result = getattr(arr2d, method)(axis=0, **kwargs)
except Exception as err:
try:
getattr(data, method)()
except Exception as err2:
assert type(err) == type(err2)
return
else:
raise AssertionError("Both reductions should raise or neither")
def get_reduction_result_dtype(dtype):
# windows and 32bit builds will in some cases have int32/uint32
# where other builds will have int64/uint64.
if dtype.itemsize == 8:
return dtype
elif dtype.kind in "ib":
return NUMPY_INT_TO_DTYPE[np.dtype(int)]
else:
# i.e. dtype.kind == "u"
return NUMPY_INT_TO_DTYPE[np.dtype("uint")]
if method in ["sum", "prod"]:
# std and var are not dtype-preserving
expected = data
if data.dtype.kind in "iub":
dtype = get_reduction_result_dtype(data.dtype)
expected = data.astype(dtype)
assert dtype == expected.dtype
if min_count == 0:
fill_value = 1 if method == "prod" else 0
expected = expected.fillna(fill_value)
tm.assert_extension_array_equal(result, expected)
elif method == "median":
# std and var are not dtype-preserving
expected = data
tm.assert_extension_array_equal(result, expected)
elif method in ["mean", "std", "var"]:
if is_integer_dtype(data) or is_bool_dtype(data):
data = data.astype("Float64")
if method == "mean":
tm.assert_extension_array_equal(result, data)
else:
tm.assert_extension_array_equal(result, data - data)
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
def test_reductions_2d_axis1(self, data, method):
arr2d = data.reshape(1, -1)
try:
result = getattr(arr2d, method)(axis=1)
except Exception as err:
try:
getattr(data, method)()
except Exception as err2:
assert type(err) == type(err2)
return
else:
raise AssertionError("Both reductions should raise or neither")
# not necessarily type/dtype-preserving, so weaker assertions
assert result.shape == (1,)
expected_scalar = getattr(data, method)()
res = result[0]
assert is_matching_na(res, expected_scalar) or res == expected_scalar
class NDArrayBacked2DTests(Dim2CompatTests):
# More specific tests for NDArrayBackedExtensionArray subclasses
def test_copy_order(self, data):
# We should be matching numpy semantics for the "order" keyword in 'copy'
arr2d = data.repeat(2).reshape(-1, 2)
assert arr2d._ndarray.flags["C_CONTIGUOUS"]
res = arr2d.copy()
assert res._ndarray.flags["C_CONTIGUOUS"]
res = arr2d[::2, ::2].copy()
assert res._ndarray.flags["C_CONTIGUOUS"]
res = arr2d.copy("F")
assert not res._ndarray.flags["C_CONTIGUOUS"]
assert res._ndarray.flags["F_CONTIGUOUS"]
res = arr2d.copy("K")
assert res._ndarray.flags["C_CONTIGUOUS"]
res = arr2d.T.copy("K")
assert not res._ndarray.flags["C_CONTIGUOUS"]
assert res._ndarray.flags["F_CONTIGUOUS"]
# order not accepted by numpy
msg = r"order must be one of 'C', 'F', 'A', or 'K' \(got 'Q'\)"
with pytest.raises(ValueError, match=msg):
arr2d.copy("Q")
# neither contiguity
arr_nc = arr2d[::2]
assert not arr_nc._ndarray.flags["C_CONTIGUOUS"]
assert not arr_nc._ndarray.flags["F_CONTIGUOUS"]
assert arr_nc.copy()._ndarray.flags["C_CONTIGUOUS"]
assert not arr_nc.copy()._ndarray.flags["F_CONTIGUOUS"]
assert arr_nc.copy("C")._ndarray.flags["C_CONTIGUOUS"]
assert not arr_nc.copy("C")._ndarray.flags["F_CONTIGUOUS"]
assert not arr_nc.copy("F")._ndarray.flags["C_CONTIGUOUS"]
assert arr_nc.copy("F")._ndarray.flags["F_CONTIGUOUS"]
assert arr_nc.copy("K")._ndarray.flags["C_CONTIGUOUS"]
assert not arr_nc.copy("K")._ndarray.flags["F_CONTIGUOUS"]

View File

@ -0,0 +1,123 @@
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import (
infer_dtype,
is_object_dtype,
is_string_dtype,
)
class BaseDtypeTests:
"""Base class for ExtensionDtype classes"""
def test_name(self, dtype):
assert isinstance(dtype.name, str)
def test_kind(self, dtype):
valid = set("biufcmMOSUV")
assert dtype.kind in valid
def test_is_dtype_from_name(self, dtype):
result = type(dtype).is_dtype(dtype.name)
assert result is True
def test_is_dtype_unboxes_dtype(self, data, dtype):
assert dtype.is_dtype(data) is True
def test_is_dtype_from_self(self, dtype):
result = type(dtype).is_dtype(dtype)
assert result is True
def test_is_dtype_other_input(self, dtype):
assert dtype.is_dtype([1, 2, 3]) is False
def test_is_not_string_type(self, dtype):
assert not is_string_dtype(dtype)
def test_is_not_object_type(self, dtype):
assert not is_object_dtype(dtype)
def test_eq_with_str(self, dtype):
assert dtype == dtype.name
assert dtype != dtype.name + "-suffix"
def test_eq_with_numpy_object(self, dtype):
assert dtype != np.dtype("object")
def test_eq_with_self(self, dtype):
assert dtype == dtype
assert dtype != object()
def test_array_type(self, data, dtype):
assert dtype.construct_array_type() is type(data)
def test_check_dtype(self, data):
dtype = data.dtype
# check equivalency for using .dtypes
df = pd.DataFrame(
{
"A": pd.Series(data, dtype=dtype),
"B": data,
"C": pd.Series(["foo"] * len(data), dtype=object),
"D": 1,
}
)
result = df.dtypes == str(dtype)
assert np.dtype("int64") != "Int64"
expected = pd.Series([True, True, False, False], index=list("ABCD"))
tm.assert_series_equal(result, expected)
expected = pd.Series([True, True, False, False], index=list("ABCD"))
result = df.dtypes.apply(str) == str(dtype)
tm.assert_series_equal(result, expected)
def test_hashable(self, dtype):
hash(dtype) # no error
def test_str(self, dtype):
assert str(dtype) == dtype.name
def test_eq(self, dtype):
assert dtype == dtype.name
assert dtype != "anonther_type"
def test_construct_from_string_own_name(self, dtype):
result = dtype.construct_from_string(dtype.name)
assert type(result) is type(dtype)
# check OK as classmethod
result = type(dtype).construct_from_string(dtype.name)
assert type(result) is type(dtype)
def test_construct_from_string_another_type_raises(self, dtype):
msg = f"Cannot construct a '{type(dtype).__name__}' from 'another_type'"
with pytest.raises(TypeError, match=msg):
type(dtype).construct_from_string("another_type")
def test_construct_from_string_wrong_type_raises(self, dtype):
with pytest.raises(
TypeError,
match="'construct_from_string' expects a string, got <class 'int'>",
):
type(dtype).construct_from_string(0)
def test_get_common_dtype(self, dtype):
# in practice we will not typically call this with a 1-length list
# (we shortcut to just use that dtype as the common dtype), but
# still testing as good practice to have this working (and it is the
# only case we can test in general)
assert dtype._get_common_dtype([dtype]) == dtype
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype(self, data, data_missing, skipna):
# only testing that this works without raising an error
res = infer_dtype(data, skipna=skipna)
assert isinstance(res, str)
res = infer_dtype(data_missing, skipna=skipna)
assert isinstance(res, str)

View File

@ -0,0 +1,469 @@
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class BaseGetitemTests:
"""Tests for ExtensionArray.__getitem__."""
def test_iloc_series(self, data):
ser = pd.Series(data)
result = ser.iloc[:4]
expected = pd.Series(data[:4])
tm.assert_series_equal(result, expected)
result = ser.iloc[[0, 1, 2, 3]]
tm.assert_series_equal(result, expected)
def test_iloc_frame(self, data):
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
expected = pd.DataFrame({"A": data[:4]})
# slice -> frame
result = df.iloc[:4, [0]]
tm.assert_frame_equal(result, expected)
# sequence -> frame
result = df.iloc[[0, 1, 2, 3], [0]]
tm.assert_frame_equal(result, expected)
expected = pd.Series(data[:4], name="A")
# slice -> series
result = df.iloc[:4, 0]
tm.assert_series_equal(result, expected)
# sequence -> series
result = df.iloc[:4, 0]
tm.assert_series_equal(result, expected)
# GH#32959 slice columns with step
result = df.iloc[:, ::2]
tm.assert_frame_equal(result, df[["A"]])
result = df[["B", "A"]].iloc[:, ::2]
tm.assert_frame_equal(result, df[["B"]])
def test_iloc_frame_single_block(self, data):
# GH#32959 null slice along index, slice along columns with single-block
df = pd.DataFrame({"A": data})
result = df.iloc[:, :]
tm.assert_frame_equal(result, df)
result = df.iloc[:, :1]
tm.assert_frame_equal(result, df)
result = df.iloc[:, :2]
tm.assert_frame_equal(result, df)
result = df.iloc[:, ::2]
tm.assert_frame_equal(result, df)
result = df.iloc[:, 1:2]
tm.assert_frame_equal(result, df.iloc[:, :0])
result = df.iloc[:, -1:]
tm.assert_frame_equal(result, df)
def test_loc_series(self, data):
ser = pd.Series(data)
result = ser.loc[:3]
expected = pd.Series(data[:4])
tm.assert_series_equal(result, expected)
result = ser.loc[[0, 1, 2, 3]]
tm.assert_series_equal(result, expected)
def test_loc_frame(self, data):
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
expected = pd.DataFrame({"A": data[:4]})
# slice -> frame
result = df.loc[:3, ["A"]]
tm.assert_frame_equal(result, expected)
# sequence -> frame
result = df.loc[[0, 1, 2, 3], ["A"]]
tm.assert_frame_equal(result, expected)
expected = pd.Series(data[:4], name="A")
# slice -> series
result = df.loc[:3, "A"]
tm.assert_series_equal(result, expected)
# sequence -> series
result = df.loc[:3, "A"]
tm.assert_series_equal(result, expected)
def test_loc_iloc_frame_single_dtype(self, data):
# GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly
# return a scalar
df = pd.DataFrame({"A": data})
expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype)
result = df.loc[2]
tm.assert_series_equal(result, expected)
expected = pd.Series(
[data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype
)
result = df.iloc[-1]
tm.assert_series_equal(result, expected)
def test_getitem_scalar(self, data):
result = data[0]
assert isinstance(result, data.dtype.type)
result = pd.Series(data)[0]
assert isinstance(result, data.dtype.type)
def test_getitem_invalid(self, data):
# TODO: box over scalar, [scalar], (scalar,)?
msg = (
r"only integers, slices \(`:`\), ellipsis \(`...`\), numpy.newaxis "
r"\(`None`\) and integer or boolean arrays are valid indices"
)
with pytest.raises(IndexError, match=msg):
data["foo"]
with pytest.raises(IndexError, match=msg):
data[2.5]
ub = len(data)
msg = "|".join(
[
"list index out of range", # json
"index out of bounds", # pyarrow
"Out of bounds access", # Sparse
f"loc must be an integer between -{ub} and {ub}", # Sparse
f"index {ub+1} is out of bounds for axis 0 with size {ub}",
f"index -{ub+1} is out of bounds for axis 0 with size {ub}",
]
)
with pytest.raises(IndexError, match=msg):
data[ub + 1]
with pytest.raises(IndexError, match=msg):
data[-ub - 1]
def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
result = data_missing[0]
assert na_cmp(result, na_value)
def test_getitem_empty(self, data):
# Indexing with empty list
result = data[[]]
assert len(result) == 0
assert isinstance(result, type(data))
expected = data[np.array([], dtype="int64")]
tm.assert_extension_array_equal(result, expected)
def test_getitem_mask(self, data):
# Empty mask, raw array
mask = np.zeros(len(data), dtype=bool)
result = data[mask]
assert len(result) == 0
assert isinstance(result, type(data))
# Empty mask, in series
mask = np.zeros(len(data), dtype=bool)
result = pd.Series(data)[mask]
assert len(result) == 0
assert result.dtype == data.dtype
# non-empty mask, raw array
mask[0] = True
result = data[mask]
assert len(result) == 1
assert isinstance(result, type(data))
# non-empty mask, in series
result = pd.Series(data)[mask]
assert len(result) == 1
assert result.dtype == data.dtype
def test_getitem_mask_raises(self, data):
mask = np.array([True, False])
msg = f"Boolean index has wrong length: 2 instead of {len(data)}"
with pytest.raises(IndexError, match=msg):
data[mask]
mask = pd.array(mask, dtype="boolean")
with pytest.raises(IndexError, match=msg):
data[mask]
def test_getitem_boolean_array_mask(self, data):
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
result = data[mask]
assert len(result) == 0
assert isinstance(result, type(data))
result = pd.Series(data)[mask]
assert len(result) == 0
assert result.dtype == data.dtype
mask[:5] = True
expected = data.take([0, 1, 2, 3, 4])
result = data[mask]
tm.assert_extension_array_equal(result, expected)
expected = pd.Series(expected)
result = pd.Series(data)[mask]
tm.assert_series_equal(result, expected)
def test_getitem_boolean_na_treated_as_false(self, data):
# https://github.com/pandas-dev/pandas/issues/31503
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
mask[:2] = pd.NA
mask[2:4] = True
result = data[mask]
expected = data[mask.fillna(False)]
tm.assert_extension_array_equal(result, expected)
s = pd.Series(data)
result = s[mask]
expected = s[mask.fillna(False)]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_getitem_integer_array(self, data, idx):
result = data[idx]
assert len(result) == 3
assert isinstance(result, type(data))
expected = data.take([0, 1, 2])
tm.assert_extension_array_equal(result, expected)
expected = pd.Series(expected)
result = pd.Series(data)[idx]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
ids=["list", "integer-array"],
)
def test_getitem_integer_with_missing_raises(self, data, idx):
msg = "Cannot index with an integer indexer containing NA values"
with pytest.raises(ValueError, match=msg):
data[idx]
@pytest.mark.xfail(
reason="Tries label-based and raises KeyError; "
"in some cases raises when calling np.asarray"
)
@pytest.mark.parametrize(
"idx",
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
ids=["list", "integer-array"],
)
def test_getitem_series_integer_with_missing_raises(self, data, idx):
msg = "Cannot index with an integer indexer containing NA values"
# TODO: this raises KeyError about labels not found (it tries label-based)
ser = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
with pytest.raises(ValueError, match=msg):
ser[idx]
def test_getitem_slice(self, data):
# getitem[slice] should return an array
result = data[slice(0)] # empty
assert isinstance(result, type(data))
result = data[slice(1)] # scalar
assert isinstance(result, type(data))
def test_getitem_ellipsis_and_slice(self, data):
# GH#40353 this is called from slice_block_rows
result = data[..., :]
tm.assert_extension_array_equal(result, data)
result = data[:, ...]
tm.assert_extension_array_equal(result, data)
result = data[..., :3]
tm.assert_extension_array_equal(result, data[:3])
result = data[:3, ...]
tm.assert_extension_array_equal(result, data[:3])
result = data[..., ::2]
tm.assert_extension_array_equal(result, data[::2])
result = data[::2, ...]
tm.assert_extension_array_equal(result, data[::2])
def test_get(self, data):
# GH 20882
s = pd.Series(data, index=[2 * i for i in range(len(data))])
assert s.get(4) == s.iloc[2]
result = s.get([4, 6])
expected = s.iloc[[2, 3]]
tm.assert_series_equal(result, expected)
result = s.get(slice(2))
expected = s.iloc[[0, 1]]
tm.assert_series_equal(result, expected)
assert s.get(-1) is None
assert s.get(s.index.max() + 1) is None
s = pd.Series(data[:6], index=list("abcdef"))
assert s.get("c") == s.iloc[2]
result = s.get(slice("b", "d"))
expected = s.iloc[[1, 2, 3]]
tm.assert_series_equal(result, expected)
result = s.get("Z")
assert result is None
msg = "Series.__getitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
assert s.get(4) == s.iloc[4]
assert s.get(-1) == s.iloc[-1]
assert s.get(len(s)) is None
# GH 21257
s = pd.Series(data)
with tm.assert_produces_warning(None):
# GH#45324 make sure we aren't giving a spurious FutureWarning
s2 = s[::2]
assert s2.get(1) is None
def test_take_sequence(self, data):
result = pd.Series(data)[[0, 1, 3]]
assert result.iloc[0] == data[0]
assert result.iloc[1] == data[1]
assert result.iloc[2] == data[3]
def test_take(self, data, na_value, na_cmp):
result = data.take([0, -1])
assert result.dtype == data.dtype
assert result[0] == data[0]
assert result[1] == data[-1]
result = data.take([0, -1], allow_fill=True, fill_value=na_value)
assert result[0] == data[0]
assert na_cmp(result[1], na_value)
with pytest.raises(IndexError, match="out of bounds"):
data.take([len(data) + 1])
def test_take_empty(self, data, na_value, na_cmp):
empty = data[:0]
result = empty.take([-1], allow_fill=True)
assert na_cmp(result[0], na_value)
msg = "cannot do a non-empty take from an empty axes|out of bounds"
with pytest.raises(IndexError, match=msg):
empty.take([-1])
with pytest.raises(IndexError, match="cannot do a non-empty take"):
empty.take([0, 1])
def test_take_negative(self, data):
# https://github.com/pandas-dev/pandas/issues/20640
n = len(data)
result = data.take([0, -n, n - 1, -1])
expected = data.take([0, 0, n - 1, n - 1])
tm.assert_extension_array_equal(result, expected)
def test_take_non_na_fill_value(self, data_missing):
fill_value = data_missing[1] # valid
na = data_missing[0]
arr = data_missing._from_sequence(
[na, fill_value, na], dtype=data_missing.dtype
)
result = arr.take([-1, 1], fill_value=fill_value, allow_fill=True)
expected = arr.take([1, 1])
tm.assert_extension_array_equal(result, expected)
def test_take_pandas_style_negative_raises(self, data, na_value):
with pytest.raises(ValueError, match=""):
data.take([0, -2], fill_value=na_value, allow_fill=True)
@pytest.mark.parametrize("allow_fill", [True, False])
def test_take_out_of_bounds_raises(self, data, allow_fill):
arr = data[:3]
with pytest.raises(IndexError, match="out of bounds|out-of-bounds"):
arr.take(np.asarray([0, 3]), allow_fill=allow_fill)
def test_take_series(self, data):
s = pd.Series(data)
result = s.take([0, -1])
expected = pd.Series(
data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
index=[0, len(data) - 1],
)
tm.assert_series_equal(result, expected)
def test_reindex(self, data, na_value):
s = pd.Series(data)
result = s.reindex([0, 1, 3])
expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
tm.assert_series_equal(result, expected)
n = len(data)
result = s.reindex([-1, 0, n])
expected = pd.Series(
data._from_sequence([na_value, data[0], na_value], dtype=s.dtype),
index=[-1, 0, n],
)
tm.assert_series_equal(result, expected)
result = s.reindex([n, n + 1])
expected = pd.Series(
data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1]
)
tm.assert_series_equal(result, expected)
def test_reindex_non_na_fill_value(self, data_missing):
valid = data_missing[1]
na = data_missing[0]
arr = data_missing._from_sequence([na, valid], dtype=data_missing.dtype)
ser = pd.Series(arr)
result = ser.reindex([0, 1, 2], fill_value=valid)
expected = pd.Series(
data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype)
)
tm.assert_series_equal(result, expected)
def test_loc_len1(self, data):
# see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim
df = pd.DataFrame({"A": data})
res = df.loc[[0], "A"]
assert res.ndim == 1
assert res._mgr.arrays[0].ndim == 1
if hasattr(res._mgr, "blocks"):
assert res._mgr._block.ndim == 1
def test_item(self, data):
# https://github.com/pandas-dev/pandas/pull/30175
s = pd.Series(data)
result = s[:1].item()
assert result == data[0]
msg = "can only convert an array of size 1 to a Python scalar"
with pytest.raises(ValueError, match=msg):
s[:0].item()
with pytest.raises(ValueError, match=msg):
s.item()

View File

@ -0,0 +1,174 @@
import re
import pytest
from pandas.core.dtypes.common import (
is_bool_dtype,
is_numeric_dtype,
is_object_dtype,
is_string_dtype,
)
import pandas as pd
import pandas._testing as tm
@pytest.mark.filterwarnings(
"ignore:The default of observed=False is deprecated:FutureWarning"
)
class BaseGroupbyTests:
"""Groupby-specific tests."""
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame(
{
"A": pd.Series(
["B", "B", None, None, "A", "A", "B", "C"], dtype=object
),
"B": data_for_grouping,
}
)
gr1 = df.groupby("A")._grouper.groupings[0]
gr2 = df.groupby("B")._grouper.groupings[0]
tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values)
tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping)
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values, and the final entry has c==b
# (see data_for_grouping docstring)
df = df.iloc[:-1]
result = df.groupby("B", as_index=as_index).A.mean()
_, uniques = pd.factorize(data_for_grouping, sort=True)
exp_vals = [3.0, 1.0, 4.0]
if is_bool:
exp_vals = exp_vals[:-1]
if as_index:
index = pd.Index(uniques, name="B")
expected = pd.Series(exp_vals, index=index, name="A")
tm.assert_series_equal(result, expected)
else:
expected = pd.DataFrame({"B": uniques, "A": exp_vals})
tm.assert_frame_equal(result, expected)
def test_groupby_agg_extension(self, data_for_grouping):
# GH#38980 groupby agg on extension type fails for non-numeric types
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
expected = df.iloc[[0, 2, 4, 7]]
expected = expected.set_index("A")
result = df.groupby("A").agg({"B": "first"})
tm.assert_frame_equal(result, expected)
result = df.groupby("A").agg("first")
tm.assert_frame_equal(result, expected)
result = df.groupby("A").first()
tm.assert_frame_equal(result, expected)
def test_groupby_extension_no_sort(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values, and the final entry has c==b
# (see data_for_grouping docstring)
df = df.iloc[:-1]
result = df.groupby("B", sort=False).A.mean()
_, index = pd.factorize(data_for_grouping, sort=False)
index = pd.Index(index, name="B")
exp_vals = [1.0, 3.0, 4.0]
if is_bool:
exp_vals = exp_vals[:-1]
expected = pd.Series(exp_vals, index=index, name="A")
tm.assert_series_equal(result, expected)
def test_groupby_extension_transform(self, data_for_grouping):
is_bool = data_for_grouping.dtype._is_boolean
valid = data_for_grouping[~data_for_grouping.isna()]
df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid})
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values, and the final entry has c==b
# (see data_for_grouping docstring)
df = df.iloc[:-1]
result = df.groupby("B").A.transform(len)
expected = pd.Series([3, 3, 2, 2, 3, 1], name="A")
if is_bool:
expected = expected[:-1]
tm.assert_series_equal(result, expected)
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
df.groupby("B", group_keys=False, observed=False).apply(groupby_apply_op)
df.groupby("B", group_keys=False, observed=False).A.apply(groupby_apply_op)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
df.groupby("A", group_keys=False, observed=False).apply(groupby_apply_op)
df.groupby("A", group_keys=False, observed=False).B.apply(groupby_apply_op)
def test_groupby_apply_identity(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
result = df.groupby("A").B.apply(lambda x: x.array)
expected = pd.Series(
[
df.B.iloc[[0, 1, 6]].array,
df.B.iloc[[2, 3]].array,
df.B.iloc[[4, 5]].array,
df.B.iloc[[7]].array,
],
index=pd.Index([1, 2, 3, 4], name="A"),
name="B",
)
tm.assert_series_equal(result, expected)
def test_in_numeric_groupby(self, data_for_grouping):
df = pd.DataFrame(
{
"A": [1, 1, 2, 2, 3, 3, 1, 4],
"B": data_for_grouping,
"C": [1, 1, 1, 1, 1, 1, 1, 1],
}
)
dtype = data_for_grouping.dtype
if (
is_numeric_dtype(dtype)
or is_bool_dtype(dtype)
or dtype.name == "decimal"
or is_string_dtype(dtype)
or is_object_dtype(dtype)
or dtype.kind == "m" # in particular duration[*][pyarrow]
):
expected = pd.Index(["B", "C"])
result = df.groupby("A").sum().columns
else:
expected = pd.Index(["C"])
msg = "|".join(
[
# period/datetime
"does not support sum operations",
# all others
re.escape(f"agg function failed [how->sum,dtype->{dtype}"),
]
)
with pytest.raises(TypeError, match=msg):
df.groupby("A").sum()
result = df.groupby("A").sum(numeric_only=True).columns
tm.assert_index_equal(result, expected)

View File

@ -0,0 +1,19 @@
"""
Tests for Indexes backed by arbitrary ExtensionArrays.
"""
import pandas as pd
class BaseIndexTests:
"""Tests for Index object backed by an ExtensionArray"""
def test_index_from_array(self, data):
idx = pd.Index(data)
assert data.dtype == idx.dtype
def test_index_from_listlike_with_dtype(self, data):
idx = pd.Index(data, dtype=data.dtype)
assert idx.dtype == data.dtype
idx = pd.Index(list(data), dtype=data.dtype)
assert idx.dtype == data.dtype

View File

@ -0,0 +1,137 @@
import numpy as np
import pytest
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import is_extension_array_dtype
from pandas.core.dtypes.dtypes import ExtensionDtype
import pandas as pd
import pandas._testing as tm
class BaseInterfaceTests:
"""Tests that the basic interface is satisfied."""
# ------------------------------------------------------------------------
# Interface
# ------------------------------------------------------------------------
def test_len(self, data):
assert len(data) == 100
def test_size(self, data):
assert data.size == 100
def test_ndim(self, data):
assert data.ndim == 1
def test_can_hold_na_valid(self, data):
# GH-20761
assert data._can_hold_na is True
def test_contains(self, data, data_missing):
# GH-37867
# Tests for membership checks. Membership checks for nan-likes is tricky and
# the settled on rule is: `nan_like in arr` is True if nan_like is
# arr.dtype.na_value and arr.isna().any() is True. Else the check returns False.
na_value = data.dtype.na_value
# ensure data without missing values
data = data[~data.isna()]
# first elements are non-missing
assert data[0] in data
assert data_missing[0] in data_missing
# check the presence of na_value
assert na_value in data_missing
assert na_value not in data
# the data can never contain other nan-likes than na_value
for na_value_obj in tm.NULL_OBJECTS:
if na_value_obj is na_value or type(na_value_obj) == type(na_value):
# type check for e.g. two instances of Decimal("NAN")
continue
assert na_value_obj not in data
assert na_value_obj not in data_missing
def test_memory_usage(self, data):
s = pd.Series(data)
result = s.memory_usage(index=False)
assert result == s.nbytes
def test_array_interface(self, data):
result = np.array(data)
assert result[0] == data[0]
result = np.array(data, dtype=object)
expected = np.array(list(data), dtype=object)
if expected.ndim > 1:
# nested data, explicitly construct as 1D
expected = construct_1d_object_array_from_listlike(list(data))
tm.assert_numpy_array_equal(result, expected)
def test_is_extension_array_dtype(self, data):
assert is_extension_array_dtype(data)
assert is_extension_array_dtype(data.dtype)
assert is_extension_array_dtype(pd.Series(data))
assert isinstance(data.dtype, ExtensionDtype)
def test_no_values_attribute(self, data):
# GH-20735: EA's with .values attribute give problems with internal
# code, disallowing this for now until solved
assert not hasattr(data, "values")
assert not hasattr(data, "_values")
def test_is_numeric_honored(self, data):
result = pd.Series(data)
if hasattr(result._mgr, "blocks"):
assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
def test_isna_extension_array(self, data_missing):
# If your `isna` returns an ExtensionArray, you must also implement
# _reduce. At the *very* least, you must implement any and all
na = data_missing.isna()
if is_extension_array_dtype(na):
assert na._reduce("any")
assert na.any()
assert not na._reduce("all")
assert not na.all()
assert na.dtype._is_boolean
def test_copy(self, data):
# GH#27083 removing deep keyword from EA.copy
assert data[0] != data[1]
result = data.copy()
if data.dtype._is_immutable:
pytest.skip(f"test_copy assumes mutability and {data.dtype} is immutable")
data[1] = data[0]
assert result[1] != result[0]
def test_view(self, data):
# view with no dtype should return a shallow copy, *not* the same
# object
assert data[1] != data[0]
result = data.view()
assert result is not data
assert type(result) == type(data)
if data.dtype._is_immutable:
pytest.skip(f"test_view assumes mutability and {data.dtype} is immutable")
result[1] = result[0]
assert data[1] == data[0]
# check specifically that the `dtype` kwarg is accepted
data.view(dtype=None)
def test_tolist(self, data):
result = data.tolist()
expected = list(data)
assert isinstance(result, list)
assert result == expected

View File

@ -0,0 +1,39 @@
from io import StringIO
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import ExtensionArray
class BaseParsingTests:
@pytest.mark.parametrize("engine", ["c", "python"])
def test_EA_types(self, engine, data, request):
if isinstance(data.dtype, pd.CategoricalDtype):
# in parsers.pyx _convert_with_dtype there is special-casing for
# Categorical that pre-empts _from_sequence_of_strings
pass
elif isinstance(data.dtype, pd.core.dtypes.dtypes.NumpyEADtype):
# These get unwrapped internally so are treated as numpy dtypes
# in the parsers.pyx code
pass
elif (
type(data)._from_sequence_of_strings.__func__
is ExtensionArray._from_sequence_of_strings.__func__
):
# i.e. the EA hasn't overridden _from_sequence_of_strings
mark = pytest.mark.xfail(
reason="_from_sequence_of_strings not implemented",
raises=NotImplementedError,
)
request.node.add_marker(mark)
df = pd.DataFrame({"with_dtype": pd.Series(data, dtype=str(data.dtype))})
csv_output = df.to_csv(index=False, na_rep=np.nan)
result = pd.read_csv(
StringIO(csv_output), dtype={"with_dtype": str(data.dtype)}, engine=engine
)
expected = df
tm.assert_frame_equal(result, expected)

View File

@ -0,0 +1,720 @@
import inspect
import operator
import numpy as np
import pytest
from pandas._typing import Dtype
from pandas.core.dtypes.common import is_bool_dtype
from pandas.core.dtypes.dtypes import NumpyEADtype
from pandas.core.dtypes.missing import na_value_for_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.sorting import nargsort
class BaseMethodsTests:
"""Various Series and DataFrame methods."""
def test_hash_pandas_object(self, data):
# _hash_pandas_object should return a uint64 ndarray of the same length
# as the data
from pandas.core.util.hashing import _default_hash_key
res = data._hash_pandas_object(
encoding="utf-8", hash_key=_default_hash_key, categorize=False
)
assert res.dtype == np.uint64
assert res.shape == data.shape
def test_value_counts_default_dropna(self, data):
# make sure we have consistent default dropna kwarg
if not hasattr(data, "value_counts"):
pytest.skip(f"value_counts is not implemented for {type(data)}")
sig = inspect.signature(data.value_counts)
kwarg = sig.parameters["dropna"]
assert kwarg.default is True
@pytest.mark.parametrize("dropna", [True, False])
def test_value_counts(self, all_data, dropna):
all_data = all_data[:10]
if dropna:
other = all_data[~all_data.isna()]
else:
other = all_data
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
tm.assert_series_equal(result, expected)
def test_value_counts_with_normalize(self, data):
# GH 33172
data = data[:10].unique()
values = np.array(data[~data.isna()])
ser = pd.Series(data, dtype=data.dtype)
result = ser.value_counts(normalize=True).sort_index()
if not isinstance(data, pd.Categorical):
expected = pd.Series(
[1 / len(values)] * len(values), index=result.index, name="proportion"
)
else:
expected = pd.Series(0.0, index=result.index, name="proportion")
expected[result > 0] = 1 / len(values)
if getattr(data.dtype, "storage", "") == "pyarrow" or isinstance(
data.dtype, pd.ArrowDtype
):
# TODO: avoid special-casing
expected = expected.astype("double[pyarrow]")
elif getattr(data.dtype, "storage", "") == "pyarrow_numpy":
# TODO: avoid special-casing
expected = expected.astype("float64")
elif na_value_for_dtype(data.dtype) is pd.NA:
# TODO(GH#44692): avoid special-casing
expected = expected.astype("Float64")
tm.assert_series_equal(result, expected)
def test_count(self, data_missing):
df = pd.DataFrame({"A": data_missing})
result = df.count(axis="columns")
expected = pd.Series([0, 1])
tm.assert_series_equal(result, expected)
def test_series_count(self, data_missing):
# GH#26835
ser = pd.Series(data_missing)
result = ser.count()
expected = 1
assert result == expected
def test_apply_simple_series(self, data):
result = pd.Series(data).apply(id)
assert isinstance(result, pd.Series)
@pytest.mark.parametrize("na_action", [None, "ignore"])
def test_map(self, data_missing, na_action):
result = data_missing.map(lambda x: x, na_action=na_action)
expected = data_missing.to_numpy()
tm.assert_numpy_array_equal(result, expected)
def test_argsort(self, data_for_sorting):
result = pd.Series(data_for_sorting).argsort()
# argsort result gets passed to take, so should be np.intp
expected = pd.Series(np.array([2, 0, 1], dtype=np.intp))
tm.assert_series_equal(result, expected)
def test_argsort_missing_array(self, data_missing_for_sorting):
result = data_missing_for_sorting.argsort()
# argsort result gets passed to take, so should be np.intp
expected = np.array([2, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
def test_argsort_missing(self, data_missing_for_sorting):
msg = "The behavior of Series.argsort in the presence of NA values"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = pd.Series(data_missing_for_sorting).argsort()
expected = pd.Series(np.array([1, -1, 0], dtype=np.intp))
tm.assert_series_equal(result, expected)
def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value):
# GH 24382
is_bool = data_for_sorting.dtype._is_boolean
exp_argmax = 1
exp_argmax_repeated = 3
if is_bool:
# See data_for_sorting docstring
exp_argmax = 0
exp_argmax_repeated = 1
# data_for_sorting -> [B, C, A] with A < B < C
assert data_for_sorting.argmax() == exp_argmax
assert data_for_sorting.argmin() == 2
# with repeated values -> first occurrence
data = data_for_sorting.take([2, 0, 0, 1, 1, 2])
assert data.argmax() == exp_argmax_repeated
assert data.argmin() == 0
# with missing values
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
assert data_missing_for_sorting.argmax() == 0
assert data_missing_for_sorting.argmin() == 2
@pytest.mark.parametrize("method", ["argmax", "argmin"])
def test_argmin_argmax_empty_array(self, method, data):
# GH 24382
err_msg = "attempt to get"
with pytest.raises(ValueError, match=err_msg):
getattr(data[:0], method)()
@pytest.mark.parametrize("method", ["argmax", "argmin"])
def test_argmin_argmax_all_na(self, method, data, na_value):
# all missing with skipna=True is the same as empty
err_msg = "attempt to get"
data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype)
with pytest.raises(ValueError, match=err_msg):
getattr(data_na, method)()
@pytest.mark.parametrize(
"op_name, skipna, expected",
[
("idxmax", True, 0),
("idxmin", True, 2),
("argmax", True, 0),
("argmin", True, 2),
("idxmax", False, np.nan),
("idxmin", False, np.nan),
("argmax", False, -1),
("argmin", False, -1),
],
)
def test_argreduce_series(
self, data_missing_for_sorting, op_name, skipna, expected
):
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
warn = None
msg = "The behavior of Series.argmax/argmin"
if op_name.startswith("arg") and expected == -1:
warn = FutureWarning
if op_name.startswith("idx") and np.isnan(expected):
warn = FutureWarning
msg = f"The behavior of Series.{op_name}"
ser = pd.Series(data_missing_for_sorting)
with tm.assert_produces_warning(warn, match=msg):
result = getattr(ser, op_name)(skipna=skipna)
tm.assert_almost_equal(result, expected)
def test_argmax_argmin_no_skipna_notimplemented(self, data_missing_for_sorting):
# GH#38733
data = data_missing_for_sorting
with pytest.raises(NotImplementedError, match=""):
data.argmin(skipna=False)
with pytest.raises(NotImplementedError, match=""):
data.argmax(skipna=False)
@pytest.mark.parametrize(
"na_position, expected",
[
("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
],
)
def test_nargsort(self, data_missing_for_sorting, na_position, expected):
# GH 25439
result = nargsort(data_missing_for_sorting, na_position=na_position)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
ser = pd.Series(data_for_sorting)
result = ser.sort_values(ascending=ascending, key=sort_by_key)
expected = ser.iloc[[2, 0, 1]]
if not ascending:
# GH 35922. Expect stable sort
if ser.nunique() == 2:
expected = ser.iloc[[0, 1, 2]]
else:
expected = ser.iloc[[1, 0, 2]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_missing(
self, data_missing_for_sorting, ascending, sort_by_key
):
ser = pd.Series(data_missing_for_sorting)
result = ser.sort_values(ascending=ascending, key=sort_by_key)
if ascending:
expected = ser.iloc[[2, 0, 1]]
else:
expected = ser.iloc[[0, 2, 1]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ascending", [True, False])
def test_sort_values_frame(self, data_for_sorting, ascending):
df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting})
result = df.sort_values(["A", "B"])
expected = pd.DataFrame(
{"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("keep", ["first", "last", False])
def test_duplicated(self, data, keep):
arr = data.take([0, 1, 0, 1])
result = arr.duplicated(keep=keep)
if keep == "first":
expected = np.array([False, False, True, True])
elif keep == "last":
expected = np.array([True, True, False, False])
else:
expected = np.array([True, True, True, True])
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
def test_unique(self, data, box, method):
duplicated = box(data._from_sequence([data[0], data[0]], dtype=data.dtype))
result = method(duplicated)
assert len(result) == 1
assert isinstance(result, type(data))
assert result[0] == duplicated[0]
def test_factorize(self, data_for_grouping):
codes, uniques = pd.factorize(data_for_grouping, use_na_sentinel=True)
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 0], dtype=np.intp)
expected_uniques = data_for_grouping.take([0, 4])
else:
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 2], dtype=np.intp)
expected_uniques = data_for_grouping.take([0, 4, 7])
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_extension_array_equal(uniques, expected_uniques)
def test_factorize_equivalence(self, data_for_grouping):
codes_1, uniques_1 = pd.factorize(data_for_grouping, use_na_sentinel=True)
codes_2, uniques_2 = data_for_grouping.factorize(use_na_sentinel=True)
tm.assert_numpy_array_equal(codes_1, codes_2)
tm.assert_extension_array_equal(uniques_1, uniques_2)
assert len(uniques_1) == len(pd.unique(uniques_1))
assert uniques_1.dtype == data_for_grouping.dtype
def test_factorize_empty(self, data):
codes, uniques = pd.factorize(data[:0])
expected_codes = np.array([], dtype=np.intp)
expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype)
tm.assert_numpy_array_equal(codes, expected_codes)
tm.assert_extension_array_equal(uniques, expected_uniques)
def test_fillna_copy_frame(self, data_missing):
arr = data_missing.take([1, 1])
df = pd.DataFrame({"A": arr})
df_orig = df.copy()
filled_val = df.iloc[0, 0]
result = df.fillna(filled_val)
result.iloc[0, 0] = filled_val
tm.assert_frame_equal(df, df_orig)
def test_fillna_copy_series(self, data_missing):
arr = data_missing.take([1, 1])
ser = pd.Series(arr, copy=False)
ser_orig = ser.copy()
filled_val = ser[0]
result = ser.fillna(filled_val)
result.iloc[0] = filled_val
tm.assert_series_equal(ser, ser_orig)
def test_fillna_length_mismatch(self, data_missing):
msg = "Length of 'value' does not match."
with pytest.raises(ValueError, match=msg):
data_missing.fillna(data_missing.take([1]))
# Subclasses can override if we expect e.g Sparse[bool], boolean, pyarrow[bool]
_combine_le_expected_dtype: Dtype = NumpyEADtype("bool")
def test_combine_le(self, data_repeated):
# GH 20825
# Test that combine works when doing a <= (le) comparison
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.array(
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
dtype=self._combine_le_expected_dtype,
)
)
tm.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series(
pd.array(
[a <= val for a in list(orig_data1)],
dtype=self._combine_le_expected_dtype,
)
)
tm.assert_series_equal(result, expected)
def test_combine_add(self, data_repeated):
# GH 20825
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
# Check if the operation is supported pointwise for our scalars. If not,
# we will expect Series.combine to raise as well.
try:
with np.errstate(over="ignore"):
expected = pd.Series(
orig_data1._from_sequence(
[a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
)
)
except TypeError:
# If the operation is not supported pointwise for our scalars,
# then Series.combine should also raise
with pytest.raises(TypeError):
s1.combine(s2, lambda x1, x2: x1 + x2)
return
result = s1.combine(s2, lambda x1, x2: x1 + x2)
tm.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 + x2)
expected = pd.Series(
orig_data1._from_sequence([a + val for a in list(orig_data1)])
)
tm.assert_series_equal(result, expected)
def test_combine_first(self, data):
# https://github.com/pandas-dev/pandas/issues/24147
a = pd.Series(data[:3])
b = pd.Series(data[2:5], index=[2, 3, 4])
result = a.combine_first(b)
expected = pd.Series(data[:5])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("frame", [True, False])
@pytest.mark.parametrize(
"periods, indices",
[(-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2])],
)
def test_container_shift(self, data, frame, periods, indices):
# https://github.com/pandas-dev/pandas/issues/22386
subset = data[:5]
data = pd.Series(subset, name="A")
expected = pd.Series(subset.take(indices, allow_fill=True), name="A")
if frame:
result = data.to_frame(name="A").assign(B=1).shift(periods)
expected = pd.concat(
[expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1
)
compare = tm.assert_frame_equal
else:
result = data.shift(periods)
compare = tm.assert_series_equal
compare(result, expected)
def test_shift_0_periods(self, data):
# GH#33856 shifting with periods=0 should return a copy, not same obj
result = data.shift(0)
assert data[0] != data[1] # otherwise below is invalid
data[0] = data[1]
assert result[0] != result[1] # i.e. not the same object/view
@pytest.mark.parametrize("periods", [1, -2])
def test_diff(self, data, periods):
data = data[:5]
if is_bool_dtype(data.dtype):
op = operator.xor
else:
op = operator.sub
try:
# does this array implement ops?
op(data, data)
except Exception:
pytest.skip(f"{type(data)} does not support diff")
s = pd.Series(data)
result = s.diff(periods)
expected = pd.Series(op(data, data.shift(periods)))
tm.assert_series_equal(result, expected)
df = pd.DataFrame({"A": data, "B": [1.0] * 5})
result = df.diff(periods)
if periods == 1:
b = [np.nan, 0, 0, 0, 0]
else:
b = [0, 0, 0, np.nan, np.nan]
expected = pd.DataFrame({"A": expected, "B": b})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"periods, indices",
[[-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]]],
)
def test_shift_non_empty_array(self, data, periods, indices):
# https://github.com/pandas-dev/pandas/issues/23911
subset = data[:2]
result = subset.shift(periods)
expected = subset.take(indices, allow_fill=True)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("periods", [-4, -1, 0, 1, 4])
def test_shift_empty_array(self, data, periods):
# https://github.com/pandas-dev/pandas/issues/23911
empty = data[:0]
result = empty.shift(periods)
expected = empty
tm.assert_extension_array_equal(result, expected)
def test_shift_zero_copies(self, data):
# GH#31502
result = data.shift(0)
assert result is not data
result = data[:0].shift(2)
assert result is not data
def test_shift_fill_value(self, data):
arr = data[:4]
fill_value = data[0]
result = arr.shift(1, fill_value=fill_value)
expected = data.take([0, 0, 1, 2])
tm.assert_extension_array_equal(result, expected)
result = arr.shift(-2, fill_value=fill_value)
expected = data.take([2, 3, 0, 0])
tm.assert_extension_array_equal(result, expected)
def test_not_hashable(self, data):
# We are in general mutable, so not hashable
with pytest.raises(TypeError, match="unhashable type"):
hash(data)
def test_hash_pandas_object_works(self, data, as_frame):
# https://github.com/pandas-dev/pandas/issues/23066
data = pd.Series(data)
if as_frame:
data = data.to_frame()
a = pd.util.hash_pandas_object(data)
b = pd.util.hash_pandas_object(data)
tm.assert_equal(a, b)
def test_searchsorted(self, data_for_sorting, as_series):
if data_for_sorting.dtype._is_boolean:
return self._test_searchsorted_bool_dtypes(data_for_sorting, as_series)
b, c, a = data_for_sorting
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
assert arr.searchsorted(c) == 2
assert arr.searchsorted(c, side="right") == 3
result = arr.searchsorted(arr.take([0, 2]))
expected = np.array([0, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 2, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
def _test_searchsorted_bool_dtypes(self, data_for_sorting, as_series):
# We call this from test_searchsorted in cases where we have a
# boolean-like dtype. The non-bool test assumes we have more than 2
# unique values.
dtype = data_for_sorting.dtype
data_for_sorting = pd.array([True, False], dtype=dtype)
b, a = data_for_sorting
arr = type(data_for_sorting)._from_sequence([a, b])
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
result = arr.searchsorted(arr.take([0, 1]))
expected = np.array([0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
def test_where_series(self, data, na_value, as_frame):
assert data[0] != data[1]
cls = type(data)
a, b = data[:2]
orig = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
ser = orig.copy()
cond = np.array([True, True, False, False])
if as_frame:
ser = ser.to_frame(name="a")
cond = cond.reshape(-1, 1)
result = ser.where(cond)
expected = pd.Series(
cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype)
)
if as_frame:
expected = expected.to_frame(name="a")
tm.assert_equal(result, expected)
ser.mask(~cond, inplace=True)
tm.assert_equal(ser, expected)
# array other
ser = orig.copy()
if as_frame:
ser = ser.to_frame(name="a")
cond = np.array([True, False, True, True])
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
if as_frame:
other = pd.DataFrame({"a": other})
cond = pd.DataFrame({"a": cond})
result = ser.where(cond, other)
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
if as_frame:
expected = expected.to_frame(name="a")
tm.assert_equal(result, expected)
ser.mask(~cond, other, inplace=True)
tm.assert_equal(ser, expected)
@pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
def test_repeat(self, data, repeats, as_series, use_numpy):
arr = type(data)._from_sequence(data[:3], dtype=data.dtype)
if as_series:
arr = pd.Series(arr)
result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats)
repeats = [repeats] * 3 if isinstance(repeats, int) else repeats
expected = [x for x, n in zip(arr, repeats) for _ in range(n)]
expected = type(data)._from_sequence(expected, dtype=data.dtype)
if as_series:
expected = pd.Series(expected, index=arr.index.repeat(repeats))
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"repeats, kwargs, error, msg",
[
(2, {"axis": 1}, ValueError, "axis"),
(-1, {}, ValueError, "negative"),
([1, 2], {}, ValueError, "shape"),
(2, {"foo": "bar"}, TypeError, "'foo'"),
],
)
def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy):
with pytest.raises(error, match=msg):
if use_numpy:
np.repeat(data, repeats, **kwargs)
else:
data.repeat(repeats, **kwargs)
def test_delete(self, data):
result = data.delete(0)
expected = data[1:]
tm.assert_extension_array_equal(result, expected)
result = data.delete([1, 3])
expected = data._concat_same_type([data[[0]], data[[2]], data[4:]])
tm.assert_extension_array_equal(result, expected)
def test_insert(self, data):
# insert at the beginning
result = data[1:].insert(0, data[0])
tm.assert_extension_array_equal(result, data)
result = data[1:].insert(-len(data[1:]), data[0])
tm.assert_extension_array_equal(result, data)
# insert at the middle
result = data[:-1].insert(4, data[-1])
taker = np.arange(len(data))
taker[5:] = taker[4:-1]
taker[4] = len(data) - 1
expected = data.take(taker)
tm.assert_extension_array_equal(result, expected)
def test_insert_invalid(self, data, invalid_scalar):
item = invalid_scalar
with pytest.raises((TypeError, ValueError)):
data.insert(0, item)
with pytest.raises((TypeError, ValueError)):
data.insert(4, item)
with pytest.raises((TypeError, ValueError)):
data.insert(len(data) - 1, item)
def test_insert_invalid_loc(self, data):
ub = len(data)
with pytest.raises(IndexError):
data.insert(ub + 1, data[0])
with pytest.raises(IndexError):
data.insert(-ub - 1, data[0])
with pytest.raises(TypeError):
# we expect TypeError here instead of IndexError to match np.insert
data.insert(1.5, data[0])
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
def test_equals(self, data, na_value, as_series, box):
data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype)
data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype)
data = tm.box_expected(data, box, transpose=False)
data2 = tm.box_expected(data2, box, transpose=False)
data_na = tm.box_expected(data_na, box, transpose=False)
# we are asserting with `is True/False` explicitly, to test that the
# result is an actual Python bool, and not something "truthy"
assert data.equals(data) is True
assert data.equals(data.copy()) is True
# unequal other data
assert data.equals(data2) is False
assert data.equals(data_na) is False
# different length
assert data[:2].equals(data[:3]) is False
# empty are equal
assert data[:0].equals(data[:0]) is True
# other types
assert data.equals(None) is False
assert data[[0]].equals(data[0]) is False
def test_equals_same_data_different_object(self, data):
# https://github.com/pandas-dev/pandas/issues/34660
assert pd.Series(data).equals(pd.Series(data))

View File

@ -0,0 +1,190 @@
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class BaseMissingTests:
def test_isna(self, data_missing):
expected = np.array([True, False])
result = pd.isna(data_missing)
tm.assert_numpy_array_equal(result, expected)
result = pd.Series(data_missing).isna()
expected = pd.Series(expected)
tm.assert_series_equal(result, expected)
# GH 21189
result = pd.Series(data_missing).drop([0, 1]).isna()
expected = pd.Series([], dtype=bool)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("na_func", ["isna", "notna"])
def test_isna_returns_copy(self, data_missing, na_func):
result = pd.Series(data_missing)
expected = result.copy()
mask = getattr(result, na_func)()
if isinstance(mask.dtype, pd.SparseDtype):
# TODO: GH 57739
mask = np.array(mask)
mask.flags.writeable = True
mask[:] = True
tm.assert_series_equal(result, expected)
def test_dropna_array(self, data_missing):
result = data_missing.dropna()
expected = data_missing[[1]]
tm.assert_extension_array_equal(result, expected)
def test_dropna_series(self, data_missing):
ser = pd.Series(data_missing)
result = ser.dropna()
expected = ser.iloc[[1]]
tm.assert_series_equal(result, expected)
def test_dropna_frame(self, data_missing):
df = pd.DataFrame({"A": data_missing}, columns=pd.Index(["A"], dtype=object))
# defaults
result = df.dropna()
expected = df.iloc[[1]]
tm.assert_frame_equal(result, expected)
# axis = 1
result = df.dropna(axis="columns")
expected = pd.DataFrame(index=pd.RangeIndex(2), columns=pd.Index([]))
tm.assert_frame_equal(result, expected)
# multiple
df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]})
result = df.dropna()
expected = df.iloc[:0]
tm.assert_frame_equal(result, expected)
def test_fillna_scalar(self, data_missing):
valid = data_missing[1]
result = data_missing.fillna(valid)
expected = data_missing.fillna(valid)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.filterwarnings(
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
)
def test_fillna_limit_pad(self, data_missing):
arr = data_missing.take([1, 0, 0, 0, 1])
result = pd.Series(arr).ffill(limit=2)
expected = pd.Series(data_missing.take([1, 1, 1, 0, 1]))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"limit_area, input_ilocs, expected_ilocs",
[
("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
],
)
def test_ffill_limit_area(
self, data_missing, limit_area, input_ilocs, expected_ilocs
):
# GH#56616
arr = data_missing.take(input_ilocs)
result = pd.Series(arr).ffill(limit_area=limit_area)
expected = pd.Series(data_missing.take(expected_ilocs))
tm.assert_series_equal(result, expected)
@pytest.mark.filterwarnings(
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
)
def test_fillna_limit_backfill(self, data_missing):
arr = data_missing.take([1, 0, 0, 0, 1])
result = pd.Series(arr).fillna(method="backfill", limit=2)
expected = pd.Series(data_missing.take([1, 0, 1, 1, 1]))
tm.assert_series_equal(result, expected)
def test_fillna_no_op_returns_copy(self, data):
data = data[~data.isna()]
valid = data[0]
result = data.fillna(valid)
assert result is not data
tm.assert_extension_array_equal(result, data)
result = data._pad_or_backfill(method="backfill")
assert result is not data
tm.assert_extension_array_equal(result, data)
def test_fillna_series(self, data_missing):
fill_value = data_missing[1]
ser = pd.Series(data_missing)
result = ser.fillna(fill_value)
expected = pd.Series(
data_missing._from_sequence(
[fill_value, fill_value], dtype=data_missing.dtype
)
)
tm.assert_series_equal(result, expected)
# Fill with a series
result = ser.fillna(expected)
tm.assert_series_equal(result, expected)
# Fill with a series not affecting the missing values
result = ser.fillna(ser)
tm.assert_series_equal(result, ser)
def test_fillna_series_method(self, data_missing, fillna_method):
fill_value = data_missing[1]
if fillna_method == "ffill":
data_missing = data_missing[::-1]
result = getattr(pd.Series(data_missing), fillna_method)()
expected = pd.Series(
data_missing._from_sequence(
[fill_value, fill_value], dtype=data_missing.dtype
)
)
tm.assert_series_equal(result, expected)
def test_fillna_frame(self, data_missing):
fill_value = data_missing[1]
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
expected = pd.DataFrame(
{
"A": data_missing._from_sequence(
[fill_value, fill_value], dtype=data_missing.dtype
),
"B": [1, 2],
}
)
tm.assert_frame_equal(result, expected)
def test_fillna_fill_other(self, data):
result = pd.DataFrame({"A": data, "B": [np.nan] * len(data)}).fillna({"B": 0.0})
expected = pd.DataFrame({"A": data, "B": [0.0] * len(result)})
tm.assert_frame_equal(result, expected)
def test_use_inf_as_na_no_effect(self, data_missing):
ser = pd.Series(data_missing)
expected = ser.isna()
msg = "use_inf_as_na option is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
with pd.option_context("mode.use_inf_as_na", True):
result = ser.isna()
tm.assert_series_equal(result, expected)

View File

@ -0,0 +1,299 @@
from __future__ import annotations
from typing import final
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas.core.dtypes.common import is_string_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core import ops
class BaseOpsUtil:
series_scalar_exc: type[Exception] | None = TypeError
frame_scalar_exc: type[Exception] | None = TypeError
series_array_exc: type[Exception] | None = TypeError
divmod_exc: type[Exception] | None = TypeError
def _get_expected_exception(
self, op_name: str, obj, other
) -> type[Exception] | None:
# Find the Exception, if any we expect to raise calling
# obj.__op_name__(other)
# The self.obj_bar_exc pattern isn't great in part because it can depend
# on op_name or dtypes, but we use it here for backward-compatibility.
if op_name in ["__divmod__", "__rdivmod__"]:
result = self.divmod_exc
elif isinstance(obj, pd.Series) and isinstance(other, pd.Series):
result = self.series_array_exc
elif isinstance(obj, pd.Series):
result = self.series_scalar_exc
else:
result = self.frame_scalar_exc
if using_pyarrow_string_dtype() and result is not None:
import pyarrow as pa
result = ( # type: ignore[assignment]
result,
pa.lib.ArrowNotImplementedError,
NotImplementedError,
)
return result
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
# In _check_op we check that the result of a pointwise operation
# (found via _combine) matches the result of the vectorized
# operation obj.__op_name__(other).
# In some cases pandas dtype inference on the scalar result may not
# give a matching dtype even if both operations are behaving "correctly".
# In these cases, do extra required casting here.
return pointwise_result
def get_op_from_name(self, op_name: str):
return tm.get_op_from_name(op_name)
# Subclasses are not expected to need to override check_opname, _check_op,
# _check_divmod_op, or _combine.
# Ideally any relevant overriding can be done in _cast_pointwise_result,
# get_op_from_name, and the specification of `exc`. If you find a use
# case that still requires overriding _check_op or _combine, please let
# us know at github.com/pandas-dev/pandas/issues
@final
def check_opname(self, ser: pd.Series, op_name: str, other):
exc = self._get_expected_exception(op_name, ser, other)
op = self.get_op_from_name(op_name)
self._check_op(ser, op, other, op_name, exc)
# see comment on check_opname
@final
def _combine(self, obj, other, op):
if isinstance(obj, pd.DataFrame):
if len(obj.columns) != 1:
raise NotImplementedError
expected = obj.iloc[:, 0].combine(other, op).to_frame()
else:
expected = obj.combine(other, op)
return expected
# see comment on check_opname
@final
def _check_op(
self, ser: pd.Series, op, other, op_name: str, exc=NotImplementedError
):
# Check that the Series/DataFrame arithmetic/comparison method matches
# the pointwise result from _combine.
if exc is None:
result = op(ser, other)
expected = self._combine(ser, other, op)
expected = self._cast_pointwise_result(op_name, ser, other, expected)
assert isinstance(result, type(ser))
tm.assert_equal(result, expected)
else:
with pytest.raises(exc):
op(ser, other)
# see comment on check_opname
@final
def _check_divmod_op(self, ser: pd.Series, op, other):
# check that divmod behavior matches behavior of floordiv+mod
if op is divmod:
exc = self._get_expected_exception("__divmod__", ser, other)
else:
exc = self._get_expected_exception("__rdivmod__", ser, other)
if exc is None:
result_div, result_mod = op(ser, other)
if op is divmod:
expected_div, expected_mod = ser // other, ser % other
else:
expected_div, expected_mod = other // ser, other % ser
tm.assert_series_equal(result_div, expected_div)
tm.assert_series_equal(result_mod, expected_mod)
else:
with pytest.raises(exc):
divmod(ser, other)
class BaseArithmeticOpsTests(BaseOpsUtil):
"""
Various Series and DataFrame arithmetic ops methods.
Subclasses supporting various ops should set the class variables
to indicate that they support ops of that kind
* series_scalar_exc = TypeError
* frame_scalar_exc = TypeError
* series_array_exc = TypeError
* divmod_exc = TypeError
"""
series_scalar_exc: type[Exception] | None = TypeError
frame_scalar_exc: type[Exception] | None = TypeError
series_array_exc: type[Exception] | None = TypeError
divmod_exc: type[Exception] | None = TypeError
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
# series & scalar
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
pytest.skip("Skip testing Python string formatting")
op_name = all_arithmetic_operators
ser = pd.Series(data)
self.check_opname(ser, op_name, ser.iloc[0])
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
# frame & scalar
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
pytest.skip("Skip testing Python string formatting")
op_name = all_arithmetic_operators
df = pd.DataFrame({"A": data})
self.check_opname(df, op_name, data[0])
def test_arith_series_with_array(self, data, all_arithmetic_operators):
# ndarray & other series
op_name = all_arithmetic_operators
ser = pd.Series(data)
self.check_opname(ser, op_name, pd.Series([ser.iloc[0]] * len(ser)))
def test_divmod(self, data):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, 1)
self._check_divmod_op(1, ops.rdivmod, ser)
def test_divmod_series_array(self, data, data_for_twos):
ser = pd.Series(data)
self._check_divmod_op(ser, divmod, data)
other = data_for_twos
self._check_divmod_op(other, ops.rdivmod, ser)
other = pd.Series(other)
self._check_divmod_op(other, ops.rdivmod, ser)
def test_add_series_with_extension_array(self, data):
# Check adding an ExtensionArray to a Series of the same dtype matches
# the behavior of adding the arrays directly and then wrapping in a
# Series.
ser = pd.Series(data)
exc = self._get_expected_exception("__add__", ser, data)
if exc is not None:
with pytest.raises(exc):
ser + data
return
result = ser + data
expected = pd.Series(data + data)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame, pd.Index])
@pytest.mark.parametrize(
"op_name",
[
x
for x in tm.arithmetic_dunder_methods + tm.comparison_dunder_methods
if not x.startswith("__r")
],
)
def test_direct_arith_with_ndframe_returns_not_implemented(
self, data, box, op_name
):
# EAs should return NotImplemented for ops with Series/DataFrame/Index
# Pandas takes care of unboxing the series and calling the EA's op.
other = box(data)
if hasattr(data, op_name):
result = getattr(data, op_name)(other)
assert result is NotImplemented
class BaseComparisonOpsTests(BaseOpsUtil):
"""Various Series and DataFrame comparison ops methods."""
def _compare_other(self, ser: pd.Series, data, op, other):
if op.__name__ in ["eq", "ne"]:
# comparison should match point-wise comparisons
result = op(ser, other)
expected = ser.combine(other, op)
expected = self._cast_pointwise_result(op.__name__, ser, other, expected)
tm.assert_series_equal(result, expected)
else:
exc = None
try:
result = op(ser, other)
except Exception as err:
exc = err
if exc is None:
# Didn't error, then should match pointwise behavior
expected = ser.combine(other, op)
expected = self._cast_pointwise_result(
op.__name__, ser, other, expected
)
tm.assert_series_equal(result, expected)
else:
with pytest.raises(type(exc)):
ser.combine(other, op)
def test_compare_scalar(self, data, comparison_op):
ser = pd.Series(data)
self._compare_other(ser, data, comparison_op, 0)
def test_compare_array(self, data, comparison_op):
ser = pd.Series(data)
other = pd.Series([data[0]] * len(data), dtype=data.dtype)
self._compare_other(ser, data, comparison_op, other)
class BaseUnaryOpsTests(BaseOpsUtil):
def test_invert(self, data):
ser = pd.Series(data, name="name")
try:
# 10 is an arbitrary choice here, just avoid iterating over
# the whole array to trim test runtime
[~x for x in data[:10]]
except TypeError:
# scalars don't support invert -> we don't expect the vectorized
# operation to succeed
with pytest.raises(TypeError):
~ser
with pytest.raises(TypeError):
~data
else:
# Note we do not reuse the pointwise result to construct expected
# because python semantics for negating bools are weird see GH#54569
result = ~ser
expected = pd.Series(~data, name="name")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
# the dunder __pos__ works if and only if np.positive works,
# same for __neg__/np.negative and __abs__/np.abs
attr = {np.positive: "__pos__", np.negative: "__neg__", np.abs: "__abs__"}[
ufunc
]
exc = None
try:
result = getattr(data, attr)()
except Exception as err:
exc = err
# if __pos__ raised, then so should the ufunc
with pytest.raises((type(exc), TypeError)):
ufunc(data)
else:
alt = ufunc(data)
tm.assert_extension_array_equal(result, alt)

View File

@ -0,0 +1,41 @@
import io
import pytest
import pandas as pd
class BasePrintingTests:
"""Tests checking the formatting of your EA when printed."""
@pytest.mark.parametrize("size", ["big", "small"])
def test_array_repr(self, data, size):
if size == "small":
data = data[:5]
else:
data = type(data)._concat_same_type([data] * 5)
result = repr(data)
assert type(data).__name__ in result
assert f"Length: {len(data)}" in result
assert str(data.dtype) in result
if size == "big":
assert "..." in result
def test_array_repr_unicode(self, data):
result = str(data)
assert isinstance(result, str)
def test_series_repr(self, data):
ser = pd.Series(data)
assert data.dtype.name in repr(ser)
def test_dataframe_repr(self, data):
df = pd.DataFrame({"A": data})
repr(df)
def test_dtype_name_in_info(self, data):
buf = io.StringIO()
pd.DataFrame({"A": data}).info(buf=buf)
result = buf.getvalue()
assert data.dtype.name in result

View File

@ -0,0 +1,153 @@
from typing import final
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.types import is_numeric_dtype
class BaseReduceTests:
"""
Reduction specific tests. Generally these only
make sense for numeric/boolean operations.
"""
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
# Specify if we expect this reduction to succeed.
return False
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
# We perform the same operation on the np.float64 data and check
# that the results match. Override if you need to cast to something
# other than float64.
res_op = getattr(ser, op_name)
try:
alt = ser.astype("float64")
except (TypeError, ValueError):
# e.g. Interval can't cast (TypeError), StringArray can't cast
# (ValueError), so let's cast to object and do
# the reduction pointwise
alt = ser.astype(object)
exp_op = getattr(alt, op_name)
if op_name == "count":
result = res_op()
expected = exp_op()
else:
result = res_op(skipna=skipna)
expected = exp_op(skipna=skipna)
tm.assert_almost_equal(result, expected)
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
# Find the expected dtype when the given reduction is done on a DataFrame
# column with this array. The default assumes float64-like behavior,
# i.e. retains the dtype.
return arr.dtype
# We anticipate that authors should not need to override check_reduce_frame,
# but should be able to do any necessary overriding in
# _get_expected_reduction_dtype. If you have a use case where this
# does not hold, please let us know at github.com/pandas-dev/pandas/issues.
@final
def check_reduce_frame(self, ser: pd.Series, op_name: str, skipna: bool):
# Check that the 2D reduction done in a DataFrame reduction "looks like"
# a wrapped version of the 1D reduction done by Series.
arr = ser.array
df = pd.DataFrame({"a": arr})
kwargs = {"ddof": 1} if op_name in ["var", "std"] else {}
cmp_dtype = self._get_expected_reduction_dtype(arr, op_name, skipna)
# The DataFrame method just calls arr._reduce with keepdims=True,
# so this first check is perfunctory.
result1 = arr._reduce(op_name, skipna=skipna, keepdims=True, **kwargs)
result2 = getattr(df, op_name)(skipna=skipna, **kwargs).array
tm.assert_extension_array_equal(result1, result2)
# Check that the 2D reduction looks like a wrapped version of the
# 1D reduction
if not skipna and ser.isna().any():
expected = pd.array([pd.NA], dtype=cmp_dtype)
else:
exp_value = getattr(ser.dropna(), op_name)()
expected = pd.array([exp_value], dtype=cmp_dtype)
tm.assert_extension_array_equal(result1, expected)
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna):
op_name = all_boolean_reductions
ser = pd.Series(data)
if not self._supports_reduction(ser, op_name):
# TODO: the message being checked here isn't actually checking anything
msg = (
"[Cc]annot perform|Categorical is not ordered for operation|"
"does not support reduction|"
)
with pytest.raises(TypeError, match=msg):
getattr(ser, op_name)(skipna=skipna)
else:
self.check_reduce(ser, op_name, skipna)
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
op_name = all_numeric_reductions
ser = pd.Series(data)
if not self._supports_reduction(ser, op_name):
# TODO: the message being checked here isn't actually checking anything
msg = (
"[Cc]annot perform|Categorical is not ordered for operation|"
"does not support reduction|"
)
with pytest.raises(TypeError, match=msg):
getattr(ser, op_name)(skipna=skipna)
else:
# min/max with empty produce numpy warnings
self.check_reduce(ser, op_name, skipna)
@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_frame(self, data, all_numeric_reductions, skipna):
op_name = all_numeric_reductions
ser = pd.Series(data)
if not is_numeric_dtype(ser.dtype):
pytest.skip(f"{ser.dtype} is not numeric dtype")
if op_name in ["count", "kurt", "sem"]:
pytest.skip(f"{op_name} not an array method")
if not self._supports_reduction(ser, op_name):
pytest.skip(f"Reduction {op_name} not supported for this dtype")
self.check_reduce_frame(ser, op_name, skipna)
# TODO(3.0): remove BaseNoReduceTests, BaseNumericReduceTests,
# BaseBooleanReduceTests
class BaseNoReduceTests(BaseReduceTests):
"""we don't define any reductions"""
class BaseNumericReduceTests(BaseReduceTests):
# For backward compatibility only, this only runs the numeric reductions
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
if op_name in ["any", "all"]:
pytest.skip("These are tested in BaseBooleanReduceTests")
return True
class BaseBooleanReduceTests(BaseReduceTests):
# For backward compatibility only, this only runs the numeric reductions
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
if op_name not in ["any", "all"]:
pytest.skip("These are tested in BaseNumericReduceTests")
return True

View File

@ -0,0 +1,379 @@
import itertools
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.api.extensions import ExtensionArray
from pandas.core.internals.blocks import EABackedBlock
class BaseReshapingTests:
"""Tests for reshaping and concatenation."""
@pytest.mark.parametrize("in_frame", [True, False])
def test_concat(self, data, in_frame):
wrapped = pd.Series(data)
if in_frame:
wrapped = pd.DataFrame(wrapped)
result = pd.concat([wrapped, wrapped], ignore_index=True)
assert len(result) == len(data) * 2
if in_frame:
dtype = result.dtypes[0]
else:
dtype = result.dtype
assert dtype == data.dtype
if hasattr(result._mgr, "blocks"):
assert isinstance(result._mgr.blocks[0], EABackedBlock)
assert isinstance(result._mgr.arrays[0], ExtensionArray)
@pytest.mark.parametrize("in_frame", [True, False])
def test_concat_all_na_block(self, data_missing, in_frame):
valid_block = pd.Series(data_missing.take([1, 1]), index=[0, 1])
na_block = pd.Series(data_missing.take([0, 0]), index=[2, 3])
if in_frame:
valid_block = pd.DataFrame({"a": valid_block})
na_block = pd.DataFrame({"a": na_block})
result = pd.concat([valid_block, na_block])
if in_frame:
expected = pd.DataFrame({"a": data_missing.take([1, 1, 0, 0])})
tm.assert_frame_equal(result, expected)
else:
expected = pd.Series(data_missing.take([1, 1, 0, 0]))
tm.assert_series_equal(result, expected)
def test_concat_mixed_dtypes(self, data):
# https://github.com/pandas-dev/pandas/issues/20762
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"A": [1, 2, 3]})
df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
dfs = [df1, df2, df3]
# dataframes
result = pd.concat(dfs)
expected = pd.concat([x.astype(object) for x in dfs])
tm.assert_frame_equal(result, expected)
# series
result = pd.concat([x["A"] for x in dfs])
expected = pd.concat([x["A"].astype(object) for x in dfs])
tm.assert_series_equal(result, expected)
# simple test for just EA and one other
result = pd.concat([df1, df2.astype(object)])
expected = pd.concat([df1.astype("object"), df2.astype("object")])
tm.assert_frame_equal(result, expected)
result = pd.concat([df1["A"], df2["A"].astype(object)])
expected = pd.concat([df1["A"].astype("object"), df2["A"].astype("object")])
tm.assert_series_equal(result, expected)
def test_concat_columns(self, data, na_value):
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"B": [1, 2, 3]})
expected = pd.DataFrame({"A": data[:3], "B": [1, 2, 3]})
result = pd.concat([df1, df2], axis=1)
tm.assert_frame_equal(result, expected)
result = pd.concat([df1["A"], df2["B"]], axis=1)
tm.assert_frame_equal(result, expected)
# non-aligned
df2 = pd.DataFrame({"B": [1, 2, 3]}, index=[1, 2, 3])
expected = pd.DataFrame(
{
"A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
"B": [np.nan, 1, 2, 3],
}
)
result = pd.concat([df1, df2], axis=1)
tm.assert_frame_equal(result, expected)
result = pd.concat([df1["A"], df2["B"]], axis=1)
tm.assert_frame_equal(result, expected)
def test_concat_extension_arrays_copy_false(self, data, na_value):
# GH 20756
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"B": data[3:7]})
expected = pd.DataFrame(
{
"A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
"B": data[3:7],
}
)
result = pd.concat([df1, df2], axis=1, copy=False)
tm.assert_frame_equal(result, expected)
def test_concat_with_reindex(self, data):
# GH-33027
a = pd.DataFrame({"a": data[:5]})
b = pd.DataFrame({"b": data[:5]})
result = pd.concat([a, b], ignore_index=True)
expected = pd.DataFrame(
{
"a": data.take(list(range(5)) + ([-1] * 5), allow_fill=True),
"b": data.take(([-1] * 5) + list(range(5)), allow_fill=True),
}
)
tm.assert_frame_equal(result, expected)
def test_align(self, data, na_value):
a = data[:3]
b = data[2:5]
r1, r2 = pd.Series(a).align(pd.Series(b, index=[1, 2, 3]))
# Assumes that the ctor can take a list of scalars of the type
e1 = pd.Series(data._from_sequence(list(a) + [na_value], dtype=data.dtype))
e2 = pd.Series(data._from_sequence([na_value] + list(b), dtype=data.dtype))
tm.assert_series_equal(r1, e1)
tm.assert_series_equal(r2, e2)
def test_align_frame(self, data, na_value):
a = data[:3]
b = data[2:5]
r1, r2 = pd.DataFrame({"A": a}).align(pd.DataFrame({"A": b}, index=[1, 2, 3]))
# Assumes that the ctor can take a list of scalars of the type
e1 = pd.DataFrame(
{"A": data._from_sequence(list(a) + [na_value], dtype=data.dtype)}
)
e2 = pd.DataFrame(
{"A": data._from_sequence([na_value] + list(b), dtype=data.dtype)}
)
tm.assert_frame_equal(r1, e1)
tm.assert_frame_equal(r2, e2)
def test_align_series_frame(self, data, na_value):
# https://github.com/pandas-dev/pandas/issues/20576
ser = pd.Series(data, name="a")
df = pd.DataFrame({"col": np.arange(len(ser) + 1)})
r1, r2 = ser.align(df)
e1 = pd.Series(
data._from_sequence(list(data) + [na_value], dtype=data.dtype),
name=ser.name,
)
tm.assert_series_equal(r1, e1)
tm.assert_frame_equal(r2, df)
def test_set_frame_expand_regular_with_extension(self, data):
df = pd.DataFrame({"A": [1] * len(data)})
df["B"] = data
expected = pd.DataFrame({"A": [1] * len(data), "B": data})
tm.assert_frame_equal(df, expected)
def test_set_frame_expand_extension_with_regular(self, data):
df = pd.DataFrame({"A": data})
df["B"] = [1] * len(data)
expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
tm.assert_frame_equal(df, expected)
def test_set_frame_overwrite_object(self, data):
# https://github.com/pandas-dev/pandas/issues/20555
df = pd.DataFrame({"A": [1] * len(data)}, dtype=object)
df["A"] = data
assert df.dtypes["A"] == data.dtype
def test_merge(self, data, na_value):
# GH-20743
df1 = pd.DataFrame({"ext": data[:3], "int1": [1, 2, 3], "key": [0, 1, 2]})
df2 = pd.DataFrame({"int2": [1, 2, 3, 4], "key": [0, 0, 1, 3]})
res = pd.merge(df1, df2)
exp = pd.DataFrame(
{
"int1": [1, 1, 2],
"int2": [1, 2, 3],
"key": [0, 0, 1],
"ext": data._from_sequence(
[data[0], data[0], data[1]], dtype=data.dtype
),
}
)
tm.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
res = pd.merge(df1, df2, how="outer")
exp = pd.DataFrame(
{
"int1": [1, 1, 2, 3, np.nan],
"int2": [1, 2, 3, np.nan, 4],
"key": [0, 0, 1, 2, 3],
"ext": data._from_sequence(
[data[0], data[0], data[1], data[2], na_value], dtype=data.dtype
),
}
)
tm.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
def test_merge_on_extension_array(self, data):
# GH 23020
a, b = data[:2]
key = type(data)._from_sequence([a, b], dtype=data.dtype)
df = pd.DataFrame({"key": key, "val": [1, 2]})
result = pd.merge(df, df, on="key")
expected = pd.DataFrame({"key": key, "val_x": [1, 2], "val_y": [1, 2]})
tm.assert_frame_equal(result, expected)
# order
result = pd.merge(df.iloc[[1, 0]], df, on="key")
expected = expected.iloc[[1, 0]].reset_index(drop=True)
tm.assert_frame_equal(result, expected)
def test_merge_on_extension_array_duplicates(self, data):
# GH 23020
a, b = data[:2]
key = type(data)._from_sequence([a, b, a], dtype=data.dtype)
df1 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
df2 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
result = pd.merge(df1, df2, on="key")
expected = pd.DataFrame(
{
"key": key.take([0, 0, 1, 2, 2]),
"val_x": [1, 1, 2, 3, 3],
"val_y": [1, 3, 2, 1, 3],
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.filterwarnings(
"ignore:The previous implementation of stack is deprecated"
)
@pytest.mark.parametrize(
"columns",
[
["A", "B"],
pd.MultiIndex.from_tuples(
[("A", "a"), ("A", "b")], names=["outer", "inner"]
),
],
)
@pytest.mark.parametrize("future_stack", [True, False])
def test_stack(self, data, columns, future_stack):
df = pd.DataFrame({"A": data[:5], "B": data[:5]})
df.columns = columns
result = df.stack(future_stack=future_stack)
expected = df.astype(object).stack(future_stack=future_stack)
# we need a second astype(object), in case the constructor inferred
# object -> specialized, as is done for period.
expected = expected.astype(object)
if isinstance(expected, pd.Series):
assert result.dtype == df.iloc[:, 0].dtype
else:
assert all(result.dtypes == df.iloc[:, 0].dtype)
result = result.astype(object)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
# Two levels, uniform.
pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]),
# non-uniform
pd.MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "b")]),
# three levels, non-uniform
pd.MultiIndex.from_product([("A", "B"), ("a", "b", "c"), (0, 1, 2)]),
pd.MultiIndex.from_tuples(
[
("A", "a", 1),
("A", "b", 0),
("A", "a", 0),
("B", "a", 0),
("B", "c", 1),
]
),
],
)
@pytest.mark.parametrize("obj", ["series", "frame"])
def test_unstack(self, data, index, obj):
data = data[: len(index)]
if obj == "series":
ser = pd.Series(data, index=index)
else:
ser = pd.DataFrame({"A": data, "B": data}, index=index)
n = index.nlevels
levels = list(range(n))
# [0, 1, 2]
# [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
combinations = itertools.chain.from_iterable(
itertools.permutations(levels, i) for i in range(1, n)
)
for level in combinations:
result = ser.unstack(level=level)
assert all(
isinstance(result[col].array, type(data)) for col in result.columns
)
if obj == "series":
# We should get the same result with to_frame+unstack+droplevel
df = ser.to_frame()
alt = df.unstack(level=level).droplevel(0, axis=1)
tm.assert_frame_equal(result, alt)
obj_ser = ser.astype(object)
expected = obj_ser.unstack(level=level, fill_value=data.dtype.na_value)
if obj == "series":
assert (expected.dtypes == object).all()
result = result.astype(object)
tm.assert_frame_equal(result, expected)
def test_ravel(self, data):
# as long as EA is 1D-only, ravel is a no-op
result = data.ravel()
assert type(result) == type(data)
if data.dtype._is_immutable:
pytest.skip(f"test_ravel assumes mutability and {data.dtype} is immutable")
# Check that we have a view, not a copy
result[0] = result[1]
assert data[0] == data[1]
def test_transpose(self, data):
result = data.transpose()
assert type(result) == type(data)
# check we get a new object
assert result is not data
# If we ever _did_ support 2D, shape should be reversed
assert result.shape == data.shape[::-1]
if data.dtype._is_immutable:
pytest.skip(
f"test_transpose assumes mutability and {data.dtype} is immutable"
)
# Check that we have a view, not a copy
result[0] = result[1]
assert data[0] == data[1]
def test_transpose_frame(self, data):
df = pd.DataFrame({"A": data[:4], "B": data[:4]}, index=["a", "b", "c", "d"])
result = df.T
expected = pd.DataFrame(
{
"a": type(data)._from_sequence([data[0]] * 2, dtype=data.dtype),
"b": type(data)._from_sequence([data[1]] * 2, dtype=data.dtype),
"c": type(data)._from_sequence([data[2]] * 2, dtype=data.dtype),
"d": type(data)._from_sequence([data[3]] * 2, dtype=data.dtype),
},
index=["A", "B"],
)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(np.transpose(np.transpose(df)), df)
tm.assert_frame_equal(np.transpose(np.transpose(df[["A"]])), df[["A"]])

View File

@ -0,0 +1,451 @@
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class BaseSetitemTests:
@pytest.fixture(
params=[
lambda x: x.index,
lambda x: list(x.index),
lambda x: slice(None),
lambda x: slice(0, len(x)),
lambda x: range(len(x)),
lambda x: list(range(len(x))),
lambda x: np.ones(len(x), dtype=bool),
],
ids=[
"index",
"list[index]",
"null_slice",
"full_slice",
"range",
"list(range)",
"mask",
],
)
def full_indexer(self, request):
"""
Fixture for an indexer to pass to obj.loc to get/set the full length of the
object.
In some cases, assumes that obj.index is the default RangeIndex.
"""
return request.param
@pytest.fixture(autouse=True)
def skip_if_immutable(self, dtype, request):
if dtype._is_immutable:
node = request.node
if node.name.split("[")[0] == "test_is_immutable":
# This fixture is auto-used, but we want to not-skip
# test_is_immutable.
return
# When BaseSetitemTests is mixed into ExtensionTests, we only
# want this fixture to operate on the tests defined in this
# class/file.
defined_in = node.function.__qualname__.split(".")[0]
if defined_in == "BaseSetitemTests":
pytest.skip("__setitem__ test not applicable with immutable dtype")
def test_is_immutable(self, data):
if data.dtype._is_immutable:
with pytest.raises(TypeError):
data[0] = data[0]
else:
data[0] = data[1]
assert data[0] == data[1]
def test_setitem_scalar_series(self, data, box_in_series):
if box_in_series:
data = pd.Series(data)
data[0] = data[1]
assert data[0] == data[1]
def test_setitem_sequence(self, data, box_in_series):
if box_in_series:
data = pd.Series(data)
original = data.copy()
data[[0, 1]] = [data[1], data[0]]
assert data[0] == original[1]
assert data[1] == original[0]
def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
ser = pd.Series(data)
original = ser.copy()
value = [data[0]]
if as_array:
value = data._from_sequence(value, dtype=data.dtype)
xpr = "cannot set using a {} indexer with a different length"
with pytest.raises(ValueError, match=xpr.format("list-like")):
ser[[0, 1]] = value
# Ensure no modifications made before the exception
tm.assert_series_equal(ser, original)
with pytest.raises(ValueError, match=xpr.format("slice")):
ser[slice(3)] = value
tm.assert_series_equal(ser, original)
def test_setitem_empty_indexer(self, data, box_in_series):
if box_in_series:
data = pd.Series(data)
original = data.copy()
data[np.array([], dtype=int)] = []
tm.assert_equal(data, original)
def test_setitem_sequence_broadcasts(self, data, box_in_series):
if box_in_series:
data = pd.Series(data)
data[[0, 1]] = data[2]
assert data[0] == data[2]
assert data[1] == data[2]
@pytest.mark.parametrize("setter", ["loc", "iloc"])
def test_setitem_scalar(self, data, setter):
arr = pd.Series(data)
setter = getattr(arr, setter)
setter[0] = data[1]
assert arr[0] == data[1]
def test_setitem_loc_scalar_mixed(self, data):
df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
df.loc[0, "B"] = data[1]
assert df.loc[0, "B"] == data[1]
def test_setitem_loc_scalar_single(self, data):
df = pd.DataFrame({"B": data})
df.loc[10, "B"] = data[1]
assert df.loc[10, "B"] == data[1]
def test_setitem_loc_scalar_multiple_homogoneous(self, data):
df = pd.DataFrame({"A": data, "B": data})
df.loc[10, "B"] = data[1]
assert df.loc[10, "B"] == data[1]
def test_setitem_iloc_scalar_mixed(self, data):
df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
df.iloc[0, 1] = data[1]
assert df.loc[0, "B"] == data[1]
def test_setitem_iloc_scalar_single(self, data):
df = pd.DataFrame({"B": data})
df.iloc[10, 0] = data[1]
assert df.loc[10, "B"] == data[1]
def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
df = pd.DataFrame({"A": data, "B": data})
df.iloc[10, 1] = data[1]
assert df.loc[10, "B"] == data[1]
@pytest.mark.parametrize(
"mask",
[
np.array([True, True, True, False, False]),
pd.array([True, True, True, False, False], dtype="boolean"),
pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"),
],
ids=["numpy-array", "boolean-array", "boolean-array-na"],
)
def test_setitem_mask(self, data, mask, box_in_series):
arr = data[:5].copy()
expected = arr.take([0, 0, 0, 3, 4])
if box_in_series:
arr = pd.Series(arr)
expected = pd.Series(expected)
arr[mask] = data[0]
tm.assert_equal(expected, arr)
def test_setitem_mask_raises(self, data, box_in_series):
# wrong length
mask = np.array([True, False])
if box_in_series:
data = pd.Series(data)
with pytest.raises(IndexError, match="wrong length"):
data[mask] = data[0]
mask = pd.array(mask, dtype="boolean")
with pytest.raises(IndexError, match="wrong length"):
data[mask] = data[0]
def test_setitem_mask_boolean_array_with_na(self, data, box_in_series):
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
mask[:3] = True
mask[3:5] = pd.NA
if box_in_series:
data = pd.Series(data)
data[mask] = data[0]
assert (data[:3] == data[0]).all()
@pytest.mark.parametrize(
"idx",
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
ids=["list", "integer-array", "numpy-array"],
)
def test_setitem_integer_array(self, data, idx, box_in_series):
arr = data[:5].copy()
expected = data.take([0, 0, 0, 3, 4])
if box_in_series:
arr = pd.Series(arr)
expected = pd.Series(expected)
arr[idx] = arr[0]
tm.assert_equal(arr, expected)
@pytest.mark.parametrize(
"idx, box_in_series",
[
([0, 1, 2, pd.NA], False),
pytest.param(
[0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948")
),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
],
ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
)
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
arr = data.copy()
# TODO(xfail) this raises KeyError about labels not found (it tries label-based)
# for list of labels with Series
if box_in_series:
arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
msg = "Cannot index with an integer indexer containing NA values"
with pytest.raises(ValueError, match=msg):
arr[idx] = arr[0]
@pytest.mark.parametrize("as_callable", [True, False])
@pytest.mark.parametrize("setter", ["loc", None])
def test_setitem_mask_aligned(self, data, as_callable, setter):
ser = pd.Series(data)
mask = np.zeros(len(data), dtype=bool)
mask[:2] = True
if as_callable:
mask2 = lambda x: mask
else:
mask2 = mask
if setter:
# loc
target = getattr(ser, setter)
else:
# Series.__setitem__
target = ser
target[mask2] = data[5:7]
ser[mask2] = data[5:7]
assert ser[0] == data[5]
assert ser[1] == data[6]
@pytest.mark.parametrize("setter", ["loc", None])
def test_setitem_mask_broadcast(self, data, setter):
ser = pd.Series(data)
mask = np.zeros(len(data), dtype=bool)
mask[:2] = True
if setter: # loc
target = getattr(ser, setter)
else: # __setitem__
target = ser
target[mask] = data[10]
assert ser[0] == data[10]
assert ser[1] == data[10]
def test_setitem_expand_columns(self, data):
df = pd.DataFrame({"A": data})
result = df.copy()
result["B"] = 1
expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
tm.assert_frame_equal(result, expected)
result = df.copy()
result.loc[:, "B"] = 1
tm.assert_frame_equal(result, expected)
# overwrite with new type
result["B"] = data
expected = pd.DataFrame({"A": data, "B": data})
tm.assert_frame_equal(result, expected)
def test_setitem_expand_with_extension(self, data):
df = pd.DataFrame({"A": [1] * len(data)})
result = df.copy()
result["B"] = data
expected = pd.DataFrame({"A": [1] * len(data), "B": data})
tm.assert_frame_equal(result, expected)
result = df.copy()
result.loc[:, "B"] = data
tm.assert_frame_equal(result, expected)
def test_setitem_frame_invalid_length(self, data):
df = pd.DataFrame({"A": [1] * len(data)})
xpr = (
rf"Length of values \({len(data[:5])}\) "
rf"does not match length of index \({len(df)}\)"
)
with pytest.raises(ValueError, match=xpr):
df["B"] = data[:5]
def test_setitem_tuple_index(self, data):
ser = pd.Series(data[:2], index=[(0, 0), (0, 1)])
expected = pd.Series(data.take([1, 1]), index=ser.index)
ser[(0, 0)] = data[1]
tm.assert_series_equal(ser, expected)
def test_setitem_slice(self, data, box_in_series):
arr = data[:5].copy()
expected = data.take([0, 0, 0, 3, 4])
if box_in_series:
arr = pd.Series(arr)
expected = pd.Series(expected)
arr[:3] = data[0]
tm.assert_equal(arr, expected)
def test_setitem_loc_iloc_slice(self, data):
arr = data[:5].copy()
s = pd.Series(arr, index=["a", "b", "c", "d", "e"])
expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index)
result = s.copy()
result.iloc[:3] = data[0]
tm.assert_equal(result, expected)
result = s.copy()
result.loc[:"c"] = data[0]
tm.assert_equal(result, expected)
def test_setitem_slice_mismatch_length_raises(self, data):
arr = data[:5]
with pytest.raises(ValueError):
arr[:1] = arr[:2]
def test_setitem_slice_array(self, data):
arr = data[:5].copy()
arr[:5] = data[-5:]
tm.assert_extension_array_equal(arr, data[-5:])
def test_setitem_scalar_key_sequence_raise(self, data):
arr = data[:5].copy()
with pytest.raises(ValueError):
arr[0] = arr[[0, 1]]
def test_setitem_preserves_views(self, data):
# GH#28150 setitem shouldn't swap the underlying data
view1 = data.view()
view2 = data[:]
data[0] = data[1]
assert view1[0] == data[1]
assert view2[0] == data[1]
def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
# https://github.com/pandas-dev/pandas/issues/32395
df = expected = pd.DataFrame({0: pd.Series(data)})
result = pd.DataFrame(index=df.index)
key = full_indexer(df)
result.loc[key, 0] = df[0]
tm.assert_frame_equal(result, expected)
def test_setitem_with_expansion_row(self, data, na_value):
df = pd.DataFrame({"data": data[:1]})
df.loc[1, "data"] = data[1]
expected = pd.DataFrame({"data": data[:2]})
tm.assert_frame_equal(df, expected)
# https://github.com/pandas-dev/pandas/issues/47284
df.loc[2, "data"] = na_value
expected = pd.DataFrame(
{"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)}
)
tm.assert_frame_equal(df, expected)
def test_setitem_series(self, data, full_indexer):
# https://github.com/pandas-dev/pandas/issues/32395
ser = pd.Series(data, name="data")
result = pd.Series(index=ser.index, dtype=object, name="data")
# because result has object dtype, the attempt to do setting inplace
# is successful, and object dtype is retained
key = full_indexer(ser)
result.loc[key] = ser
expected = pd.Series(
data.astype(object), index=ser.index, name="data", dtype=object
)
tm.assert_series_equal(result, expected)
def test_setitem_frame_2d_values(self, data):
# GH#44514
df = pd.DataFrame({"A": data})
# Avoiding using_array_manager fixture
# https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410
using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager)
using_copy_on_write = pd.options.mode.copy_on_write
blk_data = df._mgr.arrays[0]
orig = df.copy()
df.iloc[:] = df.copy()
tm.assert_frame_equal(df, orig)
df.iloc[:-1] = df.iloc[:-1].copy()
tm.assert_frame_equal(df, orig)
df.iloc[:] = df.values
tm.assert_frame_equal(df, orig)
if not using_array_manager and not using_copy_on_write:
# GH#33457 Check that this setting occurred in-place
# FIXME(ArrayManager): this should work there too
assert df._mgr.arrays[0] is blk_data
df.iloc[:-1] = df.values[:-1]
tm.assert_frame_equal(df, orig)
def test_delitem_series(self, data):
# GH#40763
ser = pd.Series(data, name="data")
taker = np.arange(len(ser))
taker = np.delete(taker, 1)
expected = ser[taker]
del ser[1]
tm.assert_series_equal(ser, expected)
def test_setitem_invalid(self, data, invalid_scalar):
msg = "" # messages vary by subclass, so we do not test it
with pytest.raises((ValueError, TypeError), match=msg):
data[0] = invalid_scalar
with pytest.raises((ValueError, TypeError), match=msg):
data[:] = invalid_scalar
def test_setitem_2d_values(self, data):
# GH50085
original = data.copy()
df = pd.DataFrame({"a": data, "b": data})
df.loc[[0, 1], :] = df.loc[[1, 0], :].values
assert (df.loc[0, :] == original[1]).all()
assert (df.loc[1, :] == original[0]).all()