Updated script that can be controled by Nodejs web app
This commit is contained in:
@ -0,0 +1,131 @@
|
||||
"""
|
||||
Base test suite for extension arrays.
|
||||
|
||||
These tests are intended for third-party libraries to subclass to validate
|
||||
that their extension arrays and dtypes satisfy the interface. Moving or
|
||||
renaming the tests should not be done lightly.
|
||||
|
||||
Libraries are expected to implement a few pytest fixtures to provide data
|
||||
for the tests. The fixtures may be located in either
|
||||
|
||||
* The same module as your test class.
|
||||
* A ``conftest.py`` in the same directory as your test class.
|
||||
|
||||
The full list of fixtures may be found in the ``conftest.py`` next to this
|
||||
file.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import pytest
|
||||
from pandas.tests.extension.base import BaseDtypeTests
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dtype():
|
||||
return MyDtype()
|
||||
|
||||
|
||||
class TestMyDtype(BaseDtypeTests):
|
||||
pass
|
||||
|
||||
|
||||
Your class ``TestDtype`` will inherit all the tests defined on
|
||||
``BaseDtypeTests``. pytest's fixture discover will supply your ``dtype``
|
||||
wherever the test requires it. You're free to implement additional tests.
|
||||
|
||||
"""
|
||||
from pandas.tests.extension.base.accumulate import BaseAccumulateTests
|
||||
from pandas.tests.extension.base.casting import BaseCastingTests
|
||||
from pandas.tests.extension.base.constructors import BaseConstructorsTests
|
||||
from pandas.tests.extension.base.dim2 import ( # noqa: F401
|
||||
Dim2CompatTests,
|
||||
NDArrayBacked2DTests,
|
||||
)
|
||||
from pandas.tests.extension.base.dtype import BaseDtypeTests
|
||||
from pandas.tests.extension.base.getitem import BaseGetitemTests
|
||||
from pandas.tests.extension.base.groupby import BaseGroupbyTests
|
||||
from pandas.tests.extension.base.index import BaseIndexTests
|
||||
from pandas.tests.extension.base.interface import BaseInterfaceTests
|
||||
from pandas.tests.extension.base.io import BaseParsingTests
|
||||
from pandas.tests.extension.base.methods import BaseMethodsTests
|
||||
from pandas.tests.extension.base.missing import BaseMissingTests
|
||||
from pandas.tests.extension.base.ops import ( # noqa: F401
|
||||
BaseArithmeticOpsTests,
|
||||
BaseComparisonOpsTests,
|
||||
BaseOpsUtil,
|
||||
BaseUnaryOpsTests,
|
||||
)
|
||||
from pandas.tests.extension.base.printing import BasePrintingTests
|
||||
from pandas.tests.extension.base.reduce import BaseReduceTests
|
||||
from pandas.tests.extension.base.reshaping import BaseReshapingTests
|
||||
from pandas.tests.extension.base.setitem import BaseSetitemTests
|
||||
|
||||
|
||||
# One test class that you can inherit as an alternative to inheriting all the
|
||||
# test classes above.
|
||||
# Note 1) this excludes Dim2CompatTests and NDArrayBacked2DTests.
|
||||
# Note 2) this uses BaseReduceTests and and _not_ BaseBooleanReduceTests,
|
||||
# BaseNoReduceTests, or BaseNumericReduceTests
|
||||
class ExtensionTests(
|
||||
BaseAccumulateTests,
|
||||
BaseCastingTests,
|
||||
BaseConstructorsTests,
|
||||
BaseDtypeTests,
|
||||
BaseGetitemTests,
|
||||
BaseGroupbyTests,
|
||||
BaseIndexTests,
|
||||
BaseInterfaceTests,
|
||||
BaseParsingTests,
|
||||
BaseMethodsTests,
|
||||
BaseMissingTests,
|
||||
BaseArithmeticOpsTests,
|
||||
BaseComparisonOpsTests,
|
||||
BaseUnaryOpsTests,
|
||||
BasePrintingTests,
|
||||
BaseReduceTests,
|
||||
BaseReshapingTests,
|
||||
BaseSetitemTests,
|
||||
Dim2CompatTests,
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
def __getattr__(name: str):
|
||||
import warnings
|
||||
|
||||
if name == "BaseNoReduceTests":
|
||||
warnings.warn(
|
||||
"BaseNoReduceTests is deprecated and will be removed in a "
|
||||
"future version. Use BaseReduceTests and override "
|
||||
"`_supports_reduction` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
from pandas.tests.extension.base.reduce import BaseNoReduceTests
|
||||
|
||||
return BaseNoReduceTests
|
||||
|
||||
elif name == "BaseNumericReduceTests":
|
||||
warnings.warn(
|
||||
"BaseNumericReduceTests is deprecated and will be removed in a "
|
||||
"future version. Use BaseReduceTests and override "
|
||||
"`_supports_reduction` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
from pandas.tests.extension.base.reduce import BaseNumericReduceTests
|
||||
|
||||
return BaseNumericReduceTests
|
||||
|
||||
elif name == "BaseBooleanReduceTests":
|
||||
warnings.warn(
|
||||
"BaseBooleanReduceTests is deprecated and will be removed in a "
|
||||
"future version. Use BaseReduceTests and override "
|
||||
"`_supports_reduction` instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
from pandas.tests.extension.base.reduce import BaseBooleanReduceTests
|
||||
|
||||
return BaseBooleanReduceTests
|
||||
|
||||
raise AttributeError(
|
||||
f"module 'pandas.tests.extension.base' has no attribute '{name}'"
|
||||
)
|
@ -0,0 +1,39 @@
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class BaseAccumulateTests:
|
||||
"""
|
||||
Accumulation specific tests. Generally these only
|
||||
make sense for numeric/boolean operations.
|
||||
"""
|
||||
|
||||
def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
|
||||
# Do we expect this accumulation to be supported for this dtype?
|
||||
# We default to assuming "no"; subclass authors should override here.
|
||||
return False
|
||||
|
||||
def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
|
||||
try:
|
||||
alt = ser.astype("float64")
|
||||
except TypeError:
|
||||
# e.g. Period can't be cast to float64
|
||||
alt = ser.astype(object)
|
||||
|
||||
result = getattr(ser, op_name)(skipna=skipna)
|
||||
expected = getattr(alt, op_name)(skipna=skipna)
|
||||
tm.assert_series_equal(result, expected, check_dtype=False)
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_accumulate_series(self, data, all_numeric_accumulations, skipna):
|
||||
op_name = all_numeric_accumulations
|
||||
ser = pd.Series(data)
|
||||
|
||||
if self._supports_accumulation(ser, op_name):
|
||||
self.check_accumulate(ser, op_name, skipna)
|
||||
else:
|
||||
with pytest.raises((NotImplementedError, TypeError)):
|
||||
# TODO: require TypeError for things that will _never_ work?
|
||||
getattr(ser, op_name)(skipna=skipna)
|
@ -0,0 +1,2 @@
|
||||
class BaseExtensionTests:
|
||||
pass
|
@ -0,0 +1,87 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.internals.blocks import NumpyBlock
|
||||
|
||||
|
||||
class BaseCastingTests:
|
||||
"""Casting to and from ExtensionDtypes"""
|
||||
|
||||
def test_astype_object_series(self, all_data):
|
||||
ser = pd.Series(all_data, name="A")
|
||||
result = ser.astype(object)
|
||||
assert result.dtype == np.dtype(object)
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
blk = result._mgr.blocks[0]
|
||||
assert isinstance(blk, NumpyBlock)
|
||||
assert blk.is_object
|
||||
assert isinstance(result._mgr.array, np.ndarray)
|
||||
assert result._mgr.array.dtype == np.dtype(object)
|
||||
|
||||
def test_astype_object_frame(self, all_data):
|
||||
df = pd.DataFrame({"A": all_data})
|
||||
|
||||
result = df.astype(object)
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
blk = result._mgr.blocks[0]
|
||||
assert isinstance(blk, NumpyBlock), type(blk)
|
||||
assert blk.is_object
|
||||
assert isinstance(result._mgr.arrays[0], np.ndarray)
|
||||
assert result._mgr.arrays[0].dtype == np.dtype(object)
|
||||
|
||||
# check that we can compare the dtypes
|
||||
comp = result.dtypes == df.dtypes
|
||||
assert not comp.any()
|
||||
|
||||
def test_tolist(self, data):
|
||||
result = pd.Series(data).tolist()
|
||||
expected = list(data)
|
||||
assert result == expected
|
||||
|
||||
def test_astype_str(self, data):
|
||||
result = pd.Series(data[:5]).astype(str)
|
||||
expected = pd.Series([str(x) for x in data[:5]], dtype=str)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"nullable_string_dtype",
|
||||
[
|
||||
"string[python]",
|
||||
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
|
||||
],
|
||||
)
|
||||
def test_astype_string(self, data, nullable_string_dtype):
|
||||
# GH-33465, GH#45326 as of 2.0 we decode bytes instead of calling str(obj)
|
||||
result = pd.Series(data[:5]).astype(nullable_string_dtype)
|
||||
expected = pd.Series(
|
||||
[str(x) if not isinstance(x, bytes) else x.decode() for x in data[:5]],
|
||||
dtype=nullable_string_dtype,
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_to_numpy(self, data):
|
||||
expected = np.asarray(data)
|
||||
|
||||
result = data.to_numpy()
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = pd.Series(data).to_numpy()
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_astype_empty_dataframe(self, dtype):
|
||||
# https://github.com/pandas-dev/pandas/issues/33113
|
||||
df = pd.DataFrame()
|
||||
result = df.astype(dtype)
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
@pytest.mark.parametrize("copy", [True, False])
|
||||
def test_astype_own_type(self, data, copy):
|
||||
# ensure that astype returns the original object for equal dtype and copy=False
|
||||
# https://github.com/pandas-dev/pandas/issues/28488
|
||||
result = data.astype(data.dtype, copy=copy)
|
||||
assert (result is data) is (not copy)
|
||||
tm.assert_extension_array_equal(result, data)
|
@ -0,0 +1,142 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.extensions import ExtensionArray
|
||||
from pandas.core.internals.blocks import EABackedBlock
|
||||
|
||||
|
||||
class BaseConstructorsTests:
|
||||
def test_from_sequence_from_cls(self, data):
|
||||
result = type(data)._from_sequence(data, dtype=data.dtype)
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
data = data[:0]
|
||||
result = type(data)._from_sequence(data, dtype=data.dtype)
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
def test_array_from_scalars(self, data):
|
||||
scalars = [data[0], data[1], data[2]]
|
||||
result = data._from_sequence(scalars, dtype=data.dtype)
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
def test_series_constructor(self, data):
|
||||
result = pd.Series(data, copy=False)
|
||||
assert result.dtype == data.dtype
|
||||
assert len(result) == len(data)
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
||||
assert result._mgr.array is data
|
||||
|
||||
# Series[EA] is unboxed / boxed correctly
|
||||
result2 = pd.Series(result)
|
||||
assert result2.dtype == data.dtype
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
assert isinstance(result2._mgr.blocks[0], EABackedBlock)
|
||||
|
||||
def test_series_constructor_no_data_with_index(self, dtype, na_value):
|
||||
result = pd.Series(index=[1, 2, 3], dtype=dtype)
|
||||
expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# GH 33559 - empty index
|
||||
result = pd.Series(index=[], dtype=dtype)
|
||||
expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
|
||||
result = pd.Series(na_value, index=[1, 2, 3], dtype=dtype)
|
||||
expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_series_constructor_scalar_with_index(self, data, dtype):
|
||||
scalar = data[0]
|
||||
result = pd.Series(scalar, index=[1, 2, 3], dtype=dtype)
|
||||
expected = pd.Series([scalar] * 3, index=[1, 2, 3], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = pd.Series(scalar, index=["foo"], dtype=dtype)
|
||||
expected = pd.Series([scalar], index=["foo"], dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("from_series", [True, False])
|
||||
def test_dataframe_constructor_from_dict(self, data, from_series):
|
||||
if from_series:
|
||||
data = pd.Series(data)
|
||||
result = pd.DataFrame({"A": data})
|
||||
assert result.dtypes["A"] == data.dtype
|
||||
assert result.shape == (len(data), 1)
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
||||
assert isinstance(result._mgr.arrays[0], ExtensionArray)
|
||||
|
||||
def test_dataframe_from_series(self, data):
|
||||
result = pd.DataFrame(pd.Series(data))
|
||||
assert result.dtypes[0] == data.dtype
|
||||
assert result.shape == (len(data), 1)
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
||||
assert isinstance(result._mgr.arrays[0], ExtensionArray)
|
||||
|
||||
def test_series_given_mismatched_index_raises(self, data):
|
||||
msg = r"Length of values \(3\) does not match length of index \(5\)"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.Series(data[:3], index=[0, 1, 2, 3, 4])
|
||||
|
||||
def test_from_dtype(self, data):
|
||||
# construct from our dtype & string dtype
|
||||
dtype = data.dtype
|
||||
|
||||
expected = pd.Series(data)
|
||||
result = pd.Series(list(data), dtype=dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = pd.Series(list(data), dtype=str(dtype))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# gh-30280
|
||||
|
||||
expected = pd.DataFrame(data).astype(dtype)
|
||||
result = pd.DataFrame(list(data), dtype=dtype)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = pd.DataFrame(list(data), dtype=str(dtype))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_pandas_array(self, data):
|
||||
# pd.array(extension_array) should be idempotent...
|
||||
result = pd.array(data)
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
def test_pandas_array_dtype(self, data):
|
||||
# ... but specifying dtype will override idempotency
|
||||
result = pd.array(data, dtype=np.dtype(object))
|
||||
expected = pd.arrays.NumpyExtensionArray(np.asarray(data, dtype=object))
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_construct_empty_dataframe(self, dtype):
|
||||
# GH 33623
|
||||
result = pd.DataFrame(columns=["a"], dtype=dtype)
|
||||
expected = pd.DataFrame(
|
||||
{"a": pd.array([], dtype=dtype)}, index=pd.RangeIndex(0)
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_empty(self, dtype):
|
||||
cls = dtype.construct_array_type()
|
||||
result = cls._empty((4,), dtype=dtype)
|
||||
assert isinstance(result, cls)
|
||||
assert result.dtype == dtype
|
||||
assert result.shape == (4,)
|
||||
|
||||
# GH#19600 method on ExtensionDtype
|
||||
result2 = dtype.empty((4,))
|
||||
assert isinstance(result2, cls)
|
||||
assert result2.dtype == dtype
|
||||
assert result2.shape == (4,)
|
||||
|
||||
result2 = dtype.empty(4)
|
||||
assert isinstance(result2, cls)
|
||||
assert result2.dtype == dtype
|
||||
assert result2.shape == (4,)
|
345
lib/python3.13/site-packages/pandas/tests/extension/base/dim2.py
Normal file
345
lib/python3.13/site-packages/pandas/tests/extension/base/dim2.py
Normal file
@ -0,0 +1,345 @@
|
||||
"""
|
||||
Tests for 2D compatibility.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._libs.missing import is_matching_na
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_bool_dtype,
|
||||
is_integer_dtype,
|
||||
)
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE
|
||||
|
||||
|
||||
class Dim2CompatTests:
|
||||
# Note: these are ONLY for ExtensionArray subclasses that support 2D arrays.
|
||||
# i.e. not for pyarrow-backed EAs.
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def skip_if_doesnt_support_2d(self, dtype, request):
|
||||
if not dtype._supports_2d:
|
||||
node = request.node
|
||||
# In cases where we are mixed in to ExtensionTests, we only want to
|
||||
# skip tests that are defined in Dim2CompatTests
|
||||
test_func = node._obj
|
||||
if test_func.__qualname__.startswith("Dim2CompatTests"):
|
||||
# TODO: is there a less hacky way of checking this?
|
||||
pytest.skip(f"{dtype} does not support 2D.")
|
||||
|
||||
def test_transpose(self, data):
|
||||
arr2d = data.repeat(2).reshape(-1, 2)
|
||||
shape = arr2d.shape
|
||||
assert shape[0] != shape[-1] # otherwise the rest of the test is useless
|
||||
|
||||
assert arr2d.T.shape == shape[::-1]
|
||||
|
||||
def test_frame_from_2d_array(self, data):
|
||||
arr2d = data.repeat(2).reshape(-1, 2)
|
||||
|
||||
df = pd.DataFrame(arr2d)
|
||||
expected = pd.DataFrame({0: arr2d[:, 0], 1: arr2d[:, 1]})
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_swapaxes(self, data):
|
||||
arr2d = data.repeat(2).reshape(-1, 2)
|
||||
|
||||
result = arr2d.swapaxes(0, 1)
|
||||
expected = arr2d.T
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_delete_2d(self, data):
|
||||
arr2d = data.repeat(3).reshape(-1, 3)
|
||||
|
||||
# axis = 0
|
||||
result = arr2d.delete(1, axis=0)
|
||||
expected = data.delete(1).repeat(3).reshape(-1, 3)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# axis = 1
|
||||
result = arr2d.delete(1, axis=1)
|
||||
expected = data.repeat(2).reshape(-1, 2)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_take_2d(self, data):
|
||||
arr2d = data.reshape(-1, 1)
|
||||
|
||||
result = arr2d.take([0, 0, -1], axis=0)
|
||||
|
||||
expected = data.take([0, 0, -1]).reshape(-1, 1)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_repr_2d(self, data):
|
||||
# this could fail in a corner case where an element contained the name
|
||||
res = repr(data.reshape(1, -1))
|
||||
assert res.count(f"<{type(data).__name__}") == 1
|
||||
|
||||
res = repr(data.reshape(-1, 1))
|
||||
assert res.count(f"<{type(data).__name__}") == 1
|
||||
|
||||
def test_reshape(self, data):
|
||||
arr2d = data.reshape(-1, 1)
|
||||
assert arr2d.shape == (data.size, 1)
|
||||
assert len(arr2d) == len(data)
|
||||
|
||||
arr2d = data.reshape((-1, 1))
|
||||
assert arr2d.shape == (data.size, 1)
|
||||
assert len(arr2d) == len(data)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
data.reshape((data.size, 2))
|
||||
with pytest.raises(ValueError):
|
||||
data.reshape(data.size, 2)
|
||||
|
||||
def test_getitem_2d(self, data):
|
||||
arr2d = data.reshape(1, -1)
|
||||
|
||||
result = arr2d[0]
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
with pytest.raises(IndexError):
|
||||
arr2d[1]
|
||||
|
||||
with pytest.raises(IndexError):
|
||||
arr2d[-2]
|
||||
|
||||
result = arr2d[:]
|
||||
tm.assert_extension_array_equal(result, arr2d)
|
||||
|
||||
result = arr2d[:, :]
|
||||
tm.assert_extension_array_equal(result, arr2d)
|
||||
|
||||
result = arr2d[:, 0]
|
||||
expected = data[[0]]
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# dimension-expanding getitem on 1D
|
||||
result = data[:, np.newaxis]
|
||||
tm.assert_extension_array_equal(result, arr2d.T)
|
||||
|
||||
def test_iter_2d(self, data):
|
||||
arr2d = data.reshape(1, -1)
|
||||
|
||||
objs = list(iter(arr2d))
|
||||
assert len(objs) == arr2d.shape[0]
|
||||
|
||||
for obj in objs:
|
||||
assert isinstance(obj, type(data))
|
||||
assert obj.dtype == data.dtype
|
||||
assert obj.ndim == 1
|
||||
assert len(obj) == arr2d.shape[1]
|
||||
|
||||
def test_tolist_2d(self, data):
|
||||
arr2d = data.reshape(1, -1)
|
||||
|
||||
result = arr2d.tolist()
|
||||
expected = [data.tolist()]
|
||||
|
||||
assert isinstance(result, list)
|
||||
assert all(isinstance(x, list) for x in result)
|
||||
|
||||
assert result == expected
|
||||
|
||||
def test_concat_2d(self, data):
|
||||
left = type(data)._concat_same_type([data, data]).reshape(-1, 2)
|
||||
right = left.copy()
|
||||
|
||||
# axis=0
|
||||
result = left._concat_same_type([left, right], axis=0)
|
||||
expected = data._concat_same_type([data] * 4).reshape(-1, 2)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# axis=1
|
||||
result = left._concat_same_type([left, right], axis=1)
|
||||
assert result.shape == (len(data), 4)
|
||||
tm.assert_extension_array_equal(result[:, :2], left)
|
||||
tm.assert_extension_array_equal(result[:, 2:], right)
|
||||
|
||||
# axis > 1 -> invalid
|
||||
msg = "axis 2 is out of bounds for array of dimension 2"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
left._concat_same_type([left, right], axis=2)
|
||||
|
||||
@pytest.mark.parametrize("method", ["backfill", "pad"])
|
||||
def test_fillna_2d_method(self, data_missing, method):
|
||||
# pad_or_backfill is always along axis=0
|
||||
arr = data_missing.repeat(2).reshape(2, 2)
|
||||
assert arr[0].isna().all()
|
||||
assert not arr[1].isna().any()
|
||||
|
||||
result = arr._pad_or_backfill(method=method, limit=None)
|
||||
|
||||
expected = data_missing._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# Reverse so that backfill is not a no-op.
|
||||
arr2 = arr[::-1]
|
||||
assert not arr2[0].isna().any()
|
||||
assert arr2[1].isna().all()
|
||||
|
||||
result2 = arr2._pad_or_backfill(method=method, limit=None)
|
||||
|
||||
expected2 = (
|
||||
data_missing[::-1]._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
|
||||
)
|
||||
tm.assert_extension_array_equal(result2, expected2)
|
||||
|
||||
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
||||
def test_reductions_2d_axis_none(self, data, method):
|
||||
arr2d = data.reshape(1, -1)
|
||||
|
||||
err_expected = None
|
||||
err_result = None
|
||||
try:
|
||||
expected = getattr(data, method)()
|
||||
except Exception as err:
|
||||
# if the 1D reduction is invalid, the 2D reduction should be as well
|
||||
err_expected = err
|
||||
try:
|
||||
result = getattr(arr2d, method)(axis=None)
|
||||
except Exception as err2:
|
||||
err_result = err2
|
||||
|
||||
else:
|
||||
result = getattr(arr2d, method)(axis=None)
|
||||
|
||||
if err_result is not None or err_expected is not None:
|
||||
assert type(err_result) == type(err_expected)
|
||||
return
|
||||
|
||||
assert is_matching_na(result, expected) or result == expected
|
||||
|
||||
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
||||
@pytest.mark.parametrize("min_count", [0, 1])
|
||||
def test_reductions_2d_axis0(self, data, method, min_count):
|
||||
if min_count == 1 and method not in ["sum", "prod"]:
|
||||
pytest.skip(f"min_count not relevant for {method}")
|
||||
|
||||
arr2d = data.reshape(1, -1)
|
||||
|
||||
kwargs = {}
|
||||
if method in ["std", "var"]:
|
||||
# pass ddof=0 so we get all-zero std instead of all-NA std
|
||||
kwargs["ddof"] = 0
|
||||
elif method in ["prod", "sum"]:
|
||||
kwargs["min_count"] = min_count
|
||||
|
||||
try:
|
||||
result = getattr(arr2d, method)(axis=0, **kwargs)
|
||||
except Exception as err:
|
||||
try:
|
||||
getattr(data, method)()
|
||||
except Exception as err2:
|
||||
assert type(err) == type(err2)
|
||||
return
|
||||
else:
|
||||
raise AssertionError("Both reductions should raise or neither")
|
||||
|
||||
def get_reduction_result_dtype(dtype):
|
||||
# windows and 32bit builds will in some cases have int32/uint32
|
||||
# where other builds will have int64/uint64.
|
||||
if dtype.itemsize == 8:
|
||||
return dtype
|
||||
elif dtype.kind in "ib":
|
||||
return NUMPY_INT_TO_DTYPE[np.dtype(int)]
|
||||
else:
|
||||
# i.e. dtype.kind == "u"
|
||||
return NUMPY_INT_TO_DTYPE[np.dtype("uint")]
|
||||
|
||||
if method in ["sum", "prod"]:
|
||||
# std and var are not dtype-preserving
|
||||
expected = data
|
||||
if data.dtype.kind in "iub":
|
||||
dtype = get_reduction_result_dtype(data.dtype)
|
||||
expected = data.astype(dtype)
|
||||
assert dtype == expected.dtype
|
||||
|
||||
if min_count == 0:
|
||||
fill_value = 1 if method == "prod" else 0
|
||||
expected = expected.fillna(fill_value)
|
||||
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
elif method == "median":
|
||||
# std and var are not dtype-preserving
|
||||
expected = data
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
elif method in ["mean", "std", "var"]:
|
||||
if is_integer_dtype(data) or is_bool_dtype(data):
|
||||
data = data.astype("Float64")
|
||||
if method == "mean":
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
else:
|
||||
tm.assert_extension_array_equal(result, data - data)
|
||||
|
||||
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
||||
def test_reductions_2d_axis1(self, data, method):
|
||||
arr2d = data.reshape(1, -1)
|
||||
|
||||
try:
|
||||
result = getattr(arr2d, method)(axis=1)
|
||||
except Exception as err:
|
||||
try:
|
||||
getattr(data, method)()
|
||||
except Exception as err2:
|
||||
assert type(err) == type(err2)
|
||||
return
|
||||
else:
|
||||
raise AssertionError("Both reductions should raise or neither")
|
||||
|
||||
# not necessarily type/dtype-preserving, so weaker assertions
|
||||
assert result.shape == (1,)
|
||||
expected_scalar = getattr(data, method)()
|
||||
res = result[0]
|
||||
assert is_matching_na(res, expected_scalar) or res == expected_scalar
|
||||
|
||||
|
||||
class NDArrayBacked2DTests(Dim2CompatTests):
|
||||
# More specific tests for NDArrayBackedExtensionArray subclasses
|
||||
|
||||
def test_copy_order(self, data):
|
||||
# We should be matching numpy semantics for the "order" keyword in 'copy'
|
||||
arr2d = data.repeat(2).reshape(-1, 2)
|
||||
assert arr2d._ndarray.flags["C_CONTIGUOUS"]
|
||||
|
||||
res = arr2d.copy()
|
||||
assert res._ndarray.flags["C_CONTIGUOUS"]
|
||||
|
||||
res = arr2d[::2, ::2].copy()
|
||||
assert res._ndarray.flags["C_CONTIGUOUS"]
|
||||
|
||||
res = arr2d.copy("F")
|
||||
assert not res._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert res._ndarray.flags["F_CONTIGUOUS"]
|
||||
|
||||
res = arr2d.copy("K")
|
||||
assert res._ndarray.flags["C_CONTIGUOUS"]
|
||||
|
||||
res = arr2d.T.copy("K")
|
||||
assert not res._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert res._ndarray.flags["F_CONTIGUOUS"]
|
||||
|
||||
# order not accepted by numpy
|
||||
msg = r"order must be one of 'C', 'F', 'A', or 'K' \(got 'Q'\)"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr2d.copy("Q")
|
||||
|
||||
# neither contiguity
|
||||
arr_nc = arr2d[::2]
|
||||
assert not arr_nc._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert not arr_nc._ndarray.flags["F_CONTIGUOUS"]
|
||||
|
||||
assert arr_nc.copy()._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert not arr_nc.copy()._ndarray.flags["F_CONTIGUOUS"]
|
||||
|
||||
assert arr_nc.copy("C")._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert not arr_nc.copy("C")._ndarray.flags["F_CONTIGUOUS"]
|
||||
|
||||
assert not arr_nc.copy("F")._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert arr_nc.copy("F")._ndarray.flags["F_CONTIGUOUS"]
|
||||
|
||||
assert arr_nc.copy("K")._ndarray.flags["C_CONTIGUOUS"]
|
||||
assert not arr_nc.copy("K")._ndarray.flags["F_CONTIGUOUS"]
|
@ -0,0 +1,123 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import (
|
||||
infer_dtype,
|
||||
is_object_dtype,
|
||||
is_string_dtype,
|
||||
)
|
||||
|
||||
|
||||
class BaseDtypeTests:
|
||||
"""Base class for ExtensionDtype classes"""
|
||||
|
||||
def test_name(self, dtype):
|
||||
assert isinstance(dtype.name, str)
|
||||
|
||||
def test_kind(self, dtype):
|
||||
valid = set("biufcmMOSUV")
|
||||
assert dtype.kind in valid
|
||||
|
||||
def test_is_dtype_from_name(self, dtype):
|
||||
result = type(dtype).is_dtype(dtype.name)
|
||||
assert result is True
|
||||
|
||||
def test_is_dtype_unboxes_dtype(self, data, dtype):
|
||||
assert dtype.is_dtype(data) is True
|
||||
|
||||
def test_is_dtype_from_self(self, dtype):
|
||||
result = type(dtype).is_dtype(dtype)
|
||||
assert result is True
|
||||
|
||||
def test_is_dtype_other_input(self, dtype):
|
||||
assert dtype.is_dtype([1, 2, 3]) is False
|
||||
|
||||
def test_is_not_string_type(self, dtype):
|
||||
assert not is_string_dtype(dtype)
|
||||
|
||||
def test_is_not_object_type(self, dtype):
|
||||
assert not is_object_dtype(dtype)
|
||||
|
||||
def test_eq_with_str(self, dtype):
|
||||
assert dtype == dtype.name
|
||||
assert dtype != dtype.name + "-suffix"
|
||||
|
||||
def test_eq_with_numpy_object(self, dtype):
|
||||
assert dtype != np.dtype("object")
|
||||
|
||||
def test_eq_with_self(self, dtype):
|
||||
assert dtype == dtype
|
||||
assert dtype != object()
|
||||
|
||||
def test_array_type(self, data, dtype):
|
||||
assert dtype.construct_array_type() is type(data)
|
||||
|
||||
def test_check_dtype(self, data):
|
||||
dtype = data.dtype
|
||||
|
||||
# check equivalency for using .dtypes
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": pd.Series(data, dtype=dtype),
|
||||
"B": data,
|
||||
"C": pd.Series(["foo"] * len(data), dtype=object),
|
||||
"D": 1,
|
||||
}
|
||||
)
|
||||
result = df.dtypes == str(dtype)
|
||||
assert np.dtype("int64") != "Int64"
|
||||
|
||||
expected = pd.Series([True, True, False, False], index=list("ABCD"))
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
expected = pd.Series([True, True, False, False], index=list("ABCD"))
|
||||
result = df.dtypes.apply(str) == str(dtype)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_hashable(self, dtype):
|
||||
hash(dtype) # no error
|
||||
|
||||
def test_str(self, dtype):
|
||||
assert str(dtype) == dtype.name
|
||||
|
||||
def test_eq(self, dtype):
|
||||
assert dtype == dtype.name
|
||||
assert dtype != "anonther_type"
|
||||
|
||||
def test_construct_from_string_own_name(self, dtype):
|
||||
result = dtype.construct_from_string(dtype.name)
|
||||
assert type(result) is type(dtype)
|
||||
|
||||
# check OK as classmethod
|
||||
result = type(dtype).construct_from_string(dtype.name)
|
||||
assert type(result) is type(dtype)
|
||||
|
||||
def test_construct_from_string_another_type_raises(self, dtype):
|
||||
msg = f"Cannot construct a '{type(dtype).__name__}' from 'another_type'"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
type(dtype).construct_from_string("another_type")
|
||||
|
||||
def test_construct_from_string_wrong_type_raises(self, dtype):
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="'construct_from_string' expects a string, got <class 'int'>",
|
||||
):
|
||||
type(dtype).construct_from_string(0)
|
||||
|
||||
def test_get_common_dtype(self, dtype):
|
||||
# in practice we will not typically call this with a 1-length list
|
||||
# (we shortcut to just use that dtype as the common dtype), but
|
||||
# still testing as good practice to have this working (and it is the
|
||||
# only case we can test in general)
|
||||
assert dtype._get_common_dtype([dtype]) == dtype
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_infer_dtype(self, data, data_missing, skipna):
|
||||
# only testing that this works without raising an error
|
||||
res = infer_dtype(data, skipna=skipna)
|
||||
assert isinstance(res, str)
|
||||
res = infer_dtype(data_missing, skipna=skipna)
|
||||
assert isinstance(res, str)
|
@ -0,0 +1,469 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class BaseGetitemTests:
|
||||
"""Tests for ExtensionArray.__getitem__."""
|
||||
|
||||
def test_iloc_series(self, data):
|
||||
ser = pd.Series(data)
|
||||
result = ser.iloc[:4]
|
||||
expected = pd.Series(data[:4])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = ser.iloc[[0, 1, 2, 3]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_iloc_frame(self, data):
|
||||
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
|
||||
expected = pd.DataFrame({"A": data[:4]})
|
||||
|
||||
# slice -> frame
|
||||
result = df.iloc[:4, [0]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# sequence -> frame
|
||||
result = df.iloc[[0, 1, 2, 3], [0]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = pd.Series(data[:4], name="A")
|
||||
|
||||
# slice -> series
|
||||
result = df.iloc[:4, 0]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# sequence -> series
|
||||
result = df.iloc[:4, 0]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# GH#32959 slice columns with step
|
||||
result = df.iloc[:, ::2]
|
||||
tm.assert_frame_equal(result, df[["A"]])
|
||||
result = df[["B", "A"]].iloc[:, ::2]
|
||||
tm.assert_frame_equal(result, df[["B"]])
|
||||
|
||||
def test_iloc_frame_single_block(self, data):
|
||||
# GH#32959 null slice along index, slice along columns with single-block
|
||||
df = pd.DataFrame({"A": data})
|
||||
|
||||
result = df.iloc[:, :]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
result = df.iloc[:, :1]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
result = df.iloc[:, :2]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
result = df.iloc[:, ::2]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
result = df.iloc[:, 1:2]
|
||||
tm.assert_frame_equal(result, df.iloc[:, :0])
|
||||
|
||||
result = df.iloc[:, -1:]
|
||||
tm.assert_frame_equal(result, df)
|
||||
|
||||
def test_loc_series(self, data):
|
||||
ser = pd.Series(data)
|
||||
result = ser.loc[:3]
|
||||
expected = pd.Series(data[:4])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = ser.loc[[0, 1, 2, 3]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_loc_frame(self, data):
|
||||
df = pd.DataFrame({"A": data, "B": np.arange(len(data), dtype="int64")})
|
||||
expected = pd.DataFrame({"A": data[:4]})
|
||||
|
||||
# slice -> frame
|
||||
result = df.loc[:3, ["A"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# sequence -> frame
|
||||
result = df.loc[[0, 1, 2, 3], ["A"]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
expected = pd.Series(data[:4], name="A")
|
||||
|
||||
# slice -> series
|
||||
result = df.loc[:3, "A"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# sequence -> series
|
||||
result = df.loc[:3, "A"]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_loc_iloc_frame_single_dtype(self, data):
|
||||
# GH#27110 bug in ExtensionBlock.iget caused df.iloc[n] to incorrectly
|
||||
# return a scalar
|
||||
df = pd.DataFrame({"A": data})
|
||||
expected = pd.Series([data[2]], index=["A"], name=2, dtype=data.dtype)
|
||||
|
||||
result = df.loc[2]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
expected = pd.Series(
|
||||
[data[-1]], index=["A"], name=len(data) - 1, dtype=data.dtype
|
||||
)
|
||||
result = df.iloc[-1]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_getitem_scalar(self, data):
|
||||
result = data[0]
|
||||
assert isinstance(result, data.dtype.type)
|
||||
|
||||
result = pd.Series(data)[0]
|
||||
assert isinstance(result, data.dtype.type)
|
||||
|
||||
def test_getitem_invalid(self, data):
|
||||
# TODO: box over scalar, [scalar], (scalar,)?
|
||||
|
||||
msg = (
|
||||
r"only integers, slices \(`:`\), ellipsis \(`...`\), numpy.newaxis "
|
||||
r"\(`None`\) and integer or boolean arrays are valid indices"
|
||||
)
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
data["foo"]
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
data[2.5]
|
||||
|
||||
ub = len(data)
|
||||
msg = "|".join(
|
||||
[
|
||||
"list index out of range", # json
|
||||
"index out of bounds", # pyarrow
|
||||
"Out of bounds access", # Sparse
|
||||
f"loc must be an integer between -{ub} and {ub}", # Sparse
|
||||
f"index {ub+1} is out of bounds for axis 0 with size {ub}",
|
||||
f"index -{ub+1} is out of bounds for axis 0 with size {ub}",
|
||||
]
|
||||
)
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
data[ub + 1]
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
data[-ub - 1]
|
||||
|
||||
def test_getitem_scalar_na(self, data_missing, na_cmp, na_value):
|
||||
result = data_missing[0]
|
||||
assert na_cmp(result, na_value)
|
||||
|
||||
def test_getitem_empty(self, data):
|
||||
# Indexing with empty list
|
||||
result = data[[]]
|
||||
assert len(result) == 0
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
expected = data[np.array([], dtype="int64")]
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_getitem_mask(self, data):
|
||||
# Empty mask, raw array
|
||||
mask = np.zeros(len(data), dtype=bool)
|
||||
result = data[mask]
|
||||
assert len(result) == 0
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
# Empty mask, in series
|
||||
mask = np.zeros(len(data), dtype=bool)
|
||||
result = pd.Series(data)[mask]
|
||||
assert len(result) == 0
|
||||
assert result.dtype == data.dtype
|
||||
|
||||
# non-empty mask, raw array
|
||||
mask[0] = True
|
||||
result = data[mask]
|
||||
assert len(result) == 1
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
# non-empty mask, in series
|
||||
result = pd.Series(data)[mask]
|
||||
assert len(result) == 1
|
||||
assert result.dtype == data.dtype
|
||||
|
||||
def test_getitem_mask_raises(self, data):
|
||||
mask = np.array([True, False])
|
||||
msg = f"Boolean index has wrong length: 2 instead of {len(data)}"
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
data[mask]
|
||||
|
||||
mask = pd.array(mask, dtype="boolean")
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
data[mask]
|
||||
|
||||
def test_getitem_boolean_array_mask(self, data):
|
||||
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
|
||||
result = data[mask]
|
||||
assert len(result) == 0
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
result = pd.Series(data)[mask]
|
||||
assert len(result) == 0
|
||||
assert result.dtype == data.dtype
|
||||
|
||||
mask[:5] = True
|
||||
expected = data.take([0, 1, 2, 3, 4])
|
||||
result = data[mask]
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
expected = pd.Series(expected)
|
||||
result = pd.Series(data)[mask]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_getitem_boolean_na_treated_as_false(self, data):
|
||||
# https://github.com/pandas-dev/pandas/issues/31503
|
||||
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
|
||||
mask[:2] = pd.NA
|
||||
mask[2:4] = True
|
||||
|
||||
result = data[mask]
|
||||
expected = data[mask.fillna(False)]
|
||||
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
s = pd.Series(data)
|
||||
|
||||
result = s[mask]
|
||||
expected = s[mask.fillna(False)]
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx",
|
||||
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
|
||||
ids=["list", "integer-array", "numpy-array"],
|
||||
)
|
||||
def test_getitem_integer_array(self, data, idx):
|
||||
result = data[idx]
|
||||
assert len(result) == 3
|
||||
assert isinstance(result, type(data))
|
||||
expected = data.take([0, 1, 2])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
expected = pd.Series(expected)
|
||||
result = pd.Series(data)[idx]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx",
|
||||
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
|
||||
ids=["list", "integer-array"],
|
||||
)
|
||||
def test_getitem_integer_with_missing_raises(self, data, idx):
|
||||
msg = "Cannot index with an integer indexer containing NA values"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
data[idx]
|
||||
|
||||
@pytest.mark.xfail(
|
||||
reason="Tries label-based and raises KeyError; "
|
||||
"in some cases raises when calling np.asarray"
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"idx",
|
||||
[[0, 1, 2, pd.NA], pd.array([0, 1, 2, pd.NA], dtype="Int64")],
|
||||
ids=["list", "integer-array"],
|
||||
)
|
||||
def test_getitem_series_integer_with_missing_raises(self, data, idx):
|
||||
msg = "Cannot index with an integer indexer containing NA values"
|
||||
# TODO: this raises KeyError about labels not found (it tries label-based)
|
||||
|
||||
ser = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
ser[idx]
|
||||
|
||||
def test_getitem_slice(self, data):
|
||||
# getitem[slice] should return an array
|
||||
result = data[slice(0)] # empty
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
result = data[slice(1)] # scalar
|
||||
assert isinstance(result, type(data))
|
||||
|
||||
def test_getitem_ellipsis_and_slice(self, data):
|
||||
# GH#40353 this is called from slice_block_rows
|
||||
result = data[..., :]
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
result = data[:, ...]
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
result = data[..., :3]
|
||||
tm.assert_extension_array_equal(result, data[:3])
|
||||
|
||||
result = data[:3, ...]
|
||||
tm.assert_extension_array_equal(result, data[:3])
|
||||
|
||||
result = data[..., ::2]
|
||||
tm.assert_extension_array_equal(result, data[::2])
|
||||
|
||||
result = data[::2, ...]
|
||||
tm.assert_extension_array_equal(result, data[::2])
|
||||
|
||||
def test_get(self, data):
|
||||
# GH 20882
|
||||
s = pd.Series(data, index=[2 * i for i in range(len(data))])
|
||||
assert s.get(4) == s.iloc[2]
|
||||
|
||||
result = s.get([4, 6])
|
||||
expected = s.iloc[[2, 3]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.get(slice(2))
|
||||
expected = s.iloc[[0, 1]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
assert s.get(-1) is None
|
||||
assert s.get(s.index.max() + 1) is None
|
||||
|
||||
s = pd.Series(data[:6], index=list("abcdef"))
|
||||
assert s.get("c") == s.iloc[2]
|
||||
|
||||
result = s.get(slice("b", "d"))
|
||||
expected = s.iloc[[1, 2, 3]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.get("Z")
|
||||
assert result is None
|
||||
|
||||
msg = "Series.__getitem__ treating keys as positions is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
assert s.get(4) == s.iloc[4]
|
||||
assert s.get(-1) == s.iloc[-1]
|
||||
assert s.get(len(s)) is None
|
||||
|
||||
# GH 21257
|
||||
s = pd.Series(data)
|
||||
with tm.assert_produces_warning(None):
|
||||
# GH#45324 make sure we aren't giving a spurious FutureWarning
|
||||
s2 = s[::2]
|
||||
assert s2.get(1) is None
|
||||
|
||||
def test_take_sequence(self, data):
|
||||
result = pd.Series(data)[[0, 1, 3]]
|
||||
assert result.iloc[0] == data[0]
|
||||
assert result.iloc[1] == data[1]
|
||||
assert result.iloc[2] == data[3]
|
||||
|
||||
def test_take(self, data, na_value, na_cmp):
|
||||
result = data.take([0, -1])
|
||||
assert result.dtype == data.dtype
|
||||
assert result[0] == data[0]
|
||||
assert result[1] == data[-1]
|
||||
|
||||
result = data.take([0, -1], allow_fill=True, fill_value=na_value)
|
||||
assert result[0] == data[0]
|
||||
assert na_cmp(result[1], na_value)
|
||||
|
||||
with pytest.raises(IndexError, match="out of bounds"):
|
||||
data.take([len(data) + 1])
|
||||
|
||||
def test_take_empty(self, data, na_value, na_cmp):
|
||||
empty = data[:0]
|
||||
|
||||
result = empty.take([-1], allow_fill=True)
|
||||
assert na_cmp(result[0], na_value)
|
||||
|
||||
msg = "cannot do a non-empty take from an empty axes|out of bounds"
|
||||
|
||||
with pytest.raises(IndexError, match=msg):
|
||||
empty.take([-1])
|
||||
|
||||
with pytest.raises(IndexError, match="cannot do a non-empty take"):
|
||||
empty.take([0, 1])
|
||||
|
||||
def test_take_negative(self, data):
|
||||
# https://github.com/pandas-dev/pandas/issues/20640
|
||||
n = len(data)
|
||||
result = data.take([0, -n, n - 1, -1])
|
||||
expected = data.take([0, 0, n - 1, n - 1])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_take_non_na_fill_value(self, data_missing):
|
||||
fill_value = data_missing[1] # valid
|
||||
na = data_missing[0]
|
||||
|
||||
arr = data_missing._from_sequence(
|
||||
[na, fill_value, na], dtype=data_missing.dtype
|
||||
)
|
||||
result = arr.take([-1, 1], fill_value=fill_value, allow_fill=True)
|
||||
expected = arr.take([1, 1])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_take_pandas_style_negative_raises(self, data, na_value):
|
||||
with pytest.raises(ValueError, match=""):
|
||||
data.take([0, -2], fill_value=na_value, allow_fill=True)
|
||||
|
||||
@pytest.mark.parametrize("allow_fill", [True, False])
|
||||
def test_take_out_of_bounds_raises(self, data, allow_fill):
|
||||
arr = data[:3]
|
||||
|
||||
with pytest.raises(IndexError, match="out of bounds|out-of-bounds"):
|
||||
arr.take(np.asarray([0, 3]), allow_fill=allow_fill)
|
||||
|
||||
def test_take_series(self, data):
|
||||
s = pd.Series(data)
|
||||
result = s.take([0, -1])
|
||||
expected = pd.Series(
|
||||
data._from_sequence([data[0], data[len(data) - 1]], dtype=s.dtype),
|
||||
index=[0, len(data) - 1],
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_reindex(self, data, na_value):
|
||||
s = pd.Series(data)
|
||||
result = s.reindex([0, 1, 3])
|
||||
expected = pd.Series(data.take([0, 1, 3]), index=[0, 1, 3])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
n = len(data)
|
||||
result = s.reindex([-1, 0, n])
|
||||
expected = pd.Series(
|
||||
data._from_sequence([na_value, data[0], na_value], dtype=s.dtype),
|
||||
index=[-1, 0, n],
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result = s.reindex([n, n + 1])
|
||||
expected = pd.Series(
|
||||
data._from_sequence([na_value, na_value], dtype=s.dtype), index=[n, n + 1]
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_reindex_non_na_fill_value(self, data_missing):
|
||||
valid = data_missing[1]
|
||||
na = data_missing[0]
|
||||
|
||||
arr = data_missing._from_sequence([na, valid], dtype=data_missing.dtype)
|
||||
ser = pd.Series(arr)
|
||||
result = ser.reindex([0, 1, 2], fill_value=valid)
|
||||
expected = pd.Series(
|
||||
data_missing._from_sequence([na, valid, valid], dtype=data_missing.dtype)
|
||||
)
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_loc_len1(self, data):
|
||||
# see GH-27785 take_nd with indexer of len 1 resulting in wrong ndim
|
||||
df = pd.DataFrame({"A": data})
|
||||
res = df.loc[[0], "A"]
|
||||
assert res.ndim == 1
|
||||
assert res._mgr.arrays[0].ndim == 1
|
||||
if hasattr(res._mgr, "blocks"):
|
||||
assert res._mgr._block.ndim == 1
|
||||
|
||||
def test_item(self, data):
|
||||
# https://github.com/pandas-dev/pandas/pull/30175
|
||||
s = pd.Series(data)
|
||||
result = s[:1].item()
|
||||
assert result == data[0]
|
||||
|
||||
msg = "can only convert an array of size 1 to a Python scalar"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
s[:0].item()
|
||||
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
s.item()
|
@ -0,0 +1,174 @@
|
||||
import re
|
||||
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_bool_dtype,
|
||||
is_numeric_dtype,
|
||||
is_object_dtype,
|
||||
is_string_dtype,
|
||||
)
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:The default of observed=False is deprecated:FutureWarning"
|
||||
)
|
||||
class BaseGroupbyTests:
|
||||
"""Groupby-specific tests."""
|
||||
|
||||
def test_grouping_grouper(self, data_for_grouping):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": pd.Series(
|
||||
["B", "B", None, None, "A", "A", "B", "C"], dtype=object
|
||||
),
|
||||
"B": data_for_grouping,
|
||||
}
|
||||
)
|
||||
gr1 = df.groupby("A")._grouper.groupings[0]
|
||||
gr2 = df.groupby("B")._grouper.groupings[0]
|
||||
|
||||
tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values)
|
||||
tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping)
|
||||
|
||||
@pytest.mark.parametrize("as_index", [True, False])
|
||||
def test_groupby_extension_agg(self, as_index, data_for_grouping):
|
||||
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
|
||||
|
||||
is_bool = data_for_grouping.dtype._is_boolean
|
||||
if is_bool:
|
||||
# only 2 unique values, and the final entry has c==b
|
||||
# (see data_for_grouping docstring)
|
||||
df = df.iloc[:-1]
|
||||
|
||||
result = df.groupby("B", as_index=as_index).A.mean()
|
||||
_, uniques = pd.factorize(data_for_grouping, sort=True)
|
||||
|
||||
exp_vals = [3.0, 1.0, 4.0]
|
||||
if is_bool:
|
||||
exp_vals = exp_vals[:-1]
|
||||
if as_index:
|
||||
index = pd.Index(uniques, name="B")
|
||||
expected = pd.Series(exp_vals, index=index, name="A")
|
||||
tm.assert_series_equal(result, expected)
|
||||
else:
|
||||
expected = pd.DataFrame({"B": uniques, "A": exp_vals})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_groupby_agg_extension(self, data_for_grouping):
|
||||
# GH#38980 groupby agg on extension type fails for non-numeric types
|
||||
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
|
||||
|
||||
expected = df.iloc[[0, 2, 4, 7]]
|
||||
expected = expected.set_index("A")
|
||||
|
||||
result = df.groupby("A").agg({"B": "first"})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.groupby("A").agg("first")
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.groupby("A").first()
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_groupby_extension_no_sort(self, data_for_grouping):
|
||||
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
|
||||
|
||||
is_bool = data_for_grouping.dtype._is_boolean
|
||||
if is_bool:
|
||||
# only 2 unique values, and the final entry has c==b
|
||||
# (see data_for_grouping docstring)
|
||||
df = df.iloc[:-1]
|
||||
|
||||
result = df.groupby("B", sort=False).A.mean()
|
||||
_, index = pd.factorize(data_for_grouping, sort=False)
|
||||
|
||||
index = pd.Index(index, name="B")
|
||||
exp_vals = [1.0, 3.0, 4.0]
|
||||
if is_bool:
|
||||
exp_vals = exp_vals[:-1]
|
||||
expected = pd.Series(exp_vals, index=index, name="A")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_groupby_extension_transform(self, data_for_grouping):
|
||||
is_bool = data_for_grouping.dtype._is_boolean
|
||||
|
||||
valid = data_for_grouping[~data_for_grouping.isna()]
|
||||
df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid})
|
||||
is_bool = data_for_grouping.dtype._is_boolean
|
||||
if is_bool:
|
||||
# only 2 unique values, and the final entry has c==b
|
||||
# (see data_for_grouping docstring)
|
||||
df = df.iloc[:-1]
|
||||
|
||||
result = df.groupby("B").A.transform(len)
|
||||
expected = pd.Series([3, 3, 2, 2, 3, 1], name="A")
|
||||
if is_bool:
|
||||
expected = expected[:-1]
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
|
||||
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
|
||||
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
||||
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
||||
df.groupby("B", group_keys=False, observed=False).apply(groupby_apply_op)
|
||||
df.groupby("B", group_keys=False, observed=False).A.apply(groupby_apply_op)
|
||||
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
||||
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
||||
df.groupby("A", group_keys=False, observed=False).apply(groupby_apply_op)
|
||||
df.groupby("A", group_keys=False, observed=False).B.apply(groupby_apply_op)
|
||||
|
||||
def test_groupby_apply_identity(self, data_for_grouping):
|
||||
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
|
||||
result = df.groupby("A").B.apply(lambda x: x.array)
|
||||
expected = pd.Series(
|
||||
[
|
||||
df.B.iloc[[0, 1, 6]].array,
|
||||
df.B.iloc[[2, 3]].array,
|
||||
df.B.iloc[[4, 5]].array,
|
||||
df.B.iloc[[7]].array,
|
||||
],
|
||||
index=pd.Index([1, 2, 3, 4], name="A"),
|
||||
name="B",
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_in_numeric_groupby(self, data_for_grouping):
|
||||
df = pd.DataFrame(
|
||||
{
|
||||
"A": [1, 1, 2, 2, 3, 3, 1, 4],
|
||||
"B": data_for_grouping,
|
||||
"C": [1, 1, 1, 1, 1, 1, 1, 1],
|
||||
}
|
||||
)
|
||||
|
||||
dtype = data_for_grouping.dtype
|
||||
if (
|
||||
is_numeric_dtype(dtype)
|
||||
or is_bool_dtype(dtype)
|
||||
or dtype.name == "decimal"
|
||||
or is_string_dtype(dtype)
|
||||
or is_object_dtype(dtype)
|
||||
or dtype.kind == "m" # in particular duration[*][pyarrow]
|
||||
):
|
||||
expected = pd.Index(["B", "C"])
|
||||
result = df.groupby("A").sum().columns
|
||||
else:
|
||||
expected = pd.Index(["C"])
|
||||
|
||||
msg = "|".join(
|
||||
[
|
||||
# period/datetime
|
||||
"does not support sum operations",
|
||||
# all others
|
||||
re.escape(f"agg function failed [how->sum,dtype->{dtype}"),
|
||||
]
|
||||
)
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
df.groupby("A").sum()
|
||||
result = df.groupby("A").sum(numeric_only=True).columns
|
||||
tm.assert_index_equal(result, expected)
|
@ -0,0 +1,19 @@
|
||||
"""
|
||||
Tests for Indexes backed by arbitrary ExtensionArrays.
|
||||
"""
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class BaseIndexTests:
|
||||
"""Tests for Index object backed by an ExtensionArray"""
|
||||
|
||||
def test_index_from_array(self, data):
|
||||
idx = pd.Index(data)
|
||||
assert data.dtype == idx.dtype
|
||||
|
||||
def test_index_from_listlike_with_dtype(self, data):
|
||||
idx = pd.Index(data, dtype=data.dtype)
|
||||
assert idx.dtype == data.dtype
|
||||
|
||||
idx = pd.Index(list(data), dtype=data.dtype)
|
||||
assert idx.dtype == data.dtype
|
@ -0,0 +1,137 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
|
||||
from pandas.core.dtypes.common import is_extension_array_dtype
|
||||
from pandas.core.dtypes.dtypes import ExtensionDtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class BaseInterfaceTests:
|
||||
"""Tests that the basic interface is satisfied."""
|
||||
|
||||
# ------------------------------------------------------------------------
|
||||
# Interface
|
||||
# ------------------------------------------------------------------------
|
||||
|
||||
def test_len(self, data):
|
||||
assert len(data) == 100
|
||||
|
||||
def test_size(self, data):
|
||||
assert data.size == 100
|
||||
|
||||
def test_ndim(self, data):
|
||||
assert data.ndim == 1
|
||||
|
||||
def test_can_hold_na_valid(self, data):
|
||||
# GH-20761
|
||||
assert data._can_hold_na is True
|
||||
|
||||
def test_contains(self, data, data_missing):
|
||||
# GH-37867
|
||||
# Tests for membership checks. Membership checks for nan-likes is tricky and
|
||||
# the settled on rule is: `nan_like in arr` is True if nan_like is
|
||||
# arr.dtype.na_value and arr.isna().any() is True. Else the check returns False.
|
||||
|
||||
na_value = data.dtype.na_value
|
||||
# ensure data without missing values
|
||||
data = data[~data.isna()]
|
||||
|
||||
# first elements are non-missing
|
||||
assert data[0] in data
|
||||
assert data_missing[0] in data_missing
|
||||
|
||||
# check the presence of na_value
|
||||
assert na_value in data_missing
|
||||
assert na_value not in data
|
||||
|
||||
# the data can never contain other nan-likes than na_value
|
||||
for na_value_obj in tm.NULL_OBJECTS:
|
||||
if na_value_obj is na_value or type(na_value_obj) == type(na_value):
|
||||
# type check for e.g. two instances of Decimal("NAN")
|
||||
continue
|
||||
assert na_value_obj not in data
|
||||
assert na_value_obj not in data_missing
|
||||
|
||||
def test_memory_usage(self, data):
|
||||
s = pd.Series(data)
|
||||
result = s.memory_usage(index=False)
|
||||
assert result == s.nbytes
|
||||
|
||||
def test_array_interface(self, data):
|
||||
result = np.array(data)
|
||||
assert result[0] == data[0]
|
||||
|
||||
result = np.array(data, dtype=object)
|
||||
expected = np.array(list(data), dtype=object)
|
||||
if expected.ndim > 1:
|
||||
# nested data, explicitly construct as 1D
|
||||
expected = construct_1d_object_array_from_listlike(list(data))
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_is_extension_array_dtype(self, data):
|
||||
assert is_extension_array_dtype(data)
|
||||
assert is_extension_array_dtype(data.dtype)
|
||||
assert is_extension_array_dtype(pd.Series(data))
|
||||
assert isinstance(data.dtype, ExtensionDtype)
|
||||
|
||||
def test_no_values_attribute(self, data):
|
||||
# GH-20735: EA's with .values attribute give problems with internal
|
||||
# code, disallowing this for now until solved
|
||||
assert not hasattr(data, "values")
|
||||
assert not hasattr(data, "_values")
|
||||
|
||||
def test_is_numeric_honored(self, data):
|
||||
result = pd.Series(data)
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
|
||||
|
||||
def test_isna_extension_array(self, data_missing):
|
||||
# If your `isna` returns an ExtensionArray, you must also implement
|
||||
# _reduce. At the *very* least, you must implement any and all
|
||||
na = data_missing.isna()
|
||||
if is_extension_array_dtype(na):
|
||||
assert na._reduce("any")
|
||||
assert na.any()
|
||||
|
||||
assert not na._reduce("all")
|
||||
assert not na.all()
|
||||
|
||||
assert na.dtype._is_boolean
|
||||
|
||||
def test_copy(self, data):
|
||||
# GH#27083 removing deep keyword from EA.copy
|
||||
assert data[0] != data[1]
|
||||
result = data.copy()
|
||||
|
||||
if data.dtype._is_immutable:
|
||||
pytest.skip(f"test_copy assumes mutability and {data.dtype} is immutable")
|
||||
|
||||
data[1] = data[0]
|
||||
assert result[1] != result[0]
|
||||
|
||||
def test_view(self, data):
|
||||
# view with no dtype should return a shallow copy, *not* the same
|
||||
# object
|
||||
assert data[1] != data[0]
|
||||
|
||||
result = data.view()
|
||||
assert result is not data
|
||||
assert type(result) == type(data)
|
||||
|
||||
if data.dtype._is_immutable:
|
||||
pytest.skip(f"test_view assumes mutability and {data.dtype} is immutable")
|
||||
|
||||
result[1] = result[0]
|
||||
assert data[1] == data[0]
|
||||
|
||||
# check specifically that the `dtype` kwarg is accepted
|
||||
data.view(dtype=None)
|
||||
|
||||
def test_tolist(self, data):
|
||||
result = data.tolist()
|
||||
expected = list(data)
|
||||
assert isinstance(result, list)
|
||||
assert result == expected
|
@ -0,0 +1,39 @@
|
||||
from io import StringIO
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays import ExtensionArray
|
||||
|
||||
|
||||
class BaseParsingTests:
|
||||
@pytest.mark.parametrize("engine", ["c", "python"])
|
||||
def test_EA_types(self, engine, data, request):
|
||||
if isinstance(data.dtype, pd.CategoricalDtype):
|
||||
# in parsers.pyx _convert_with_dtype there is special-casing for
|
||||
# Categorical that pre-empts _from_sequence_of_strings
|
||||
pass
|
||||
elif isinstance(data.dtype, pd.core.dtypes.dtypes.NumpyEADtype):
|
||||
# These get unwrapped internally so are treated as numpy dtypes
|
||||
# in the parsers.pyx code
|
||||
pass
|
||||
elif (
|
||||
type(data)._from_sequence_of_strings.__func__
|
||||
is ExtensionArray._from_sequence_of_strings.__func__
|
||||
):
|
||||
# i.e. the EA hasn't overridden _from_sequence_of_strings
|
||||
mark = pytest.mark.xfail(
|
||||
reason="_from_sequence_of_strings not implemented",
|
||||
raises=NotImplementedError,
|
||||
)
|
||||
request.node.add_marker(mark)
|
||||
|
||||
df = pd.DataFrame({"with_dtype": pd.Series(data, dtype=str(data.dtype))})
|
||||
csv_output = df.to_csv(index=False, na_rep=np.nan)
|
||||
result = pd.read_csv(
|
||||
StringIO(csv_output), dtype={"with_dtype": str(data.dtype)}, engine=engine
|
||||
)
|
||||
expected = df
|
||||
tm.assert_frame_equal(result, expected)
|
@ -0,0 +1,720 @@
|
||||
import inspect
|
||||
import operator
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._typing import Dtype
|
||||
|
||||
from pandas.core.dtypes.common import is_bool_dtype
|
||||
from pandas.core.dtypes.dtypes import NumpyEADtype
|
||||
from pandas.core.dtypes.missing import na_value_for_dtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.sorting import nargsort
|
||||
|
||||
|
||||
class BaseMethodsTests:
|
||||
"""Various Series and DataFrame methods."""
|
||||
|
||||
def test_hash_pandas_object(self, data):
|
||||
# _hash_pandas_object should return a uint64 ndarray of the same length
|
||||
# as the data
|
||||
from pandas.core.util.hashing import _default_hash_key
|
||||
|
||||
res = data._hash_pandas_object(
|
||||
encoding="utf-8", hash_key=_default_hash_key, categorize=False
|
||||
)
|
||||
assert res.dtype == np.uint64
|
||||
assert res.shape == data.shape
|
||||
|
||||
def test_value_counts_default_dropna(self, data):
|
||||
# make sure we have consistent default dropna kwarg
|
||||
if not hasattr(data, "value_counts"):
|
||||
pytest.skip(f"value_counts is not implemented for {type(data)}")
|
||||
sig = inspect.signature(data.value_counts)
|
||||
kwarg = sig.parameters["dropna"]
|
||||
assert kwarg.default is True
|
||||
|
||||
@pytest.mark.parametrize("dropna", [True, False])
|
||||
def test_value_counts(self, all_data, dropna):
|
||||
all_data = all_data[:10]
|
||||
if dropna:
|
||||
other = all_data[~all_data.isna()]
|
||||
else:
|
||||
other = all_data
|
||||
|
||||
result = pd.Series(all_data).value_counts(dropna=dropna).sort_index()
|
||||
expected = pd.Series(other).value_counts(dropna=dropna).sort_index()
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_value_counts_with_normalize(self, data):
|
||||
# GH 33172
|
||||
data = data[:10].unique()
|
||||
values = np.array(data[~data.isna()])
|
||||
ser = pd.Series(data, dtype=data.dtype)
|
||||
|
||||
result = ser.value_counts(normalize=True).sort_index()
|
||||
|
||||
if not isinstance(data, pd.Categorical):
|
||||
expected = pd.Series(
|
||||
[1 / len(values)] * len(values), index=result.index, name="proportion"
|
||||
)
|
||||
else:
|
||||
expected = pd.Series(0.0, index=result.index, name="proportion")
|
||||
expected[result > 0] = 1 / len(values)
|
||||
|
||||
if getattr(data.dtype, "storage", "") == "pyarrow" or isinstance(
|
||||
data.dtype, pd.ArrowDtype
|
||||
):
|
||||
# TODO: avoid special-casing
|
||||
expected = expected.astype("double[pyarrow]")
|
||||
elif getattr(data.dtype, "storage", "") == "pyarrow_numpy":
|
||||
# TODO: avoid special-casing
|
||||
expected = expected.astype("float64")
|
||||
elif na_value_for_dtype(data.dtype) is pd.NA:
|
||||
# TODO(GH#44692): avoid special-casing
|
||||
expected = expected.astype("Float64")
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_count(self, data_missing):
|
||||
df = pd.DataFrame({"A": data_missing})
|
||||
result = df.count(axis="columns")
|
||||
expected = pd.Series([0, 1])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_series_count(self, data_missing):
|
||||
# GH#26835
|
||||
ser = pd.Series(data_missing)
|
||||
result = ser.count()
|
||||
expected = 1
|
||||
assert result == expected
|
||||
|
||||
def test_apply_simple_series(self, data):
|
||||
result = pd.Series(data).apply(id)
|
||||
assert isinstance(result, pd.Series)
|
||||
|
||||
@pytest.mark.parametrize("na_action", [None, "ignore"])
|
||||
def test_map(self, data_missing, na_action):
|
||||
result = data_missing.map(lambda x: x, na_action=na_action)
|
||||
expected = data_missing.to_numpy()
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_argsort(self, data_for_sorting):
|
||||
result = pd.Series(data_for_sorting).argsort()
|
||||
# argsort result gets passed to take, so should be np.intp
|
||||
expected = pd.Series(np.array([2, 0, 1], dtype=np.intp))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_argsort_missing_array(self, data_missing_for_sorting):
|
||||
result = data_missing_for_sorting.argsort()
|
||||
# argsort result gets passed to take, so should be np.intp
|
||||
expected = np.array([2, 0, 1], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_argsort_missing(self, data_missing_for_sorting):
|
||||
msg = "The behavior of Series.argsort in the presence of NA values"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
result = pd.Series(data_missing_for_sorting).argsort()
|
||||
expected = pd.Series(np.array([1, -1, 0], dtype=np.intp))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting, na_value):
|
||||
# GH 24382
|
||||
is_bool = data_for_sorting.dtype._is_boolean
|
||||
|
||||
exp_argmax = 1
|
||||
exp_argmax_repeated = 3
|
||||
if is_bool:
|
||||
# See data_for_sorting docstring
|
||||
exp_argmax = 0
|
||||
exp_argmax_repeated = 1
|
||||
|
||||
# data_for_sorting -> [B, C, A] with A < B < C
|
||||
assert data_for_sorting.argmax() == exp_argmax
|
||||
assert data_for_sorting.argmin() == 2
|
||||
|
||||
# with repeated values -> first occurrence
|
||||
data = data_for_sorting.take([2, 0, 0, 1, 1, 2])
|
||||
assert data.argmax() == exp_argmax_repeated
|
||||
assert data.argmin() == 0
|
||||
|
||||
# with missing values
|
||||
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
|
||||
assert data_missing_for_sorting.argmax() == 0
|
||||
assert data_missing_for_sorting.argmin() == 2
|
||||
|
||||
@pytest.mark.parametrize("method", ["argmax", "argmin"])
|
||||
def test_argmin_argmax_empty_array(self, method, data):
|
||||
# GH 24382
|
||||
err_msg = "attempt to get"
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
getattr(data[:0], method)()
|
||||
|
||||
@pytest.mark.parametrize("method", ["argmax", "argmin"])
|
||||
def test_argmin_argmax_all_na(self, method, data, na_value):
|
||||
# all missing with skipna=True is the same as empty
|
||||
err_msg = "attempt to get"
|
||||
data_na = type(data)._from_sequence([na_value, na_value], dtype=data.dtype)
|
||||
with pytest.raises(ValueError, match=err_msg):
|
||||
getattr(data_na, method)()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"op_name, skipna, expected",
|
||||
[
|
||||
("idxmax", True, 0),
|
||||
("idxmin", True, 2),
|
||||
("argmax", True, 0),
|
||||
("argmin", True, 2),
|
||||
("idxmax", False, np.nan),
|
||||
("idxmin", False, np.nan),
|
||||
("argmax", False, -1),
|
||||
("argmin", False, -1),
|
||||
],
|
||||
)
|
||||
def test_argreduce_series(
|
||||
self, data_missing_for_sorting, op_name, skipna, expected
|
||||
):
|
||||
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
|
||||
warn = None
|
||||
msg = "The behavior of Series.argmax/argmin"
|
||||
if op_name.startswith("arg") and expected == -1:
|
||||
warn = FutureWarning
|
||||
if op_name.startswith("idx") and np.isnan(expected):
|
||||
warn = FutureWarning
|
||||
msg = f"The behavior of Series.{op_name}"
|
||||
ser = pd.Series(data_missing_for_sorting)
|
||||
with tm.assert_produces_warning(warn, match=msg):
|
||||
result = getattr(ser, op_name)(skipna=skipna)
|
||||
tm.assert_almost_equal(result, expected)
|
||||
|
||||
def test_argmax_argmin_no_skipna_notimplemented(self, data_missing_for_sorting):
|
||||
# GH#38733
|
||||
data = data_missing_for_sorting
|
||||
|
||||
with pytest.raises(NotImplementedError, match=""):
|
||||
data.argmin(skipna=False)
|
||||
|
||||
with pytest.raises(NotImplementedError, match=""):
|
||||
data.argmax(skipna=False)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"na_position, expected",
|
||||
[
|
||||
("last", np.array([2, 0, 1], dtype=np.dtype("intp"))),
|
||||
("first", np.array([1, 2, 0], dtype=np.dtype("intp"))),
|
||||
],
|
||||
)
|
||||
def test_nargsort(self, data_missing_for_sorting, na_position, expected):
|
||||
# GH 25439
|
||||
result = nargsort(data_missing_for_sorting, na_position=na_position)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("ascending", [True, False])
|
||||
def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
|
||||
ser = pd.Series(data_for_sorting)
|
||||
result = ser.sort_values(ascending=ascending, key=sort_by_key)
|
||||
expected = ser.iloc[[2, 0, 1]]
|
||||
if not ascending:
|
||||
# GH 35922. Expect stable sort
|
||||
if ser.nunique() == 2:
|
||||
expected = ser.iloc[[0, 1, 2]]
|
||||
else:
|
||||
expected = ser.iloc[[1, 0, 2]]
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("ascending", [True, False])
|
||||
def test_sort_values_missing(
|
||||
self, data_missing_for_sorting, ascending, sort_by_key
|
||||
):
|
||||
ser = pd.Series(data_missing_for_sorting)
|
||||
result = ser.sort_values(ascending=ascending, key=sort_by_key)
|
||||
if ascending:
|
||||
expected = ser.iloc[[2, 0, 1]]
|
||||
else:
|
||||
expected = ser.iloc[[0, 2, 1]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("ascending", [True, False])
|
||||
def test_sort_values_frame(self, data_for_sorting, ascending):
|
||||
df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting})
|
||||
result = df.sort_values(["A", "B"])
|
||||
expected = pd.DataFrame(
|
||||
{"A": [1, 1, 2], "B": data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("keep", ["first", "last", False])
|
||||
def test_duplicated(self, data, keep):
|
||||
arr = data.take([0, 1, 0, 1])
|
||||
result = arr.duplicated(keep=keep)
|
||||
if keep == "first":
|
||||
expected = np.array([False, False, True, True])
|
||||
elif keep == "last":
|
||||
expected = np.array([True, True, False, False])
|
||||
else:
|
||||
expected = np.array([True, True, True, True])
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
|
||||
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
|
||||
def test_unique(self, data, box, method):
|
||||
duplicated = box(data._from_sequence([data[0], data[0]], dtype=data.dtype))
|
||||
|
||||
result = method(duplicated)
|
||||
|
||||
assert len(result) == 1
|
||||
assert isinstance(result, type(data))
|
||||
assert result[0] == duplicated[0]
|
||||
|
||||
def test_factorize(self, data_for_grouping):
|
||||
codes, uniques = pd.factorize(data_for_grouping, use_na_sentinel=True)
|
||||
|
||||
is_bool = data_for_grouping.dtype._is_boolean
|
||||
if is_bool:
|
||||
# only 2 unique values
|
||||
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 0], dtype=np.intp)
|
||||
expected_uniques = data_for_grouping.take([0, 4])
|
||||
else:
|
||||
expected_codes = np.array([0, 0, -1, -1, 1, 1, 0, 2], dtype=np.intp)
|
||||
expected_uniques = data_for_grouping.take([0, 4, 7])
|
||||
|
||||
tm.assert_numpy_array_equal(codes, expected_codes)
|
||||
tm.assert_extension_array_equal(uniques, expected_uniques)
|
||||
|
||||
def test_factorize_equivalence(self, data_for_grouping):
|
||||
codes_1, uniques_1 = pd.factorize(data_for_grouping, use_na_sentinel=True)
|
||||
codes_2, uniques_2 = data_for_grouping.factorize(use_na_sentinel=True)
|
||||
|
||||
tm.assert_numpy_array_equal(codes_1, codes_2)
|
||||
tm.assert_extension_array_equal(uniques_1, uniques_2)
|
||||
assert len(uniques_1) == len(pd.unique(uniques_1))
|
||||
assert uniques_1.dtype == data_for_grouping.dtype
|
||||
|
||||
def test_factorize_empty(self, data):
|
||||
codes, uniques = pd.factorize(data[:0])
|
||||
expected_codes = np.array([], dtype=np.intp)
|
||||
expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype)
|
||||
|
||||
tm.assert_numpy_array_equal(codes, expected_codes)
|
||||
tm.assert_extension_array_equal(uniques, expected_uniques)
|
||||
|
||||
def test_fillna_copy_frame(self, data_missing):
|
||||
arr = data_missing.take([1, 1])
|
||||
df = pd.DataFrame({"A": arr})
|
||||
df_orig = df.copy()
|
||||
|
||||
filled_val = df.iloc[0, 0]
|
||||
result = df.fillna(filled_val)
|
||||
|
||||
result.iloc[0, 0] = filled_val
|
||||
|
||||
tm.assert_frame_equal(df, df_orig)
|
||||
|
||||
def test_fillna_copy_series(self, data_missing):
|
||||
arr = data_missing.take([1, 1])
|
||||
ser = pd.Series(arr, copy=False)
|
||||
ser_orig = ser.copy()
|
||||
|
||||
filled_val = ser[0]
|
||||
result = ser.fillna(filled_val)
|
||||
result.iloc[0] = filled_val
|
||||
|
||||
tm.assert_series_equal(ser, ser_orig)
|
||||
|
||||
def test_fillna_length_mismatch(self, data_missing):
|
||||
msg = "Length of 'value' does not match."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
data_missing.fillna(data_missing.take([1]))
|
||||
|
||||
# Subclasses can override if we expect e.g Sparse[bool], boolean, pyarrow[bool]
|
||||
_combine_le_expected_dtype: Dtype = NumpyEADtype("bool")
|
||||
|
||||
def test_combine_le(self, data_repeated):
|
||||
# GH 20825
|
||||
# Test that combine works when doing a <= (le) comparison
|
||||
orig_data1, orig_data2 = data_repeated(2)
|
||||
s1 = pd.Series(orig_data1)
|
||||
s2 = pd.Series(orig_data2)
|
||||
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
|
||||
expected = pd.Series(
|
||||
pd.array(
|
||||
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
|
||||
dtype=self._combine_le_expected_dtype,
|
||||
)
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
val = s1.iloc[0]
|
||||
result = s1.combine(val, lambda x1, x2: x1 <= x2)
|
||||
expected = pd.Series(
|
||||
pd.array(
|
||||
[a <= val for a in list(orig_data1)],
|
||||
dtype=self._combine_le_expected_dtype,
|
||||
)
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_combine_add(self, data_repeated):
|
||||
# GH 20825
|
||||
orig_data1, orig_data2 = data_repeated(2)
|
||||
s1 = pd.Series(orig_data1)
|
||||
s2 = pd.Series(orig_data2)
|
||||
|
||||
# Check if the operation is supported pointwise for our scalars. If not,
|
||||
# we will expect Series.combine to raise as well.
|
||||
try:
|
||||
with np.errstate(over="ignore"):
|
||||
expected = pd.Series(
|
||||
orig_data1._from_sequence(
|
||||
[a + b for (a, b) in zip(list(orig_data1), list(orig_data2))]
|
||||
)
|
||||
)
|
||||
except TypeError:
|
||||
# If the operation is not supported pointwise for our scalars,
|
||||
# then Series.combine should also raise
|
||||
with pytest.raises(TypeError):
|
||||
s1.combine(s2, lambda x1, x2: x1 + x2)
|
||||
return
|
||||
|
||||
result = s1.combine(s2, lambda x1, x2: x1 + x2)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
val = s1.iloc[0]
|
||||
result = s1.combine(val, lambda x1, x2: x1 + x2)
|
||||
expected = pd.Series(
|
||||
orig_data1._from_sequence([a + val for a in list(orig_data1)])
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_combine_first(self, data):
|
||||
# https://github.com/pandas-dev/pandas/issues/24147
|
||||
a = pd.Series(data[:3])
|
||||
b = pd.Series(data[2:5], index=[2, 3, 4])
|
||||
result = a.combine_first(b)
|
||||
expected = pd.Series(data[:5])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("frame", [True, False])
|
||||
@pytest.mark.parametrize(
|
||||
"periods, indices",
|
||||
[(-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2])],
|
||||
)
|
||||
def test_container_shift(self, data, frame, periods, indices):
|
||||
# https://github.com/pandas-dev/pandas/issues/22386
|
||||
subset = data[:5]
|
||||
data = pd.Series(subset, name="A")
|
||||
expected = pd.Series(subset.take(indices, allow_fill=True), name="A")
|
||||
|
||||
if frame:
|
||||
result = data.to_frame(name="A").assign(B=1).shift(periods)
|
||||
expected = pd.concat(
|
||||
[expected, pd.Series([1] * 5, name="B").shift(periods)], axis=1
|
||||
)
|
||||
compare = tm.assert_frame_equal
|
||||
else:
|
||||
result = data.shift(periods)
|
||||
compare = tm.assert_series_equal
|
||||
|
||||
compare(result, expected)
|
||||
|
||||
def test_shift_0_periods(self, data):
|
||||
# GH#33856 shifting with periods=0 should return a copy, not same obj
|
||||
result = data.shift(0)
|
||||
assert data[0] != data[1] # otherwise below is invalid
|
||||
data[0] = data[1]
|
||||
assert result[0] != result[1] # i.e. not the same object/view
|
||||
|
||||
@pytest.mark.parametrize("periods", [1, -2])
|
||||
def test_diff(self, data, periods):
|
||||
data = data[:5]
|
||||
if is_bool_dtype(data.dtype):
|
||||
op = operator.xor
|
||||
else:
|
||||
op = operator.sub
|
||||
try:
|
||||
# does this array implement ops?
|
||||
op(data, data)
|
||||
except Exception:
|
||||
pytest.skip(f"{type(data)} does not support diff")
|
||||
s = pd.Series(data)
|
||||
result = s.diff(periods)
|
||||
expected = pd.Series(op(data, data.shift(periods)))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
df = pd.DataFrame({"A": data, "B": [1.0] * 5})
|
||||
result = df.diff(periods)
|
||||
if periods == 1:
|
||||
b = [np.nan, 0, 0, 0, 0]
|
||||
else:
|
||||
b = [0, 0, 0, np.nan, np.nan]
|
||||
expected = pd.DataFrame({"A": expected, "B": b})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"periods, indices",
|
||||
[[-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]]],
|
||||
)
|
||||
def test_shift_non_empty_array(self, data, periods, indices):
|
||||
# https://github.com/pandas-dev/pandas/issues/23911
|
||||
subset = data[:2]
|
||||
result = subset.shift(periods)
|
||||
expected = subset.take(indices, allow_fill=True)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("periods", [-4, -1, 0, 1, 4])
|
||||
def test_shift_empty_array(self, data, periods):
|
||||
# https://github.com/pandas-dev/pandas/issues/23911
|
||||
empty = data[:0]
|
||||
result = empty.shift(periods)
|
||||
expected = empty
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_shift_zero_copies(self, data):
|
||||
# GH#31502
|
||||
result = data.shift(0)
|
||||
assert result is not data
|
||||
|
||||
result = data[:0].shift(2)
|
||||
assert result is not data
|
||||
|
||||
def test_shift_fill_value(self, data):
|
||||
arr = data[:4]
|
||||
fill_value = data[0]
|
||||
result = arr.shift(1, fill_value=fill_value)
|
||||
expected = data.take([0, 0, 1, 2])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = arr.shift(-2, fill_value=fill_value)
|
||||
expected = data.take([2, 3, 0, 0])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_not_hashable(self, data):
|
||||
# We are in general mutable, so not hashable
|
||||
with pytest.raises(TypeError, match="unhashable type"):
|
||||
hash(data)
|
||||
|
||||
def test_hash_pandas_object_works(self, data, as_frame):
|
||||
# https://github.com/pandas-dev/pandas/issues/23066
|
||||
data = pd.Series(data)
|
||||
if as_frame:
|
||||
data = data.to_frame()
|
||||
a = pd.util.hash_pandas_object(data)
|
||||
b = pd.util.hash_pandas_object(data)
|
||||
tm.assert_equal(a, b)
|
||||
|
||||
def test_searchsorted(self, data_for_sorting, as_series):
|
||||
if data_for_sorting.dtype._is_boolean:
|
||||
return self._test_searchsorted_bool_dtypes(data_for_sorting, as_series)
|
||||
|
||||
b, c, a = data_for_sorting
|
||||
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
|
||||
|
||||
if as_series:
|
||||
arr = pd.Series(arr)
|
||||
assert arr.searchsorted(a) == 0
|
||||
assert arr.searchsorted(a, side="right") == 1
|
||||
|
||||
assert arr.searchsorted(b) == 1
|
||||
assert arr.searchsorted(b, side="right") == 2
|
||||
|
||||
assert arr.searchsorted(c) == 2
|
||||
assert arr.searchsorted(c, side="right") == 3
|
||||
|
||||
result = arr.searchsorted(arr.take([0, 2]))
|
||||
expected = np.array([0, 2], dtype=np.intp)
|
||||
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# sorter
|
||||
sorter = np.array([1, 2, 0])
|
||||
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
|
||||
|
||||
def _test_searchsorted_bool_dtypes(self, data_for_sorting, as_series):
|
||||
# We call this from test_searchsorted in cases where we have a
|
||||
# boolean-like dtype. The non-bool test assumes we have more than 2
|
||||
# unique values.
|
||||
dtype = data_for_sorting.dtype
|
||||
data_for_sorting = pd.array([True, False], dtype=dtype)
|
||||
b, a = data_for_sorting
|
||||
arr = type(data_for_sorting)._from_sequence([a, b])
|
||||
|
||||
if as_series:
|
||||
arr = pd.Series(arr)
|
||||
assert arr.searchsorted(a) == 0
|
||||
assert arr.searchsorted(a, side="right") == 1
|
||||
|
||||
assert arr.searchsorted(b) == 1
|
||||
assert arr.searchsorted(b, side="right") == 2
|
||||
|
||||
result = arr.searchsorted(arr.take([0, 1]))
|
||||
expected = np.array([0, 1], dtype=np.intp)
|
||||
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
# sorter
|
||||
sorter = np.array([1, 0])
|
||||
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
|
||||
|
||||
def test_where_series(self, data, na_value, as_frame):
|
||||
assert data[0] != data[1]
|
||||
cls = type(data)
|
||||
a, b = data[:2]
|
||||
|
||||
orig = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
|
||||
ser = orig.copy()
|
||||
cond = np.array([True, True, False, False])
|
||||
|
||||
if as_frame:
|
||||
ser = ser.to_frame(name="a")
|
||||
cond = cond.reshape(-1, 1)
|
||||
|
||||
result = ser.where(cond)
|
||||
expected = pd.Series(
|
||||
cls._from_sequence([a, a, na_value, na_value], dtype=data.dtype)
|
||||
)
|
||||
|
||||
if as_frame:
|
||||
expected = expected.to_frame(name="a")
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
ser.mask(~cond, inplace=True)
|
||||
tm.assert_equal(ser, expected)
|
||||
|
||||
# array other
|
||||
ser = orig.copy()
|
||||
if as_frame:
|
||||
ser = ser.to_frame(name="a")
|
||||
cond = np.array([True, False, True, True])
|
||||
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
|
||||
if as_frame:
|
||||
other = pd.DataFrame({"a": other})
|
||||
cond = pd.DataFrame({"a": cond})
|
||||
result = ser.where(cond, other)
|
||||
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
|
||||
if as_frame:
|
||||
expected = expected.to_frame(name="a")
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
ser.mask(~cond, other, inplace=True)
|
||||
tm.assert_equal(ser, expected)
|
||||
|
||||
@pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
|
||||
def test_repeat(self, data, repeats, as_series, use_numpy):
|
||||
arr = type(data)._from_sequence(data[:3], dtype=data.dtype)
|
||||
if as_series:
|
||||
arr = pd.Series(arr)
|
||||
|
||||
result = np.repeat(arr, repeats) if use_numpy else arr.repeat(repeats)
|
||||
|
||||
repeats = [repeats] * 3 if isinstance(repeats, int) else repeats
|
||||
expected = [x for x, n in zip(arr, repeats) for _ in range(n)]
|
||||
expected = type(data)._from_sequence(expected, dtype=data.dtype)
|
||||
if as_series:
|
||||
expected = pd.Series(expected, index=arr.index.repeat(repeats))
|
||||
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"repeats, kwargs, error, msg",
|
||||
[
|
||||
(2, {"axis": 1}, ValueError, "axis"),
|
||||
(-1, {}, ValueError, "negative"),
|
||||
([1, 2], {}, ValueError, "shape"),
|
||||
(2, {"foo": "bar"}, TypeError, "'foo'"),
|
||||
],
|
||||
)
|
||||
def test_repeat_raises(self, data, repeats, kwargs, error, msg, use_numpy):
|
||||
with pytest.raises(error, match=msg):
|
||||
if use_numpy:
|
||||
np.repeat(data, repeats, **kwargs)
|
||||
else:
|
||||
data.repeat(repeats, **kwargs)
|
||||
|
||||
def test_delete(self, data):
|
||||
result = data.delete(0)
|
||||
expected = data[1:]
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
result = data.delete([1, 3])
|
||||
expected = data._concat_same_type([data[[0]], data[[2]], data[4:]])
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_insert(self, data):
|
||||
# insert at the beginning
|
||||
result = data[1:].insert(0, data[0])
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
result = data[1:].insert(-len(data[1:]), data[0])
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
# insert at the middle
|
||||
result = data[:-1].insert(4, data[-1])
|
||||
|
||||
taker = np.arange(len(data))
|
||||
taker[5:] = taker[4:-1]
|
||||
taker[4] = len(data) - 1
|
||||
expected = data.take(taker)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_insert_invalid(self, data, invalid_scalar):
|
||||
item = invalid_scalar
|
||||
|
||||
with pytest.raises((TypeError, ValueError)):
|
||||
data.insert(0, item)
|
||||
|
||||
with pytest.raises((TypeError, ValueError)):
|
||||
data.insert(4, item)
|
||||
|
||||
with pytest.raises((TypeError, ValueError)):
|
||||
data.insert(len(data) - 1, item)
|
||||
|
||||
def test_insert_invalid_loc(self, data):
|
||||
ub = len(data)
|
||||
|
||||
with pytest.raises(IndexError):
|
||||
data.insert(ub + 1, data[0])
|
||||
|
||||
with pytest.raises(IndexError):
|
||||
data.insert(-ub - 1, data[0])
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
# we expect TypeError here instead of IndexError to match np.insert
|
||||
data.insert(1.5, data[0])
|
||||
|
||||
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
|
||||
def test_equals(self, data, na_value, as_series, box):
|
||||
data2 = type(data)._from_sequence([data[0]] * len(data), dtype=data.dtype)
|
||||
data_na = type(data)._from_sequence([na_value] * len(data), dtype=data.dtype)
|
||||
|
||||
data = tm.box_expected(data, box, transpose=False)
|
||||
data2 = tm.box_expected(data2, box, transpose=False)
|
||||
data_na = tm.box_expected(data_na, box, transpose=False)
|
||||
|
||||
# we are asserting with `is True/False` explicitly, to test that the
|
||||
# result is an actual Python bool, and not something "truthy"
|
||||
|
||||
assert data.equals(data) is True
|
||||
assert data.equals(data.copy()) is True
|
||||
|
||||
# unequal other data
|
||||
assert data.equals(data2) is False
|
||||
assert data.equals(data_na) is False
|
||||
|
||||
# different length
|
||||
assert data[:2].equals(data[:3]) is False
|
||||
|
||||
# empty are equal
|
||||
assert data[:0].equals(data[:0]) is True
|
||||
|
||||
# other types
|
||||
assert data.equals(None) is False
|
||||
assert data[[0]].equals(data[0]) is False
|
||||
|
||||
def test_equals_same_data_different_object(self, data):
|
||||
# https://github.com/pandas-dev/pandas/issues/34660
|
||||
assert pd.Series(data).equals(pd.Series(data))
|
@ -0,0 +1,190 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class BaseMissingTests:
|
||||
def test_isna(self, data_missing):
|
||||
expected = np.array([True, False])
|
||||
|
||||
result = pd.isna(data_missing)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = pd.Series(data_missing).isna()
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# GH 21189
|
||||
result = pd.Series(data_missing).drop([0, 1]).isna()
|
||||
expected = pd.Series([], dtype=bool)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("na_func", ["isna", "notna"])
|
||||
def test_isna_returns_copy(self, data_missing, na_func):
|
||||
result = pd.Series(data_missing)
|
||||
expected = result.copy()
|
||||
mask = getattr(result, na_func)()
|
||||
if isinstance(mask.dtype, pd.SparseDtype):
|
||||
# TODO: GH 57739
|
||||
mask = np.array(mask)
|
||||
mask.flags.writeable = True
|
||||
|
||||
mask[:] = True
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_dropna_array(self, data_missing):
|
||||
result = data_missing.dropna()
|
||||
expected = data_missing[[1]]
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_dropna_series(self, data_missing):
|
||||
ser = pd.Series(data_missing)
|
||||
result = ser.dropna()
|
||||
expected = ser.iloc[[1]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_dropna_frame(self, data_missing):
|
||||
df = pd.DataFrame({"A": data_missing}, columns=pd.Index(["A"], dtype=object))
|
||||
|
||||
# defaults
|
||||
result = df.dropna()
|
||||
expected = df.iloc[[1]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# axis = 1
|
||||
result = df.dropna(axis="columns")
|
||||
expected = pd.DataFrame(index=pd.RangeIndex(2), columns=pd.Index([]))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# multiple
|
||||
df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]})
|
||||
result = df.dropna()
|
||||
expected = df.iloc[:0]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_fillna_scalar(self, data_missing):
|
||||
valid = data_missing[1]
|
||||
result = data_missing.fillna(valid)
|
||||
expected = data_missing.fillna(valid)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
|
||||
)
|
||||
def test_fillna_limit_pad(self, data_missing):
|
||||
arr = data_missing.take([1, 0, 0, 0, 1])
|
||||
result = pd.Series(arr).ffill(limit=2)
|
||||
expected = pd.Series(data_missing.take([1, 1, 1, 0, 1]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"limit_area, input_ilocs, expected_ilocs",
|
||||
[
|
||||
("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
|
||||
("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
|
||||
("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
|
||||
("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
|
||||
("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
|
||||
("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
|
||||
("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
|
||||
("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
|
||||
],
|
||||
)
|
||||
def test_ffill_limit_area(
|
||||
self, data_missing, limit_area, input_ilocs, expected_ilocs
|
||||
):
|
||||
# GH#56616
|
||||
arr = data_missing.take(input_ilocs)
|
||||
result = pd.Series(arr).ffill(limit_area=limit_area)
|
||||
expected = pd.Series(data_missing.take(expected_ilocs))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
|
||||
)
|
||||
def test_fillna_limit_backfill(self, data_missing):
|
||||
arr = data_missing.take([1, 0, 0, 0, 1])
|
||||
result = pd.Series(arr).fillna(method="backfill", limit=2)
|
||||
expected = pd.Series(data_missing.take([1, 0, 1, 1, 1]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_fillna_no_op_returns_copy(self, data):
|
||||
data = data[~data.isna()]
|
||||
|
||||
valid = data[0]
|
||||
result = data.fillna(valid)
|
||||
assert result is not data
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
result = data._pad_or_backfill(method="backfill")
|
||||
assert result is not data
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
def test_fillna_series(self, data_missing):
|
||||
fill_value = data_missing[1]
|
||||
ser = pd.Series(data_missing)
|
||||
|
||||
result = ser.fillna(fill_value)
|
||||
expected = pd.Series(
|
||||
data_missing._from_sequence(
|
||||
[fill_value, fill_value], dtype=data_missing.dtype
|
||||
)
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Fill with a series
|
||||
result = ser.fillna(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Fill with a series not affecting the missing values
|
||||
result = ser.fillna(ser)
|
||||
tm.assert_series_equal(result, ser)
|
||||
|
||||
def test_fillna_series_method(self, data_missing, fillna_method):
|
||||
fill_value = data_missing[1]
|
||||
|
||||
if fillna_method == "ffill":
|
||||
data_missing = data_missing[::-1]
|
||||
|
||||
result = getattr(pd.Series(data_missing), fillna_method)()
|
||||
expected = pd.Series(
|
||||
data_missing._from_sequence(
|
||||
[fill_value, fill_value], dtype=data_missing.dtype
|
||||
)
|
||||
)
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_fillna_frame(self, data_missing):
|
||||
fill_value = data_missing[1]
|
||||
|
||||
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"A": data_missing._from_sequence(
|
||||
[fill_value, fill_value], dtype=data_missing.dtype
|
||||
),
|
||||
"B": [1, 2],
|
||||
}
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_fillna_fill_other(self, data):
|
||||
result = pd.DataFrame({"A": data, "B": [np.nan] * len(data)}).fillna({"B": 0.0})
|
||||
|
||||
expected = pd.DataFrame({"A": data, "B": [0.0] * len(result)})
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_use_inf_as_na_no_effect(self, data_missing):
|
||||
ser = pd.Series(data_missing)
|
||||
expected = ser.isna()
|
||||
msg = "use_inf_as_na option is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
with pd.option_context("mode.use_inf_as_na", True):
|
||||
result = ser.isna()
|
||||
tm.assert_series_equal(result, expected)
|
299
lib/python3.13/site-packages/pandas/tests/extension/base/ops.py
Normal file
299
lib/python3.13/site-packages/pandas/tests/extension/base/ops.py
Normal file
@ -0,0 +1,299 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import final
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas._config import using_pyarrow_string_dtype
|
||||
|
||||
from pandas.core.dtypes.common import is_string_dtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core import ops
|
||||
|
||||
|
||||
class BaseOpsUtil:
|
||||
series_scalar_exc: type[Exception] | None = TypeError
|
||||
frame_scalar_exc: type[Exception] | None = TypeError
|
||||
series_array_exc: type[Exception] | None = TypeError
|
||||
divmod_exc: type[Exception] | None = TypeError
|
||||
|
||||
def _get_expected_exception(
|
||||
self, op_name: str, obj, other
|
||||
) -> type[Exception] | None:
|
||||
# Find the Exception, if any we expect to raise calling
|
||||
# obj.__op_name__(other)
|
||||
|
||||
# The self.obj_bar_exc pattern isn't great in part because it can depend
|
||||
# on op_name or dtypes, but we use it here for backward-compatibility.
|
||||
if op_name in ["__divmod__", "__rdivmod__"]:
|
||||
result = self.divmod_exc
|
||||
elif isinstance(obj, pd.Series) and isinstance(other, pd.Series):
|
||||
result = self.series_array_exc
|
||||
elif isinstance(obj, pd.Series):
|
||||
result = self.series_scalar_exc
|
||||
else:
|
||||
result = self.frame_scalar_exc
|
||||
|
||||
if using_pyarrow_string_dtype() and result is not None:
|
||||
import pyarrow as pa
|
||||
|
||||
result = ( # type: ignore[assignment]
|
||||
result,
|
||||
pa.lib.ArrowNotImplementedError,
|
||||
NotImplementedError,
|
||||
)
|
||||
return result
|
||||
|
||||
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
|
||||
# In _check_op we check that the result of a pointwise operation
|
||||
# (found via _combine) matches the result of the vectorized
|
||||
# operation obj.__op_name__(other).
|
||||
# In some cases pandas dtype inference on the scalar result may not
|
||||
# give a matching dtype even if both operations are behaving "correctly".
|
||||
# In these cases, do extra required casting here.
|
||||
return pointwise_result
|
||||
|
||||
def get_op_from_name(self, op_name: str):
|
||||
return tm.get_op_from_name(op_name)
|
||||
|
||||
# Subclasses are not expected to need to override check_opname, _check_op,
|
||||
# _check_divmod_op, or _combine.
|
||||
# Ideally any relevant overriding can be done in _cast_pointwise_result,
|
||||
# get_op_from_name, and the specification of `exc`. If you find a use
|
||||
# case that still requires overriding _check_op or _combine, please let
|
||||
# us know at github.com/pandas-dev/pandas/issues
|
||||
@final
|
||||
def check_opname(self, ser: pd.Series, op_name: str, other):
|
||||
exc = self._get_expected_exception(op_name, ser, other)
|
||||
op = self.get_op_from_name(op_name)
|
||||
|
||||
self._check_op(ser, op, other, op_name, exc)
|
||||
|
||||
# see comment on check_opname
|
||||
@final
|
||||
def _combine(self, obj, other, op):
|
||||
if isinstance(obj, pd.DataFrame):
|
||||
if len(obj.columns) != 1:
|
||||
raise NotImplementedError
|
||||
expected = obj.iloc[:, 0].combine(other, op).to_frame()
|
||||
else:
|
||||
expected = obj.combine(other, op)
|
||||
return expected
|
||||
|
||||
# see comment on check_opname
|
||||
@final
|
||||
def _check_op(
|
||||
self, ser: pd.Series, op, other, op_name: str, exc=NotImplementedError
|
||||
):
|
||||
# Check that the Series/DataFrame arithmetic/comparison method matches
|
||||
# the pointwise result from _combine.
|
||||
|
||||
if exc is None:
|
||||
result = op(ser, other)
|
||||
expected = self._combine(ser, other, op)
|
||||
expected = self._cast_pointwise_result(op_name, ser, other, expected)
|
||||
assert isinstance(result, type(ser))
|
||||
tm.assert_equal(result, expected)
|
||||
else:
|
||||
with pytest.raises(exc):
|
||||
op(ser, other)
|
||||
|
||||
# see comment on check_opname
|
||||
@final
|
||||
def _check_divmod_op(self, ser: pd.Series, op, other):
|
||||
# check that divmod behavior matches behavior of floordiv+mod
|
||||
if op is divmod:
|
||||
exc = self._get_expected_exception("__divmod__", ser, other)
|
||||
else:
|
||||
exc = self._get_expected_exception("__rdivmod__", ser, other)
|
||||
if exc is None:
|
||||
result_div, result_mod = op(ser, other)
|
||||
if op is divmod:
|
||||
expected_div, expected_mod = ser // other, ser % other
|
||||
else:
|
||||
expected_div, expected_mod = other // ser, other % ser
|
||||
tm.assert_series_equal(result_div, expected_div)
|
||||
tm.assert_series_equal(result_mod, expected_mod)
|
||||
else:
|
||||
with pytest.raises(exc):
|
||||
divmod(ser, other)
|
||||
|
||||
|
||||
class BaseArithmeticOpsTests(BaseOpsUtil):
|
||||
"""
|
||||
Various Series and DataFrame arithmetic ops methods.
|
||||
|
||||
Subclasses supporting various ops should set the class variables
|
||||
to indicate that they support ops of that kind
|
||||
|
||||
* series_scalar_exc = TypeError
|
||||
* frame_scalar_exc = TypeError
|
||||
* series_array_exc = TypeError
|
||||
* divmod_exc = TypeError
|
||||
"""
|
||||
|
||||
series_scalar_exc: type[Exception] | None = TypeError
|
||||
frame_scalar_exc: type[Exception] | None = TypeError
|
||||
series_array_exc: type[Exception] | None = TypeError
|
||||
divmod_exc: type[Exception] | None = TypeError
|
||||
|
||||
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
|
||||
# series & scalar
|
||||
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
|
||||
pytest.skip("Skip testing Python string formatting")
|
||||
|
||||
op_name = all_arithmetic_operators
|
||||
ser = pd.Series(data)
|
||||
self.check_opname(ser, op_name, ser.iloc[0])
|
||||
|
||||
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
|
||||
# frame & scalar
|
||||
if all_arithmetic_operators == "__rmod__" and is_string_dtype(data.dtype):
|
||||
pytest.skip("Skip testing Python string formatting")
|
||||
|
||||
op_name = all_arithmetic_operators
|
||||
df = pd.DataFrame({"A": data})
|
||||
self.check_opname(df, op_name, data[0])
|
||||
|
||||
def test_arith_series_with_array(self, data, all_arithmetic_operators):
|
||||
# ndarray & other series
|
||||
op_name = all_arithmetic_operators
|
||||
ser = pd.Series(data)
|
||||
self.check_opname(ser, op_name, pd.Series([ser.iloc[0]] * len(ser)))
|
||||
|
||||
def test_divmod(self, data):
|
||||
ser = pd.Series(data)
|
||||
self._check_divmod_op(ser, divmod, 1)
|
||||
self._check_divmod_op(1, ops.rdivmod, ser)
|
||||
|
||||
def test_divmod_series_array(self, data, data_for_twos):
|
||||
ser = pd.Series(data)
|
||||
self._check_divmod_op(ser, divmod, data)
|
||||
|
||||
other = data_for_twos
|
||||
self._check_divmod_op(other, ops.rdivmod, ser)
|
||||
|
||||
other = pd.Series(other)
|
||||
self._check_divmod_op(other, ops.rdivmod, ser)
|
||||
|
||||
def test_add_series_with_extension_array(self, data):
|
||||
# Check adding an ExtensionArray to a Series of the same dtype matches
|
||||
# the behavior of adding the arrays directly and then wrapping in a
|
||||
# Series.
|
||||
|
||||
ser = pd.Series(data)
|
||||
|
||||
exc = self._get_expected_exception("__add__", ser, data)
|
||||
if exc is not None:
|
||||
with pytest.raises(exc):
|
||||
ser + data
|
||||
return
|
||||
|
||||
result = ser + data
|
||||
expected = pd.Series(data + data)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame, pd.Index])
|
||||
@pytest.mark.parametrize(
|
||||
"op_name",
|
||||
[
|
||||
x
|
||||
for x in tm.arithmetic_dunder_methods + tm.comparison_dunder_methods
|
||||
if not x.startswith("__r")
|
||||
],
|
||||
)
|
||||
def test_direct_arith_with_ndframe_returns_not_implemented(
|
||||
self, data, box, op_name
|
||||
):
|
||||
# EAs should return NotImplemented for ops with Series/DataFrame/Index
|
||||
# Pandas takes care of unboxing the series and calling the EA's op.
|
||||
other = box(data)
|
||||
|
||||
if hasattr(data, op_name):
|
||||
result = getattr(data, op_name)(other)
|
||||
assert result is NotImplemented
|
||||
|
||||
|
||||
class BaseComparisonOpsTests(BaseOpsUtil):
|
||||
"""Various Series and DataFrame comparison ops methods."""
|
||||
|
||||
def _compare_other(self, ser: pd.Series, data, op, other):
|
||||
if op.__name__ in ["eq", "ne"]:
|
||||
# comparison should match point-wise comparisons
|
||||
result = op(ser, other)
|
||||
expected = ser.combine(other, op)
|
||||
expected = self._cast_pointwise_result(op.__name__, ser, other, expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
else:
|
||||
exc = None
|
||||
try:
|
||||
result = op(ser, other)
|
||||
except Exception as err:
|
||||
exc = err
|
||||
|
||||
if exc is None:
|
||||
# Didn't error, then should match pointwise behavior
|
||||
expected = ser.combine(other, op)
|
||||
expected = self._cast_pointwise_result(
|
||||
op.__name__, ser, other, expected
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
else:
|
||||
with pytest.raises(type(exc)):
|
||||
ser.combine(other, op)
|
||||
|
||||
def test_compare_scalar(self, data, comparison_op):
|
||||
ser = pd.Series(data)
|
||||
self._compare_other(ser, data, comparison_op, 0)
|
||||
|
||||
def test_compare_array(self, data, comparison_op):
|
||||
ser = pd.Series(data)
|
||||
other = pd.Series([data[0]] * len(data), dtype=data.dtype)
|
||||
self._compare_other(ser, data, comparison_op, other)
|
||||
|
||||
|
||||
class BaseUnaryOpsTests(BaseOpsUtil):
|
||||
def test_invert(self, data):
|
||||
ser = pd.Series(data, name="name")
|
||||
try:
|
||||
# 10 is an arbitrary choice here, just avoid iterating over
|
||||
# the whole array to trim test runtime
|
||||
[~x for x in data[:10]]
|
||||
except TypeError:
|
||||
# scalars don't support invert -> we don't expect the vectorized
|
||||
# operation to succeed
|
||||
with pytest.raises(TypeError):
|
||||
~ser
|
||||
with pytest.raises(TypeError):
|
||||
~data
|
||||
else:
|
||||
# Note we do not reuse the pointwise result to construct expected
|
||||
# because python semantics for negating bools are weird see GH#54569
|
||||
result = ~ser
|
||||
expected = pd.Series(~data, name="name")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.positive, np.negative, np.abs])
|
||||
def test_unary_ufunc_dunder_equivalence(self, data, ufunc):
|
||||
# the dunder __pos__ works if and only if np.positive works,
|
||||
# same for __neg__/np.negative and __abs__/np.abs
|
||||
attr = {np.positive: "__pos__", np.negative: "__neg__", np.abs: "__abs__"}[
|
||||
ufunc
|
||||
]
|
||||
|
||||
exc = None
|
||||
try:
|
||||
result = getattr(data, attr)()
|
||||
except Exception as err:
|
||||
exc = err
|
||||
|
||||
# if __pos__ raised, then so should the ufunc
|
||||
with pytest.raises((type(exc), TypeError)):
|
||||
ufunc(data)
|
||||
else:
|
||||
alt = ufunc(data)
|
||||
tm.assert_extension_array_equal(result, alt)
|
@ -0,0 +1,41 @@
|
||||
import io
|
||||
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class BasePrintingTests:
|
||||
"""Tests checking the formatting of your EA when printed."""
|
||||
|
||||
@pytest.mark.parametrize("size", ["big", "small"])
|
||||
def test_array_repr(self, data, size):
|
||||
if size == "small":
|
||||
data = data[:5]
|
||||
else:
|
||||
data = type(data)._concat_same_type([data] * 5)
|
||||
|
||||
result = repr(data)
|
||||
assert type(data).__name__ in result
|
||||
assert f"Length: {len(data)}" in result
|
||||
assert str(data.dtype) in result
|
||||
if size == "big":
|
||||
assert "..." in result
|
||||
|
||||
def test_array_repr_unicode(self, data):
|
||||
result = str(data)
|
||||
assert isinstance(result, str)
|
||||
|
||||
def test_series_repr(self, data):
|
||||
ser = pd.Series(data)
|
||||
assert data.dtype.name in repr(ser)
|
||||
|
||||
def test_dataframe_repr(self, data):
|
||||
df = pd.DataFrame({"A": data})
|
||||
repr(df)
|
||||
|
||||
def test_dtype_name_in_info(self, data):
|
||||
buf = io.StringIO()
|
||||
pd.DataFrame({"A": data}).info(buf=buf)
|
||||
result = buf.getvalue()
|
||||
assert data.dtype.name in result
|
@ -0,0 +1,153 @@
|
||||
from typing import final
|
||||
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
|
||||
|
||||
class BaseReduceTests:
|
||||
"""
|
||||
Reduction specific tests. Generally these only
|
||||
make sense for numeric/boolean operations.
|
||||
"""
|
||||
|
||||
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
||||
# Specify if we expect this reduction to succeed.
|
||||
return False
|
||||
|
||||
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
|
||||
# We perform the same operation on the np.float64 data and check
|
||||
# that the results match. Override if you need to cast to something
|
||||
# other than float64.
|
||||
res_op = getattr(ser, op_name)
|
||||
|
||||
try:
|
||||
alt = ser.astype("float64")
|
||||
except (TypeError, ValueError):
|
||||
# e.g. Interval can't cast (TypeError), StringArray can't cast
|
||||
# (ValueError), so let's cast to object and do
|
||||
# the reduction pointwise
|
||||
alt = ser.astype(object)
|
||||
|
||||
exp_op = getattr(alt, op_name)
|
||||
if op_name == "count":
|
||||
result = res_op()
|
||||
expected = exp_op()
|
||||
else:
|
||||
result = res_op(skipna=skipna)
|
||||
expected = exp_op(skipna=skipna)
|
||||
tm.assert_almost_equal(result, expected)
|
||||
|
||||
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
|
||||
# Find the expected dtype when the given reduction is done on a DataFrame
|
||||
# column with this array. The default assumes float64-like behavior,
|
||||
# i.e. retains the dtype.
|
||||
return arr.dtype
|
||||
|
||||
# We anticipate that authors should not need to override check_reduce_frame,
|
||||
# but should be able to do any necessary overriding in
|
||||
# _get_expected_reduction_dtype. If you have a use case where this
|
||||
# does not hold, please let us know at github.com/pandas-dev/pandas/issues.
|
||||
@final
|
||||
def check_reduce_frame(self, ser: pd.Series, op_name: str, skipna: bool):
|
||||
# Check that the 2D reduction done in a DataFrame reduction "looks like"
|
||||
# a wrapped version of the 1D reduction done by Series.
|
||||
arr = ser.array
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
kwargs = {"ddof": 1} if op_name in ["var", "std"] else {}
|
||||
|
||||
cmp_dtype = self._get_expected_reduction_dtype(arr, op_name, skipna)
|
||||
|
||||
# The DataFrame method just calls arr._reduce with keepdims=True,
|
||||
# so this first check is perfunctory.
|
||||
result1 = arr._reduce(op_name, skipna=skipna, keepdims=True, **kwargs)
|
||||
result2 = getattr(df, op_name)(skipna=skipna, **kwargs).array
|
||||
tm.assert_extension_array_equal(result1, result2)
|
||||
|
||||
# Check that the 2D reduction looks like a wrapped version of the
|
||||
# 1D reduction
|
||||
if not skipna and ser.isna().any():
|
||||
expected = pd.array([pd.NA], dtype=cmp_dtype)
|
||||
else:
|
||||
exp_value = getattr(ser.dropna(), op_name)()
|
||||
expected = pd.array([exp_value], dtype=cmp_dtype)
|
||||
|
||||
tm.assert_extension_array_equal(result1, expected)
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna):
|
||||
op_name = all_boolean_reductions
|
||||
ser = pd.Series(data)
|
||||
|
||||
if not self._supports_reduction(ser, op_name):
|
||||
# TODO: the message being checked here isn't actually checking anything
|
||||
msg = (
|
||||
"[Cc]annot perform|Categorical is not ordered for operation|"
|
||||
"does not support reduction|"
|
||||
)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(ser, op_name)(skipna=skipna)
|
||||
|
||||
else:
|
||||
self.check_reduce(ser, op_name, skipna)
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
|
||||
op_name = all_numeric_reductions
|
||||
ser = pd.Series(data)
|
||||
|
||||
if not self._supports_reduction(ser, op_name):
|
||||
# TODO: the message being checked here isn't actually checking anything
|
||||
msg = (
|
||||
"[Cc]annot perform|Categorical is not ordered for operation|"
|
||||
"does not support reduction|"
|
||||
)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(ser, op_name)(skipna=skipna)
|
||||
|
||||
else:
|
||||
# min/max with empty produce numpy warnings
|
||||
self.check_reduce(ser, op_name, skipna)
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reduce_frame(self, data, all_numeric_reductions, skipna):
|
||||
op_name = all_numeric_reductions
|
||||
ser = pd.Series(data)
|
||||
if not is_numeric_dtype(ser.dtype):
|
||||
pytest.skip(f"{ser.dtype} is not numeric dtype")
|
||||
|
||||
if op_name in ["count", "kurt", "sem"]:
|
||||
pytest.skip(f"{op_name} not an array method")
|
||||
|
||||
if not self._supports_reduction(ser, op_name):
|
||||
pytest.skip(f"Reduction {op_name} not supported for this dtype")
|
||||
|
||||
self.check_reduce_frame(ser, op_name, skipna)
|
||||
|
||||
|
||||
# TODO(3.0): remove BaseNoReduceTests, BaseNumericReduceTests,
|
||||
# BaseBooleanReduceTests
|
||||
class BaseNoReduceTests(BaseReduceTests):
|
||||
"""we don't define any reductions"""
|
||||
|
||||
|
||||
class BaseNumericReduceTests(BaseReduceTests):
|
||||
# For backward compatibility only, this only runs the numeric reductions
|
||||
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
||||
if op_name in ["any", "all"]:
|
||||
pytest.skip("These are tested in BaseBooleanReduceTests")
|
||||
return True
|
||||
|
||||
|
||||
class BaseBooleanReduceTests(BaseReduceTests):
|
||||
# For backward compatibility only, this only runs the numeric reductions
|
||||
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
||||
if op_name not in ["any", "all"]:
|
||||
pytest.skip("These are tested in BaseNumericReduceTests")
|
||||
return True
|
@ -0,0 +1,379 @@
|
||||
import itertools
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.extensions import ExtensionArray
|
||||
from pandas.core.internals.blocks import EABackedBlock
|
||||
|
||||
|
||||
class BaseReshapingTests:
|
||||
"""Tests for reshaping and concatenation."""
|
||||
|
||||
@pytest.mark.parametrize("in_frame", [True, False])
|
||||
def test_concat(self, data, in_frame):
|
||||
wrapped = pd.Series(data)
|
||||
if in_frame:
|
||||
wrapped = pd.DataFrame(wrapped)
|
||||
result = pd.concat([wrapped, wrapped], ignore_index=True)
|
||||
|
||||
assert len(result) == len(data) * 2
|
||||
|
||||
if in_frame:
|
||||
dtype = result.dtypes[0]
|
||||
else:
|
||||
dtype = result.dtype
|
||||
|
||||
assert dtype == data.dtype
|
||||
if hasattr(result._mgr, "blocks"):
|
||||
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
||||
assert isinstance(result._mgr.arrays[0], ExtensionArray)
|
||||
|
||||
@pytest.mark.parametrize("in_frame", [True, False])
|
||||
def test_concat_all_na_block(self, data_missing, in_frame):
|
||||
valid_block = pd.Series(data_missing.take([1, 1]), index=[0, 1])
|
||||
na_block = pd.Series(data_missing.take([0, 0]), index=[2, 3])
|
||||
if in_frame:
|
||||
valid_block = pd.DataFrame({"a": valid_block})
|
||||
na_block = pd.DataFrame({"a": na_block})
|
||||
result = pd.concat([valid_block, na_block])
|
||||
if in_frame:
|
||||
expected = pd.DataFrame({"a": data_missing.take([1, 1, 0, 0])})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
else:
|
||||
expected = pd.Series(data_missing.take([1, 1, 0, 0]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_mixed_dtypes(self, data):
|
||||
# https://github.com/pandas-dev/pandas/issues/20762
|
||||
df1 = pd.DataFrame({"A": data[:3]})
|
||||
df2 = pd.DataFrame({"A": [1, 2, 3]})
|
||||
df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
|
||||
dfs = [df1, df2, df3]
|
||||
|
||||
# dataframes
|
||||
result = pd.concat(dfs)
|
||||
expected = pd.concat([x.astype(object) for x in dfs])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# series
|
||||
result = pd.concat([x["A"] for x in dfs])
|
||||
expected = pd.concat([x["A"].astype(object) for x in dfs])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# simple test for just EA and one other
|
||||
result = pd.concat([df1, df2.astype(object)])
|
||||
expected = pd.concat([df1.astype("object"), df2.astype("object")])
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = pd.concat([df1["A"], df2["A"].astype(object)])
|
||||
expected = pd.concat([df1["A"].astype("object"), df2["A"].astype("object")])
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_concat_columns(self, data, na_value):
|
||||
df1 = pd.DataFrame({"A": data[:3]})
|
||||
df2 = pd.DataFrame({"B": [1, 2, 3]})
|
||||
|
||||
expected = pd.DataFrame({"A": data[:3], "B": [1, 2, 3]})
|
||||
result = pd.concat([df1, df2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
result = pd.concat([df1["A"], df2["B"]], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# non-aligned
|
||||
df2 = pd.DataFrame({"B": [1, 2, 3]}, index=[1, 2, 3])
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
|
||||
"B": [np.nan, 1, 2, 3],
|
||||
}
|
||||
)
|
||||
|
||||
result = pd.concat([df1, df2], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
result = pd.concat([df1["A"], df2["B"]], axis=1)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_extension_arrays_copy_false(self, data, na_value):
|
||||
# GH 20756
|
||||
df1 = pd.DataFrame({"A": data[:3]})
|
||||
df2 = pd.DataFrame({"B": data[3:7]})
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"A": data._from_sequence(list(data[:3]) + [na_value], dtype=data.dtype),
|
||||
"B": data[3:7],
|
||||
}
|
||||
)
|
||||
result = pd.concat([df1, df2], axis=1, copy=False)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_concat_with_reindex(self, data):
|
||||
# GH-33027
|
||||
a = pd.DataFrame({"a": data[:5]})
|
||||
b = pd.DataFrame({"b": data[:5]})
|
||||
result = pd.concat([a, b], ignore_index=True)
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"a": data.take(list(range(5)) + ([-1] * 5), allow_fill=True),
|
||||
"b": data.take(([-1] * 5) + list(range(5)), allow_fill=True),
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_align(self, data, na_value):
|
||||
a = data[:3]
|
||||
b = data[2:5]
|
||||
r1, r2 = pd.Series(a).align(pd.Series(b, index=[1, 2, 3]))
|
||||
|
||||
# Assumes that the ctor can take a list of scalars of the type
|
||||
e1 = pd.Series(data._from_sequence(list(a) + [na_value], dtype=data.dtype))
|
||||
e2 = pd.Series(data._from_sequence([na_value] + list(b), dtype=data.dtype))
|
||||
tm.assert_series_equal(r1, e1)
|
||||
tm.assert_series_equal(r2, e2)
|
||||
|
||||
def test_align_frame(self, data, na_value):
|
||||
a = data[:3]
|
||||
b = data[2:5]
|
||||
r1, r2 = pd.DataFrame({"A": a}).align(pd.DataFrame({"A": b}, index=[1, 2, 3]))
|
||||
|
||||
# Assumes that the ctor can take a list of scalars of the type
|
||||
e1 = pd.DataFrame(
|
||||
{"A": data._from_sequence(list(a) + [na_value], dtype=data.dtype)}
|
||||
)
|
||||
e2 = pd.DataFrame(
|
||||
{"A": data._from_sequence([na_value] + list(b), dtype=data.dtype)}
|
||||
)
|
||||
tm.assert_frame_equal(r1, e1)
|
||||
tm.assert_frame_equal(r2, e2)
|
||||
|
||||
def test_align_series_frame(self, data, na_value):
|
||||
# https://github.com/pandas-dev/pandas/issues/20576
|
||||
ser = pd.Series(data, name="a")
|
||||
df = pd.DataFrame({"col": np.arange(len(ser) + 1)})
|
||||
r1, r2 = ser.align(df)
|
||||
|
||||
e1 = pd.Series(
|
||||
data._from_sequence(list(data) + [na_value], dtype=data.dtype),
|
||||
name=ser.name,
|
||||
)
|
||||
|
||||
tm.assert_series_equal(r1, e1)
|
||||
tm.assert_frame_equal(r2, df)
|
||||
|
||||
def test_set_frame_expand_regular_with_extension(self, data):
|
||||
df = pd.DataFrame({"A": [1] * len(data)})
|
||||
df["B"] = data
|
||||
expected = pd.DataFrame({"A": [1] * len(data), "B": data})
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_set_frame_expand_extension_with_regular(self, data):
|
||||
df = pd.DataFrame({"A": data})
|
||||
df["B"] = [1] * len(data)
|
||||
expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_set_frame_overwrite_object(self, data):
|
||||
# https://github.com/pandas-dev/pandas/issues/20555
|
||||
df = pd.DataFrame({"A": [1] * len(data)}, dtype=object)
|
||||
df["A"] = data
|
||||
assert df.dtypes["A"] == data.dtype
|
||||
|
||||
def test_merge(self, data, na_value):
|
||||
# GH-20743
|
||||
df1 = pd.DataFrame({"ext": data[:3], "int1": [1, 2, 3], "key": [0, 1, 2]})
|
||||
df2 = pd.DataFrame({"int2": [1, 2, 3, 4], "key": [0, 0, 1, 3]})
|
||||
|
||||
res = pd.merge(df1, df2)
|
||||
exp = pd.DataFrame(
|
||||
{
|
||||
"int1": [1, 1, 2],
|
||||
"int2": [1, 2, 3],
|
||||
"key": [0, 0, 1],
|
||||
"ext": data._from_sequence(
|
||||
[data[0], data[0], data[1]], dtype=data.dtype
|
||||
),
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
|
||||
|
||||
res = pd.merge(df1, df2, how="outer")
|
||||
exp = pd.DataFrame(
|
||||
{
|
||||
"int1": [1, 1, 2, 3, np.nan],
|
||||
"int2": [1, 2, 3, np.nan, 4],
|
||||
"key": [0, 0, 1, 2, 3],
|
||||
"ext": data._from_sequence(
|
||||
[data[0], data[0], data[1], data[2], na_value], dtype=data.dtype
|
||||
),
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(res, exp[["ext", "int1", "key", "int2"]])
|
||||
|
||||
def test_merge_on_extension_array(self, data):
|
||||
# GH 23020
|
||||
a, b = data[:2]
|
||||
key = type(data)._from_sequence([a, b], dtype=data.dtype)
|
||||
|
||||
df = pd.DataFrame({"key": key, "val": [1, 2]})
|
||||
result = pd.merge(df, df, on="key")
|
||||
expected = pd.DataFrame({"key": key, "val_x": [1, 2], "val_y": [1, 2]})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# order
|
||||
result = pd.merge(df.iloc[[1, 0]], df, on="key")
|
||||
expected = expected.iloc[[1, 0]].reset_index(drop=True)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_merge_on_extension_array_duplicates(self, data):
|
||||
# GH 23020
|
||||
a, b = data[:2]
|
||||
key = type(data)._from_sequence([a, b, a], dtype=data.dtype)
|
||||
df1 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
|
||||
df2 = pd.DataFrame({"key": key, "val": [1, 2, 3]})
|
||||
|
||||
result = pd.merge(df1, df2, on="key")
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"key": key.take([0, 0, 1, 2, 2]),
|
||||
"val_x": [1, 1, 2, 3, 3],
|
||||
"val_y": [1, 3, 2, 1, 3],
|
||||
}
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:The previous implementation of stack is deprecated"
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"columns",
|
||||
[
|
||||
["A", "B"],
|
||||
pd.MultiIndex.from_tuples(
|
||||
[("A", "a"), ("A", "b")], names=["outer", "inner"]
|
||||
),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("future_stack", [True, False])
|
||||
def test_stack(self, data, columns, future_stack):
|
||||
df = pd.DataFrame({"A": data[:5], "B": data[:5]})
|
||||
df.columns = columns
|
||||
result = df.stack(future_stack=future_stack)
|
||||
expected = df.astype(object).stack(future_stack=future_stack)
|
||||
# we need a second astype(object), in case the constructor inferred
|
||||
# object -> specialized, as is done for period.
|
||||
expected = expected.astype(object)
|
||||
|
||||
if isinstance(expected, pd.Series):
|
||||
assert result.dtype == df.iloc[:, 0].dtype
|
||||
else:
|
||||
assert all(result.dtypes == df.iloc[:, 0].dtype)
|
||||
|
||||
result = result.astype(object)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"index",
|
||||
[
|
||||
# Two levels, uniform.
|
||||
pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]),
|
||||
# non-uniform
|
||||
pd.MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "b")]),
|
||||
# three levels, non-uniform
|
||||
pd.MultiIndex.from_product([("A", "B"), ("a", "b", "c"), (0, 1, 2)]),
|
||||
pd.MultiIndex.from_tuples(
|
||||
[
|
||||
("A", "a", 1),
|
||||
("A", "b", 0),
|
||||
("A", "a", 0),
|
||||
("B", "a", 0),
|
||||
("B", "c", 1),
|
||||
]
|
||||
),
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize("obj", ["series", "frame"])
|
||||
def test_unstack(self, data, index, obj):
|
||||
data = data[: len(index)]
|
||||
if obj == "series":
|
||||
ser = pd.Series(data, index=index)
|
||||
else:
|
||||
ser = pd.DataFrame({"A": data, "B": data}, index=index)
|
||||
|
||||
n = index.nlevels
|
||||
levels = list(range(n))
|
||||
# [0, 1, 2]
|
||||
# [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
|
||||
combinations = itertools.chain.from_iterable(
|
||||
itertools.permutations(levels, i) for i in range(1, n)
|
||||
)
|
||||
|
||||
for level in combinations:
|
||||
result = ser.unstack(level=level)
|
||||
assert all(
|
||||
isinstance(result[col].array, type(data)) for col in result.columns
|
||||
)
|
||||
|
||||
if obj == "series":
|
||||
# We should get the same result with to_frame+unstack+droplevel
|
||||
df = ser.to_frame()
|
||||
|
||||
alt = df.unstack(level=level).droplevel(0, axis=1)
|
||||
tm.assert_frame_equal(result, alt)
|
||||
|
||||
obj_ser = ser.astype(object)
|
||||
|
||||
expected = obj_ser.unstack(level=level, fill_value=data.dtype.na_value)
|
||||
if obj == "series":
|
||||
assert (expected.dtypes == object).all()
|
||||
|
||||
result = result.astype(object)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_ravel(self, data):
|
||||
# as long as EA is 1D-only, ravel is a no-op
|
||||
result = data.ravel()
|
||||
assert type(result) == type(data)
|
||||
|
||||
if data.dtype._is_immutable:
|
||||
pytest.skip(f"test_ravel assumes mutability and {data.dtype} is immutable")
|
||||
|
||||
# Check that we have a view, not a copy
|
||||
result[0] = result[1]
|
||||
assert data[0] == data[1]
|
||||
|
||||
def test_transpose(self, data):
|
||||
result = data.transpose()
|
||||
assert type(result) == type(data)
|
||||
|
||||
# check we get a new object
|
||||
assert result is not data
|
||||
|
||||
# If we ever _did_ support 2D, shape should be reversed
|
||||
assert result.shape == data.shape[::-1]
|
||||
|
||||
if data.dtype._is_immutable:
|
||||
pytest.skip(
|
||||
f"test_transpose assumes mutability and {data.dtype} is immutable"
|
||||
)
|
||||
|
||||
# Check that we have a view, not a copy
|
||||
result[0] = result[1]
|
||||
assert data[0] == data[1]
|
||||
|
||||
def test_transpose_frame(self, data):
|
||||
df = pd.DataFrame({"A": data[:4], "B": data[:4]}, index=["a", "b", "c", "d"])
|
||||
result = df.T
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"a": type(data)._from_sequence([data[0]] * 2, dtype=data.dtype),
|
||||
"b": type(data)._from_sequence([data[1]] * 2, dtype=data.dtype),
|
||||
"c": type(data)._from_sequence([data[2]] * 2, dtype=data.dtype),
|
||||
"d": type(data)._from_sequence([data[3]] * 2, dtype=data.dtype),
|
||||
},
|
||||
index=["A", "B"],
|
||||
)
|
||||
tm.assert_frame_equal(result, expected)
|
||||
tm.assert_frame_equal(np.transpose(np.transpose(df)), df)
|
||||
tm.assert_frame_equal(np.transpose(np.transpose(df[["A"]])), df[["A"]])
|
@ -0,0 +1,451 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class BaseSetitemTests:
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
lambda x: x.index,
|
||||
lambda x: list(x.index),
|
||||
lambda x: slice(None),
|
||||
lambda x: slice(0, len(x)),
|
||||
lambda x: range(len(x)),
|
||||
lambda x: list(range(len(x))),
|
||||
lambda x: np.ones(len(x), dtype=bool),
|
||||
],
|
||||
ids=[
|
||||
"index",
|
||||
"list[index]",
|
||||
"null_slice",
|
||||
"full_slice",
|
||||
"range",
|
||||
"list(range)",
|
||||
"mask",
|
||||
],
|
||||
)
|
||||
def full_indexer(self, request):
|
||||
"""
|
||||
Fixture for an indexer to pass to obj.loc to get/set the full length of the
|
||||
object.
|
||||
|
||||
In some cases, assumes that obj.index is the default RangeIndex.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def skip_if_immutable(self, dtype, request):
|
||||
if dtype._is_immutable:
|
||||
node = request.node
|
||||
if node.name.split("[")[0] == "test_is_immutable":
|
||||
# This fixture is auto-used, but we want to not-skip
|
||||
# test_is_immutable.
|
||||
return
|
||||
|
||||
# When BaseSetitemTests is mixed into ExtensionTests, we only
|
||||
# want this fixture to operate on the tests defined in this
|
||||
# class/file.
|
||||
defined_in = node.function.__qualname__.split(".")[0]
|
||||
if defined_in == "BaseSetitemTests":
|
||||
pytest.skip("__setitem__ test not applicable with immutable dtype")
|
||||
|
||||
def test_is_immutable(self, data):
|
||||
if data.dtype._is_immutable:
|
||||
with pytest.raises(TypeError):
|
||||
data[0] = data[0]
|
||||
else:
|
||||
data[0] = data[1]
|
||||
assert data[0] == data[1]
|
||||
|
||||
def test_setitem_scalar_series(self, data, box_in_series):
|
||||
if box_in_series:
|
||||
data = pd.Series(data)
|
||||
data[0] = data[1]
|
||||
assert data[0] == data[1]
|
||||
|
||||
def test_setitem_sequence(self, data, box_in_series):
|
||||
if box_in_series:
|
||||
data = pd.Series(data)
|
||||
original = data.copy()
|
||||
|
||||
data[[0, 1]] = [data[1], data[0]]
|
||||
assert data[0] == original[1]
|
||||
assert data[1] == original[0]
|
||||
|
||||
def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
|
||||
ser = pd.Series(data)
|
||||
original = ser.copy()
|
||||
value = [data[0]]
|
||||
if as_array:
|
||||
value = data._from_sequence(value, dtype=data.dtype)
|
||||
|
||||
xpr = "cannot set using a {} indexer with a different length"
|
||||
with pytest.raises(ValueError, match=xpr.format("list-like")):
|
||||
ser[[0, 1]] = value
|
||||
# Ensure no modifications made before the exception
|
||||
tm.assert_series_equal(ser, original)
|
||||
|
||||
with pytest.raises(ValueError, match=xpr.format("slice")):
|
||||
ser[slice(3)] = value
|
||||
tm.assert_series_equal(ser, original)
|
||||
|
||||
def test_setitem_empty_indexer(self, data, box_in_series):
|
||||
if box_in_series:
|
||||
data = pd.Series(data)
|
||||
original = data.copy()
|
||||
data[np.array([], dtype=int)] = []
|
||||
tm.assert_equal(data, original)
|
||||
|
||||
def test_setitem_sequence_broadcasts(self, data, box_in_series):
|
||||
if box_in_series:
|
||||
data = pd.Series(data)
|
||||
data[[0, 1]] = data[2]
|
||||
assert data[0] == data[2]
|
||||
assert data[1] == data[2]
|
||||
|
||||
@pytest.mark.parametrize("setter", ["loc", "iloc"])
|
||||
def test_setitem_scalar(self, data, setter):
|
||||
arr = pd.Series(data)
|
||||
setter = getattr(arr, setter)
|
||||
setter[0] = data[1]
|
||||
assert arr[0] == data[1]
|
||||
|
||||
def test_setitem_loc_scalar_mixed(self, data):
|
||||
df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
|
||||
df.loc[0, "B"] = data[1]
|
||||
assert df.loc[0, "B"] == data[1]
|
||||
|
||||
def test_setitem_loc_scalar_single(self, data):
|
||||
df = pd.DataFrame({"B": data})
|
||||
df.loc[10, "B"] = data[1]
|
||||
assert df.loc[10, "B"] == data[1]
|
||||
|
||||
def test_setitem_loc_scalar_multiple_homogoneous(self, data):
|
||||
df = pd.DataFrame({"A": data, "B": data})
|
||||
df.loc[10, "B"] = data[1]
|
||||
assert df.loc[10, "B"] == data[1]
|
||||
|
||||
def test_setitem_iloc_scalar_mixed(self, data):
|
||||
df = pd.DataFrame({"A": np.arange(len(data)), "B": data})
|
||||
df.iloc[0, 1] = data[1]
|
||||
assert df.loc[0, "B"] == data[1]
|
||||
|
||||
def test_setitem_iloc_scalar_single(self, data):
|
||||
df = pd.DataFrame({"B": data})
|
||||
df.iloc[10, 0] = data[1]
|
||||
assert df.loc[10, "B"] == data[1]
|
||||
|
||||
def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
|
||||
df = pd.DataFrame({"A": data, "B": data})
|
||||
df.iloc[10, 1] = data[1]
|
||||
assert df.loc[10, "B"] == data[1]
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"mask",
|
||||
[
|
||||
np.array([True, True, True, False, False]),
|
||||
pd.array([True, True, True, False, False], dtype="boolean"),
|
||||
pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"),
|
||||
],
|
||||
ids=["numpy-array", "boolean-array", "boolean-array-na"],
|
||||
)
|
||||
def test_setitem_mask(self, data, mask, box_in_series):
|
||||
arr = data[:5].copy()
|
||||
expected = arr.take([0, 0, 0, 3, 4])
|
||||
if box_in_series:
|
||||
arr = pd.Series(arr)
|
||||
expected = pd.Series(expected)
|
||||
arr[mask] = data[0]
|
||||
tm.assert_equal(expected, arr)
|
||||
|
||||
def test_setitem_mask_raises(self, data, box_in_series):
|
||||
# wrong length
|
||||
mask = np.array([True, False])
|
||||
|
||||
if box_in_series:
|
||||
data = pd.Series(data)
|
||||
|
||||
with pytest.raises(IndexError, match="wrong length"):
|
||||
data[mask] = data[0]
|
||||
|
||||
mask = pd.array(mask, dtype="boolean")
|
||||
with pytest.raises(IndexError, match="wrong length"):
|
||||
data[mask] = data[0]
|
||||
|
||||
def test_setitem_mask_boolean_array_with_na(self, data, box_in_series):
|
||||
mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean")
|
||||
mask[:3] = True
|
||||
mask[3:5] = pd.NA
|
||||
|
||||
if box_in_series:
|
||||
data = pd.Series(data)
|
||||
|
||||
data[mask] = data[0]
|
||||
|
||||
assert (data[:3] == data[0]).all()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx",
|
||||
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
|
||||
ids=["list", "integer-array", "numpy-array"],
|
||||
)
|
||||
def test_setitem_integer_array(self, data, idx, box_in_series):
|
||||
arr = data[:5].copy()
|
||||
expected = data.take([0, 0, 0, 3, 4])
|
||||
|
||||
if box_in_series:
|
||||
arr = pd.Series(arr)
|
||||
expected = pd.Series(expected)
|
||||
|
||||
arr[idx] = arr[0]
|
||||
tm.assert_equal(arr, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"idx, box_in_series",
|
||||
[
|
||||
([0, 1, 2, pd.NA], False),
|
||||
pytest.param(
|
||||
[0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948")
|
||||
),
|
||||
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
|
||||
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
|
||||
],
|
||||
ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
|
||||
)
|
||||
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
|
||||
arr = data.copy()
|
||||
|
||||
# TODO(xfail) this raises KeyError about labels not found (it tries label-based)
|
||||
# for list of labels with Series
|
||||
if box_in_series:
|
||||
arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))])
|
||||
|
||||
msg = "Cannot index with an integer indexer containing NA values"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr[idx] = arr[0]
|
||||
|
||||
@pytest.mark.parametrize("as_callable", [True, False])
|
||||
@pytest.mark.parametrize("setter", ["loc", None])
|
||||
def test_setitem_mask_aligned(self, data, as_callable, setter):
|
||||
ser = pd.Series(data)
|
||||
mask = np.zeros(len(data), dtype=bool)
|
||||
mask[:2] = True
|
||||
|
||||
if as_callable:
|
||||
mask2 = lambda x: mask
|
||||
else:
|
||||
mask2 = mask
|
||||
|
||||
if setter:
|
||||
# loc
|
||||
target = getattr(ser, setter)
|
||||
else:
|
||||
# Series.__setitem__
|
||||
target = ser
|
||||
|
||||
target[mask2] = data[5:7]
|
||||
|
||||
ser[mask2] = data[5:7]
|
||||
assert ser[0] == data[5]
|
||||
assert ser[1] == data[6]
|
||||
|
||||
@pytest.mark.parametrize("setter", ["loc", None])
|
||||
def test_setitem_mask_broadcast(self, data, setter):
|
||||
ser = pd.Series(data)
|
||||
mask = np.zeros(len(data), dtype=bool)
|
||||
mask[:2] = True
|
||||
|
||||
if setter: # loc
|
||||
target = getattr(ser, setter)
|
||||
else: # __setitem__
|
||||
target = ser
|
||||
|
||||
target[mask] = data[10]
|
||||
assert ser[0] == data[10]
|
||||
assert ser[1] == data[10]
|
||||
|
||||
def test_setitem_expand_columns(self, data):
|
||||
df = pd.DataFrame({"A": data})
|
||||
result = df.copy()
|
||||
result["B"] = 1
|
||||
expected = pd.DataFrame({"A": data, "B": [1] * len(data)})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.copy()
|
||||
result.loc[:, "B"] = 1
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# overwrite with new type
|
||||
result["B"] = data
|
||||
expected = pd.DataFrame({"A": data, "B": data})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_setitem_expand_with_extension(self, data):
|
||||
df = pd.DataFrame({"A": [1] * len(data)})
|
||||
result = df.copy()
|
||||
result["B"] = data
|
||||
expected = pd.DataFrame({"A": [1] * len(data), "B": data})
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
result = df.copy()
|
||||
result.loc[:, "B"] = data
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_setitem_frame_invalid_length(self, data):
|
||||
df = pd.DataFrame({"A": [1] * len(data)})
|
||||
xpr = (
|
||||
rf"Length of values \({len(data[:5])}\) "
|
||||
rf"does not match length of index \({len(df)}\)"
|
||||
)
|
||||
with pytest.raises(ValueError, match=xpr):
|
||||
df["B"] = data[:5]
|
||||
|
||||
def test_setitem_tuple_index(self, data):
|
||||
ser = pd.Series(data[:2], index=[(0, 0), (0, 1)])
|
||||
expected = pd.Series(data.take([1, 1]), index=ser.index)
|
||||
ser[(0, 0)] = data[1]
|
||||
tm.assert_series_equal(ser, expected)
|
||||
|
||||
def test_setitem_slice(self, data, box_in_series):
|
||||
arr = data[:5].copy()
|
||||
expected = data.take([0, 0, 0, 3, 4])
|
||||
if box_in_series:
|
||||
arr = pd.Series(arr)
|
||||
expected = pd.Series(expected)
|
||||
|
||||
arr[:3] = data[0]
|
||||
tm.assert_equal(arr, expected)
|
||||
|
||||
def test_setitem_loc_iloc_slice(self, data):
|
||||
arr = data[:5].copy()
|
||||
s = pd.Series(arr, index=["a", "b", "c", "d", "e"])
|
||||
expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index)
|
||||
|
||||
result = s.copy()
|
||||
result.iloc[:3] = data[0]
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
result = s.copy()
|
||||
result.loc[:"c"] = data[0]
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
def test_setitem_slice_mismatch_length_raises(self, data):
|
||||
arr = data[:5]
|
||||
with pytest.raises(ValueError):
|
||||
arr[:1] = arr[:2]
|
||||
|
||||
def test_setitem_slice_array(self, data):
|
||||
arr = data[:5].copy()
|
||||
arr[:5] = data[-5:]
|
||||
tm.assert_extension_array_equal(arr, data[-5:])
|
||||
|
||||
def test_setitem_scalar_key_sequence_raise(self, data):
|
||||
arr = data[:5].copy()
|
||||
with pytest.raises(ValueError):
|
||||
arr[0] = arr[[0, 1]]
|
||||
|
||||
def test_setitem_preserves_views(self, data):
|
||||
# GH#28150 setitem shouldn't swap the underlying data
|
||||
view1 = data.view()
|
||||
view2 = data[:]
|
||||
|
||||
data[0] = data[1]
|
||||
assert view1[0] == data[1]
|
||||
assert view2[0] == data[1]
|
||||
|
||||
def test_setitem_with_expansion_dataframe_column(self, data, full_indexer):
|
||||
# https://github.com/pandas-dev/pandas/issues/32395
|
||||
df = expected = pd.DataFrame({0: pd.Series(data)})
|
||||
result = pd.DataFrame(index=df.index)
|
||||
|
||||
key = full_indexer(df)
|
||||
result.loc[key, 0] = df[0]
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_setitem_with_expansion_row(self, data, na_value):
|
||||
df = pd.DataFrame({"data": data[:1]})
|
||||
|
||||
df.loc[1, "data"] = data[1]
|
||||
expected = pd.DataFrame({"data": data[:2]})
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
# https://github.com/pandas-dev/pandas/issues/47284
|
||||
df.loc[2, "data"] = na_value
|
||||
expected = pd.DataFrame(
|
||||
{"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)}
|
||||
)
|
||||
tm.assert_frame_equal(df, expected)
|
||||
|
||||
def test_setitem_series(self, data, full_indexer):
|
||||
# https://github.com/pandas-dev/pandas/issues/32395
|
||||
ser = pd.Series(data, name="data")
|
||||
result = pd.Series(index=ser.index, dtype=object, name="data")
|
||||
|
||||
# because result has object dtype, the attempt to do setting inplace
|
||||
# is successful, and object dtype is retained
|
||||
key = full_indexer(ser)
|
||||
result.loc[key] = ser
|
||||
|
||||
expected = pd.Series(
|
||||
data.astype(object), index=ser.index, name="data", dtype=object
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_setitem_frame_2d_values(self, data):
|
||||
# GH#44514
|
||||
df = pd.DataFrame({"A": data})
|
||||
|
||||
# Avoiding using_array_manager fixture
|
||||
# https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410
|
||||
using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager)
|
||||
using_copy_on_write = pd.options.mode.copy_on_write
|
||||
|
||||
blk_data = df._mgr.arrays[0]
|
||||
|
||||
orig = df.copy()
|
||||
|
||||
df.iloc[:] = df.copy()
|
||||
tm.assert_frame_equal(df, orig)
|
||||
|
||||
df.iloc[:-1] = df.iloc[:-1].copy()
|
||||
tm.assert_frame_equal(df, orig)
|
||||
|
||||
df.iloc[:] = df.values
|
||||
tm.assert_frame_equal(df, orig)
|
||||
if not using_array_manager and not using_copy_on_write:
|
||||
# GH#33457 Check that this setting occurred in-place
|
||||
# FIXME(ArrayManager): this should work there too
|
||||
assert df._mgr.arrays[0] is blk_data
|
||||
|
||||
df.iloc[:-1] = df.values[:-1]
|
||||
tm.assert_frame_equal(df, orig)
|
||||
|
||||
def test_delitem_series(self, data):
|
||||
# GH#40763
|
||||
ser = pd.Series(data, name="data")
|
||||
|
||||
taker = np.arange(len(ser))
|
||||
taker = np.delete(taker, 1)
|
||||
|
||||
expected = ser[taker]
|
||||
del ser[1]
|
||||
tm.assert_series_equal(ser, expected)
|
||||
|
||||
def test_setitem_invalid(self, data, invalid_scalar):
|
||||
msg = "" # messages vary by subclass, so we do not test it
|
||||
with pytest.raises((ValueError, TypeError), match=msg):
|
||||
data[0] = invalid_scalar
|
||||
|
||||
with pytest.raises((ValueError, TypeError), match=msg):
|
||||
data[:] = invalid_scalar
|
||||
|
||||
def test_setitem_2d_values(self, data):
|
||||
# GH50085
|
||||
original = data.copy()
|
||||
df = pd.DataFrame({"a": data, "b": data})
|
||||
df.loc[[0, 1], :] = df.loc[[1, 0], :].values
|
||||
assert (df.loc[0, :] == original[1]).all()
|
||||
assert (df.loc[1, :] == original[0]).all()
|
Reference in New Issue
Block a user