Updated script that can be controled by Nodejs web app
This commit is contained in:
@@ -0,0 +1,265 @@
|
||||
import pickle
|
||||
import re
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.core.arrays.string_ import (
|
||||
StringArray,
|
||||
StringDtype,
|
||||
)
|
||||
from pandas.core.arrays.string_arrow import (
|
||||
ArrowStringArray,
|
||||
ArrowStringArrayNumpySemantics,
|
||||
)
|
||||
|
||||
|
||||
def test_eq_all_na():
|
||||
pytest.importorskip("pyarrow")
|
||||
a = pd.array([pd.NA, pd.NA], dtype=StringDtype("pyarrow"))
|
||||
result = a == a
|
||||
expected = pd.array([pd.NA, pd.NA], dtype="boolean[pyarrow]")
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_config(string_storage, request, using_infer_string):
|
||||
if using_infer_string and string_storage != "pyarrow_numpy":
|
||||
request.applymarker(pytest.mark.xfail(reason="infer string takes precedence"))
|
||||
with pd.option_context("string_storage", string_storage):
|
||||
assert StringDtype().storage == string_storage
|
||||
result = pd.array(["a", "b"])
|
||||
assert result.dtype.storage == string_storage
|
||||
|
||||
dtype = StringDtype(string_storage)
|
||||
expected = dtype.construct_array_type()._from_sequence(["a", "b"], dtype=dtype)
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
def test_config_bad_storage_raises():
|
||||
msg = re.escape("Value must be one of python|pyarrow")
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
pd.options.mode.string_storage = "foo"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("chunked", [True, False])
|
||||
@pytest.mark.parametrize("array", ["numpy", "pyarrow"])
|
||||
def test_constructor_not_string_type_raises(array, chunked, arrow_string_storage):
|
||||
pa = pytest.importorskip("pyarrow")
|
||||
|
||||
array = pa if array in arrow_string_storage else np
|
||||
|
||||
arr = array.array([1, 2, 3])
|
||||
if chunked:
|
||||
if array is np:
|
||||
pytest.skip("chunked not applicable to numpy array")
|
||||
arr = pa.chunked_array(arr)
|
||||
if array is np:
|
||||
msg = "Unsupported type '<class 'numpy.ndarray'>' for ArrowExtensionArray"
|
||||
else:
|
||||
msg = re.escape(
|
||||
"ArrowStringArray requires a PyArrow (chunked) array of large_string type"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
ArrowStringArray(arr)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("chunked", [True, False])
|
||||
def test_constructor_not_string_type_value_dictionary_raises(chunked):
|
||||
pa = pytest.importorskip("pyarrow")
|
||||
|
||||
arr = pa.array([1, 2, 3], pa.dictionary(pa.int32(), pa.int32()))
|
||||
if chunked:
|
||||
arr = pa.chunked_array(arr)
|
||||
|
||||
msg = re.escape(
|
||||
"ArrowStringArray requires a PyArrow (chunked) array of large_string type"
|
||||
)
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
ArrowStringArray(arr)
|
||||
|
||||
|
||||
@pytest.mark.xfail(
|
||||
reason="dict conversion does not seem to be implemented for large string in arrow"
|
||||
)
|
||||
@pytest.mark.parametrize("chunked", [True, False])
|
||||
def test_constructor_valid_string_type_value_dictionary(chunked):
|
||||
pa = pytest.importorskip("pyarrow")
|
||||
|
||||
arr = pa.array(["1", "2", "3"], pa.large_string()).dictionary_encode()
|
||||
if chunked:
|
||||
arr = pa.chunked_array(arr)
|
||||
|
||||
arr = ArrowStringArray(arr)
|
||||
assert pa.types.is_string(arr._pa_array.type.value_type)
|
||||
|
||||
|
||||
def test_constructor_from_list():
|
||||
# GH#27673
|
||||
pytest.importorskip("pyarrow")
|
||||
result = pd.Series(["E"], dtype=StringDtype(storage="pyarrow"))
|
||||
assert isinstance(result.dtype, StringDtype)
|
||||
assert result.dtype.storage == "pyarrow"
|
||||
|
||||
|
||||
def test_from_sequence_wrong_dtype_raises(using_infer_string):
|
||||
pytest.importorskip("pyarrow")
|
||||
with pd.option_context("string_storage", "python"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string[python]")
|
||||
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype="string[pyarrow]")
|
||||
|
||||
if not using_infer_string:
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
with pd.option_context("string_storage", "python"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
if not using_infer_string:
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
ArrowStringArray._from_sequence(
|
||||
["a", None, "c"], dtype=StringDtype("python")
|
||||
)
|
||||
|
||||
ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype("pyarrow"))
|
||||
|
||||
with pd.option_context("string_storage", "python"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string")
|
||||
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string[python]")
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype="string[pyarrow]")
|
||||
|
||||
if not using_infer_string:
|
||||
with pd.option_context("string_storage", "python"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
if not using_infer_string:
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
with pd.option_context("string_storage", "pyarrow"):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
|
||||
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype("python"))
|
||||
|
||||
with pytest.raises(AssertionError, match=None):
|
||||
StringArray._from_sequence(["a", None, "c"], dtype=StringDtype("pyarrow"))
|
||||
|
||||
|
||||
@td.skip_if_installed("pyarrow")
|
||||
def test_pyarrow_not_installed_raises():
|
||||
msg = re.escape("pyarrow>=10.0.1 is required for PyArrow backed")
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
StringDtype(storage="pyarrow")
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
ArrowStringArray([])
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
ArrowStringArrayNumpySemantics([])
|
||||
|
||||
with pytest.raises(ImportError, match=msg):
|
||||
ArrowStringArray._from_sequence(["a", None, "b"])
|
||||
|
||||
|
||||
@pytest.mark.parametrize("multiple_chunks", [False, True])
|
||||
@pytest.mark.parametrize(
|
||||
"key, value, expected",
|
||||
[
|
||||
(-1, "XX", ["a", "b", "c", "d", "XX"]),
|
||||
(1, "XX", ["a", "XX", "c", "d", "e"]),
|
||||
(1, None, ["a", None, "c", "d", "e"]),
|
||||
(1, pd.NA, ["a", None, "c", "d", "e"]),
|
||||
([1, 3], "XX", ["a", "XX", "c", "XX", "e"]),
|
||||
([1, 3], ["XX", "YY"], ["a", "XX", "c", "YY", "e"]),
|
||||
([1, 3], ["XX", None], ["a", "XX", "c", None, "e"]),
|
||||
([1, 3], ["XX", pd.NA], ["a", "XX", "c", None, "e"]),
|
||||
([0, -1], ["XX", "YY"], ["XX", "b", "c", "d", "YY"]),
|
||||
([-1, 0], ["XX", "YY"], ["YY", "b", "c", "d", "XX"]),
|
||||
(slice(3, None), "XX", ["a", "b", "c", "XX", "XX"]),
|
||||
(slice(2, 4), ["XX", "YY"], ["a", "b", "XX", "YY", "e"]),
|
||||
(slice(3, 1, -1), ["XX", "YY"], ["a", "b", "YY", "XX", "e"]),
|
||||
(slice(None), "XX", ["XX", "XX", "XX", "XX", "XX"]),
|
||||
([False, True, False, True, False], ["XX", "YY"], ["a", "XX", "c", "YY", "e"]),
|
||||
],
|
||||
)
|
||||
def test_setitem(multiple_chunks, key, value, expected):
|
||||
pa = pytest.importorskip("pyarrow")
|
||||
|
||||
result = pa.array(list("abcde"))
|
||||
expected = pa.array(expected)
|
||||
|
||||
if multiple_chunks:
|
||||
result = pa.chunked_array([result[:3], result[3:]])
|
||||
expected = pa.chunked_array([expected[:3], expected[3:]])
|
||||
|
||||
result = ArrowStringArray(result)
|
||||
expected = ArrowStringArray(expected)
|
||||
|
||||
result[key] = value
|
||||
tm.assert_equal(result, expected)
|
||||
|
||||
|
||||
def test_setitem_invalid_indexer_raises():
|
||||
pa = pytest.importorskip("pyarrow")
|
||||
|
||||
arr = ArrowStringArray(pa.array(list("abcde")))
|
||||
|
||||
with pytest.raises(IndexError, match=None):
|
||||
arr[5] = "foo"
|
||||
|
||||
with pytest.raises(IndexError, match=None):
|
||||
arr[-6] = "foo"
|
||||
|
||||
with pytest.raises(IndexError, match=None):
|
||||
arr[[0, 5]] = "foo"
|
||||
|
||||
with pytest.raises(IndexError, match=None):
|
||||
arr[[0, -6]] = "foo"
|
||||
|
||||
with pytest.raises(IndexError, match=None):
|
||||
arr[[True, True, False]] = "foo"
|
||||
|
||||
with pytest.raises(ValueError, match=None):
|
||||
arr[[0, 1]] = ["foo", "bar", "baz"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", ["string[pyarrow]", "string[pyarrow_numpy]"])
|
||||
def test_pickle_roundtrip(dtype):
|
||||
# GH 42600
|
||||
pytest.importorskip("pyarrow")
|
||||
expected = pd.Series(range(10), dtype=dtype)
|
||||
expected_sliced = expected.head(2)
|
||||
full_pickled = pickle.dumps(expected)
|
||||
sliced_pickled = pickle.dumps(expected_sliced)
|
||||
|
||||
assert len(full_pickled) > len(sliced_pickled)
|
||||
|
||||
result = pickle.loads(full_pickled)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
result_sliced = pickle.loads(sliced_pickled)
|
||||
tm.assert_series_equal(result_sliced, expected_sliced)
|
||||
|
||||
|
||||
def test_string_dtype_error_message():
|
||||
# GH#55051
|
||||
pytest.importorskip("pyarrow")
|
||||
msg = "Storage must be 'python', 'pyarrow' or 'pyarrow_numpy'."
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
StringDtype("bla")
|
Reference in New Issue
Block a user