Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,98 @@
"""
Plotting public API.
Authors of third-party plotting backends should implement a module with a
public ``plot(data, kind, **kwargs)``. The parameter `data` will contain
the data structure and can be a `Series` or a `DataFrame`. For example,
for ``df.plot()`` the parameter `data` will contain the DataFrame `df`.
In some cases, the data structure is transformed before being sent to
the backend (see PlotAccessor.__call__ in pandas/plotting/_core.py for
the exact transformations).
The parameter `kind` will be one of:
- line
- bar
- barh
- box
- hist
- kde
- area
- pie
- scatter
- hexbin
See the pandas API reference for documentation on each kind of plot.
Any other keyword argument is currently assumed to be backend specific,
but some parameters may be unified and added to the signature in the
future (e.g. `title` which should be useful for any backend).
Currently, all the Matplotlib functions in pandas are accessed through
the selected backend. For example, `pandas.plotting.boxplot` (equivalent
to `DataFrame.boxplot`) is also accessed in the selected backend. This
is expected to change, and the exact API is under discussion. But with
the current version, backends are expected to implement the next functions:
- plot (describe above, used for `Series.plot` and `DataFrame.plot`)
- hist_series and hist_frame (for `Series.hist` and `DataFrame.hist`)
- boxplot (`pandas.plotting.boxplot(df)` equivalent to `DataFrame.boxplot`)
- boxplot_frame and boxplot_frame_groupby
- register and deregister (register converters for the tick formats)
- Plots not called as `Series` and `DataFrame` methods:
- table
- andrews_curves
- autocorrelation_plot
- bootstrap_plot
- lag_plot
- parallel_coordinates
- radviz
- scatter_matrix
Use the code in pandas/plotting/_matplotib.py and
https://github.com/pyviz/hvplot as a reference on how to write a backend.
For the discussion about the API see
https://github.com/pandas-dev/pandas/issues/26747.
"""
from pandas.plotting._core import (
PlotAccessor,
boxplot,
boxplot_frame,
boxplot_frame_groupby,
hist_frame,
hist_series,
)
from pandas.plotting._misc import (
andrews_curves,
autocorrelation_plot,
bootstrap_plot,
deregister as deregister_matplotlib_converters,
lag_plot,
parallel_coordinates,
plot_params,
radviz,
register as register_matplotlib_converters,
scatter_matrix,
table,
)
__all__ = [
"PlotAccessor",
"boxplot",
"boxplot_frame",
"boxplot_frame_groupby",
"hist_frame",
"hist_series",
"scatter_matrix",
"radviz",
"andrews_curves",
"bootstrap_plot",
"parallel_coordinates",
"lag_plot",
"autocorrelation_plot",
"table",
"plot_params",
"register_matplotlib_converters",
"deregister_matplotlib_converters",
]

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,93 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from pandas.plotting._matplotlib.boxplot import (
BoxPlot,
boxplot,
boxplot_frame,
boxplot_frame_groupby,
)
from pandas.plotting._matplotlib.converter import (
deregister,
register,
)
from pandas.plotting._matplotlib.core import (
AreaPlot,
BarhPlot,
BarPlot,
HexBinPlot,
LinePlot,
PiePlot,
ScatterPlot,
)
from pandas.plotting._matplotlib.hist import (
HistPlot,
KdePlot,
hist_frame,
hist_series,
)
from pandas.plotting._matplotlib.misc import (
andrews_curves,
autocorrelation_plot,
bootstrap_plot,
lag_plot,
parallel_coordinates,
radviz,
scatter_matrix,
)
from pandas.plotting._matplotlib.tools import table
if TYPE_CHECKING:
from pandas.plotting._matplotlib.core import MPLPlot
PLOT_CLASSES: dict[str, type[MPLPlot]] = {
"line": LinePlot,
"bar": BarPlot,
"barh": BarhPlot,
"box": BoxPlot,
"hist": HistPlot,
"kde": KdePlot,
"area": AreaPlot,
"pie": PiePlot,
"scatter": ScatterPlot,
"hexbin": HexBinPlot,
}
def plot(data, kind, **kwargs):
# Importing pyplot at the top of the file (before the converters are
# registered) causes problems in matplotlib 2 (converters seem to not
# work)
import matplotlib.pyplot as plt
if kwargs.pop("reuse_plot", False):
ax = kwargs.get("ax")
if ax is None and len(plt.get_fignums()) > 0:
with plt.rc_context():
ax = plt.gca()
kwargs["ax"] = getattr(ax, "left_ax", ax)
plot_obj = PLOT_CLASSES[kind](data, **kwargs)
plot_obj.generate()
plot_obj.draw()
return plot_obj.result
__all__ = [
"plot",
"hist_series",
"hist_frame",
"boxplot",
"boxplot_frame",
"boxplot_frame_groupby",
"table",
"andrews_curves",
"autocorrelation_plot",
"bootstrap_plot",
"lag_plot",
"parallel_coordinates",
"radviz",
"scatter_matrix",
"register",
"deregister",
]

View File

@ -0,0 +1,572 @@
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Literal,
NamedTuple,
)
import warnings
from matplotlib.artist import setp
import numpy as np
from pandas._libs import lib
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import is_dict_like
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.dtypes.missing import remove_na_arraylike
import pandas as pd
import pandas.core.common as com
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
)
if TYPE_CHECKING:
from collections.abc import Collection
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from pandas._typing import MatplotlibColor
def _set_ticklabels(ax: Axes, labels: list[str], is_vertical: bool, **kwargs) -> None:
"""Set the tick labels of a given axis.
Due to https://github.com/matplotlib/matplotlib/pull/17266, we need to handle the
case of repeated ticks (due to `FixedLocator`) and thus we duplicate the number of
labels.
"""
ticks = ax.get_xticks() if is_vertical else ax.get_yticks()
if len(ticks) != len(labels):
i, remainder = divmod(len(ticks), len(labels))
assert remainder == 0, remainder
labels *= i
if is_vertical:
ax.set_xticklabels(labels, **kwargs)
else:
ax.set_yticklabels(labels, **kwargs)
class BoxPlot(LinePlot):
@property
def _kind(self) -> Literal["box"]:
return "box"
_layout_type = "horizontal"
_valid_return_types = (None, "axes", "dict", "both")
class BP(NamedTuple):
# namedtuple to hold results
ax: Axes
lines: dict[str, list[Line2D]]
def __init__(self, data, return_type: str = "axes", **kwargs) -> None:
if return_type not in self._valid_return_types:
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
self.return_type = return_type
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
if self.subplots:
# Disable label ax sharing. Otherwise, all subplots shows last
# column label
if self.orientation == "vertical":
self.sharex = False
else:
self.sharey = False
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
@classmethod
def _plot( # type: ignore[override]
cls, ax: Axes, y: np.ndarray, column_num=None, return_type: str = "axes", **kwds
):
ys: np.ndarray | list[np.ndarray]
if y.ndim == 2:
ys = [remove_na_arraylike(v) for v in y]
# Boxplot fails with empty arrays, so need to add a NaN
# if any cols are empty
# GH 8181
ys = [v if v.size > 0 else np.array([np.nan]) for v in ys]
else:
ys = remove_na_arraylike(y)
bp = ax.boxplot(ys, **kwds)
if return_type == "dict":
return bp, bp
elif return_type == "both":
return cls.BP(ax=ax, lines=bp), bp
else:
return ax, bp
def _validate_color_args(self, color, colormap):
if color is lib.no_default:
return None
if colormap is not None:
warnings.warn(
"'color' and 'colormap' cannot be used "
"simultaneously. Using 'color'",
stacklevel=find_stack_level(),
)
if isinstance(color, dict):
valid_keys = ["boxes", "whiskers", "medians", "caps"]
for key in color:
if key not in valid_keys:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
return color
@cache_readonly
def _color_attrs(self):
# get standard colors for default
# use 2 colors by default, for box/whisker and median
# flier colors isn't needed here
# because it can be specified by ``sym`` kw
return get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
@cache_readonly
def _boxes_c(self):
return self._color_attrs[0]
@cache_readonly
def _whiskers_c(self):
return self._color_attrs[0]
@cache_readonly
def _medians_c(self):
return self._color_attrs[2]
@cache_readonly
def _caps_c(self):
return self._color_attrs[0]
def _get_colors(
self,
num_colors=None,
color_kwds: dict[str, MatplotlibColor]
| MatplotlibColor
| Collection[MatplotlibColor]
| None = "color",
) -> None:
pass
def maybe_color_bp(self, bp) -> None:
if isinstance(self.color, dict):
boxes = self.color.get("boxes", self._boxes_c)
whiskers = self.color.get("whiskers", self._whiskers_c)
medians = self.color.get("medians", self._medians_c)
caps = self.color.get("caps", self._caps_c)
else:
# Other types are forwarded to matplotlib
# If None, use default colors
boxes = self.color or self._boxes_c
whiskers = self.color or self._whiskers_c
medians = self.color or self._medians_c
caps = self.color or self._caps_c
color_tup = (boxes, whiskers, medians, caps)
maybe_color_bp(bp, color_tup=color_tup, **self.kwds)
def _make_plot(self, fig: Figure) -> None:
if self.subplots:
self._return_obj = pd.Series(dtype=object)
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
# error: Argument "data" to "_iter_data" of "MPLPlot" has
# incompatible type "object"; expected "DataFrame |
# dict[Hashable, Series | DataFrame]"
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
ax = self._get_ax(i)
kwds = self.kwds.copy()
# When by is applied, show title for subplots to know which group it is
# just like df.boxplot, and need to apply T on y to provide right input
if self.by is not None:
y = y.T
ax.set_title(pprint_thing(label))
# When `by` is assigned, the ticklabels will become unique grouped
# values, instead of label which is used as subtitle in this case.
# error: "Index" has no attribute "levels"; maybe "nlevels"?
levels = self.data.columns.levels # type: ignore[attr-defined]
ticklabels = [pprint_thing(col) for col in levels[0]]
else:
ticklabels = [pprint_thing(label)]
ret, bp = self._plot(
ax, y, column_num=i, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj[label] = ret
_set_ticklabels(
ax=ax, labels=ticklabels, is_vertical=self.orientation == "vertical"
)
else:
y = self.data.values.T
ax = self._get_ax(0)
kwds = self.kwds.copy()
ret, bp = self._plot(
ax, y, column_num=0, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj = ret
labels = [pprint_thing(left) for left in self.data.columns]
if not self.use_index:
labels = [pprint_thing(key) for key in range(len(labels))]
_set_ticklabels(
ax=ax, labels=labels, is_vertical=self.orientation == "vertical"
)
def _make_legend(self) -> None:
pass
def _post_plot_logic(self, ax: Axes, data) -> None:
# GH 45465: make sure that the boxplot doesn't ignore xlabel/ylabel
if self.xlabel:
ax.set_xlabel(pprint_thing(self.xlabel))
if self.ylabel:
ax.set_ylabel(pprint_thing(self.ylabel))
@property
def orientation(self) -> Literal["horizontal", "vertical"]:
if self.kwds.get("vert", True):
return "vertical"
else:
return "horizontal"
@property
def result(self):
if self.return_type is None:
return super().result
else:
return self._return_obj
def maybe_color_bp(bp, color_tup, **kwds) -> None:
# GH#30346, when users specifying those arguments explicitly, our defaults
# for these four kwargs should be overridden; if not, use Pandas settings
if not kwds.get("boxprops"):
setp(bp["boxes"], color=color_tup[0], alpha=1)
if not kwds.get("whiskerprops"):
setp(bp["whiskers"], color=color_tup[1], alpha=1)
if not kwds.get("medianprops"):
setp(bp["medians"], color=color_tup[2], alpha=1)
if not kwds.get("capprops"):
setp(bp["caps"], color=color_tup[3], alpha=1)
def _grouped_plot_by_column(
plotf,
data,
columns=None,
by=None,
numeric_only: bool = True,
grid: bool = False,
figsize: tuple[float, float] | None = None,
ax=None,
layout=None,
return_type=None,
**kwargs,
):
grouped = data.groupby(by, observed=False)
if columns is None:
if not isinstance(by, (list, tuple)):
by = [by]
columns = data._get_numeric_data().columns.difference(by)
naxes = len(columns)
fig, axes = create_subplots(
naxes=naxes,
sharex=kwargs.pop("sharex", True),
sharey=kwargs.pop("sharey", True),
figsize=figsize,
ax=ax,
layout=layout,
)
_axes = flatten_axes(axes)
# GH 45465: move the "by" label based on "vert"
xlabel, ylabel = kwargs.pop("xlabel", None), kwargs.pop("ylabel", None)
if kwargs.get("vert", True):
xlabel = xlabel or by
else:
ylabel = ylabel or by
ax_values = []
for i, col in enumerate(columns):
ax = _axes[i]
gp_col = grouped[col]
keys, values = zip(*gp_col)
re_plotf = plotf(keys, values, ax, xlabel=xlabel, ylabel=ylabel, **kwargs)
ax.set_title(col)
ax_values.append(re_plotf)
ax.grid(grid)
result = pd.Series(ax_values, index=columns, copy=False)
# Return axes in multiplot case, maybe revisit later # 985
if return_type is None:
result = axes
byline = by[0] if len(by) == 1 else by
fig.suptitle(f"Boxplot grouped by {byline}")
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
return result
def boxplot(
data,
column=None,
by=None,
ax=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
figsize: tuple[float, float] | None = None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
# validate return_type:
if return_type not in BoxPlot._valid_return_types:
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
if isinstance(data, ABCSeries):
data = data.to_frame("x")
column = "x"
def _get_colors():
# num_colors=3 is required as method maybe_color_bp takes the colors
# in positions 0 and 2.
# if colors not provided, use same defaults as DataFrame.plot.box
result = get_standard_colors(num_colors=3)
result = np.take(result, [0, 0, 2])
result = np.append(result, "k")
colors = kwds.pop("color", None)
if colors:
if is_dict_like(colors):
# replace colors in result array with user-specified colors
# taken from the colors dict parameter
# "boxes" value placed in position 0, "whiskers" in 1, etc.
valid_keys = ["boxes", "whiskers", "medians", "caps"]
key_to_index = dict(zip(valid_keys, range(4)))
for key, value in colors.items():
if key in valid_keys:
result[key_to_index[key]] = value
else:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
else:
result.fill(colors)
return result
def plot_group(keys, values, ax: Axes, **kwds):
# GH 45465: xlabel/ylabel need to be popped out before plotting happens
xlabel, ylabel = kwds.pop("xlabel", None), kwds.pop("ylabel", None)
if xlabel:
ax.set_xlabel(pprint_thing(xlabel))
if ylabel:
ax.set_ylabel(pprint_thing(ylabel))
keys = [pprint_thing(x) for x in keys]
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
bp = ax.boxplot(values, **kwds)
if fontsize is not None:
ax.tick_params(axis="both", labelsize=fontsize)
# GH 45465: x/y are flipped when "vert" changes
_set_ticklabels(
ax=ax, labels=keys, is_vertical=kwds.get("vert", True), rotation=rot
)
maybe_color_bp(bp, color_tup=colors, **kwds)
# Return axes in multiplot case, maybe revisit later # 985
if return_type == "dict":
return bp
elif return_type == "both":
return BoxPlot.BP(ax=ax, lines=bp)
else:
return ax
colors = _get_colors()
if column is None:
columns = None
elif isinstance(column, (list, tuple)):
columns = column
else:
columns = [column]
if by is not None:
# Prefer array return type for 2-D plots to match the subplot layout
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
result = _grouped_plot_by_column(
plot_group,
data,
columns=columns,
by=by,
grid=grid,
figsize=figsize,
ax=ax,
layout=layout,
return_type=return_type,
**kwds,
)
else:
if return_type is None:
return_type = "axes"
if layout is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
if ax is None:
rc = {"figure.figsize": figsize} if figsize is not None else {}
with plt.rc_context(rc):
ax = plt.gca()
data = data._get_numeric_data()
naxes = len(data.columns)
if naxes == 0:
raise ValueError(
"boxplot method requires numerical columns, nothing to plot."
)
if columns is None:
columns = data.columns
else:
data = data[columns]
result = plot_group(columns, data.values.T, ax, **kwds)
ax.grid(grid)
return result
def boxplot_frame(
self,
column=None,
by=None,
ax=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
figsize: tuple[float, float] | None = None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
ax = boxplot(
self,
column=column,
by=by,
ax=ax,
fontsize=fontsize,
grid=grid,
rot=rot,
figsize=figsize,
layout=layout,
return_type=return_type,
**kwds,
)
plt.draw_if_interactive()
return ax
def boxplot_frame_groupby(
grouped,
subplots: bool = True,
column=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
ax=None,
figsize: tuple[float, float] | None = None,
layout=None,
sharex: bool = False,
sharey: bool = True,
**kwds,
):
if subplots is True:
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes,
squeeze=False,
ax=ax,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
axes = flatten_axes(axes)
ret = pd.Series(dtype=object)
for (key, group), ax in zip(grouped, axes):
d = group.boxplot(
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
)
ax.set_title(pprint_thing(key))
ret.loc[key] = d
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
else:
keys, frames = zip(*grouped)
if grouped.axis == 0:
df = pd.concat(frames, keys=keys, axis=1)
elif len(frames) > 1:
df = frames[0].join(frames[1::])
else:
df = frames[0]
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
# is assigned, and in this case, since `df` here becomes MI after groupby,
# so we need to couple the keys (grouped values) and column (original df
# column) together to search for subset to plot
if column is not None:
column = com.convert_to_list_like(column)
multi_key = pd.MultiIndex.from_product([keys, column])
column = list(multi_key.values)
ret = df.boxplot(
column=column,
fontsize=fontsize,
rot=rot,
grid=grid,
ax=ax,
figsize=figsize,
layout=layout,
**kwds,
)
return ret

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,142 @@
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas.core.dtypes.missing import remove_na_arraylike
from pandas import (
MultiIndex,
concat,
)
from pandas.plotting._matplotlib.misc import unpack_single_str_list
if TYPE_CHECKING:
from collections.abc import Hashable
from pandas._typing import IndexLabel
from pandas import (
DataFrame,
Series,
)
def create_iter_data_given_by(
data: DataFrame, kind: str = "hist"
) -> dict[Hashable, DataFrame | Series]:
"""
Create data for iteration given `by` is assigned or not, and it is only
used in both hist and boxplot.
If `by` is assigned, return a dictionary of DataFrames in which the key of
dictionary is the values in groups.
If `by` is not assigned, return input as is, and this preserves current
status of iter_data.
Parameters
----------
data : reformatted grouped data from `_compute_plot_data` method.
kind : str, plot kind. This function is only used for `hist` and `box` plots.
Returns
-------
iter_data : DataFrame or Dictionary of DataFrames
Examples
--------
If `by` is assigned:
>>> import numpy as np
>>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
>>> mi = pd.MultiIndex.from_tuples(tuples)
>>> value = [[1, 3, np.nan, np.nan],
... [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
>>> data = pd.DataFrame(value, columns=mi)
>>> create_iter_data_given_by(data)
{'h1': h1
a b
0 1.0 3.0
1 3.0 4.0
2 NaN NaN, 'h2': h2
a b
0 NaN NaN
1 NaN NaN
2 5.0 6.0}
"""
# For `hist` plot, before transformation, the values in level 0 are values
# in groups and subplot titles, and later used for column subselection and
# iteration; For `box` plot, values in level 1 are column names to show,
# and are used for iteration and as subplots titles.
if kind == "hist":
level = 0
else:
level = 1
# Select sub-columns based on the value of level of MI, and if `by` is
# assigned, data must be a MI DataFrame
assert isinstance(data.columns, MultiIndex)
return {
col: data.loc[:, data.columns.get_level_values(level) == col]
for col in data.columns.levels[level]
}
def reconstruct_data_with_by(
data: DataFrame, by: IndexLabel, cols: IndexLabel
) -> DataFrame:
"""
Internal function to group data, and reassign multiindex column names onto the
result in order to let grouped data be used in _compute_plot_data method.
Parameters
----------
data : Original DataFrame to plot
by : grouped `by` parameter selected by users
cols : columns of data set (excluding columns used in `by`)
Returns
-------
Output is the reconstructed DataFrame with MultiIndex columns. The first level
of MI is unique values of groups, and second level of MI is the columns
selected by users.
Examples
--------
>>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
>>> df = pd.DataFrame(d)
>>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
h1 h2
a b a b
0 1.0 3.0 NaN NaN
1 3.0 4.0 NaN NaN
2 NaN NaN 5.0 6.0
"""
by_modified = unpack_single_str_list(by)
grouped = data.groupby(by_modified)
data_list = []
for key, group in grouped:
# error: List item 1 has incompatible type "Union[Hashable,
# Sequence[Hashable]]"; expected "Iterable[Hashable]"
columns = MultiIndex.from_product([[key], cols]) # type: ignore[list-item]
sub_group = group[cols]
sub_group.columns = columns
data_list.append(sub_group)
data = concat(data_list, axis=1)
return data
def reformat_hist_y_given_by(y: np.ndarray, by: IndexLabel | None) -> np.ndarray:
"""Internal function to reformat y given `by` is applied or not for hist plot.
If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
will take place and input y is multi-dimensional array.
"""
if by is not None and len(y.shape) > 1:
return np.array([remove_na_arraylike(col) for col in y.T]).T
return remove_na_arraylike(y)

View File

@ -0,0 +1,581 @@
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Literal,
final,
)
import numpy as np
from pandas.core.dtypes.common import (
is_integer,
is_list_like,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndex,
)
from pandas.core.dtypes.missing import (
isna,
remove_na_arraylike,
)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import (
create_iter_data_given_by,
reformat_hist_y_given_by,
)
from pandas.plotting._matplotlib.misc import unpack_single_str_list
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
set_ticks_props,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas._typing import PlottingOrientation
from pandas import (
DataFrame,
Series,
)
class HistPlot(LinePlot):
@property
def _kind(self) -> Literal["hist", "kde"]:
return "hist"
def __init__(
self,
data,
bins: int | np.ndarray | list[np.ndarray] = 10,
bottom: int | np.ndarray = 0,
*,
range=None,
weights=None,
**kwargs,
) -> None:
if is_list_like(bottom):
bottom = np.array(bottom)
self.bottom = bottom
self._bin_range = range
self.weights = weights
self.xlabel = kwargs.get("xlabel")
self.ylabel = kwargs.get("ylabel")
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
self.bins = self._adjust_bins(bins)
def _adjust_bins(self, bins: int | np.ndarray | list[np.ndarray]):
if is_integer(bins):
if self.by is not None:
by_modified = unpack_single_str_list(self.by)
grouped = self.data.groupby(by_modified)[self.columns]
bins = [self._calculate_bins(group, bins) for key, group in grouped]
else:
bins = self._calculate_bins(self.data, bins)
return bins
def _calculate_bins(self, data: Series | DataFrame, bins) -> np.ndarray:
"""Calculate bins given data"""
nd_values = data.infer_objects(copy=False)._get_numeric_data()
values = np.ravel(nd_values)
values = values[~isna(values)]
hist, bins = np.histogram(values, bins=bins, range=self._bin_range)
return bins
# error: Signature of "_plot" incompatible with supertype "LinePlot"
@classmethod
def _plot( # type: ignore[override]
cls,
ax: Axes,
y: np.ndarray,
style=None,
bottom: int | np.ndarray = 0,
column_num: int = 0,
stacking_id=None,
*,
bins,
**kwds,
):
if column_num == 0:
cls._initialize_stacker(ax, stacking_id, len(bins) - 1)
base = np.zeros(len(bins) - 1)
bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"])
# ignore style
n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds)
cls._update_stacker(ax, stacking_id, n)
return patches
def _make_plot(self, fig: Figure) -> None:
colors = self._get_colors()
stacking_id = self._get_stacking_id()
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
# error: Argument "data" to "_iter_data" of "MPLPlot" has incompatible
# type "object"; expected "DataFrame | dict[Hashable, Series | DataFrame]"
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
ax = self._get_ax(i)
kwds = self.kwds.copy()
if self.color is not None:
kwds["color"] = self.color
label = pprint_thing(label)
label = self._mark_right_label(label, index=i)
kwds["label"] = label
style, kwds = self._apply_style_colors(colors, kwds, i, label)
if style is not None:
kwds["style"] = style
self._make_plot_keywords(kwds, y)
# the bins is multi-dimension array now and each plot need only 1-d and
# when by is applied, label should be columns that are grouped
if self.by is not None:
kwds["bins"] = kwds["bins"][i]
kwds["label"] = self.columns
kwds.pop("color")
if self.weights is not None:
kwds["weights"] = type(self)._get_column_weights(self.weights, i, y)
y = reformat_hist_y_given_by(y, self.by)
artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds)
# when by is applied, show title for subplots to know which group it is
if self.by is not None:
ax.set_title(pprint_thing(label))
self._append_legend_handles_labels(artists[0], label)
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
"""merge BoxPlot/KdePlot properties to passed kwds"""
# y is required for KdePlot
kwds["bottom"] = self.bottom
kwds["bins"] = self.bins
@final
@staticmethod
def _get_column_weights(weights, i: int, y):
# We allow weights to be a multi-dimensional array, e.g. a (10, 2) array,
# and each sub-array (10,) will be called in each iteration. If users only
# provide 1D array, we assume the same weights is used for all iterations
if weights is not None:
if np.ndim(weights) != 1 and np.shape(weights)[-1] != 1:
try:
weights = weights[:, i]
except IndexError as err:
raise ValueError(
"weights must have the same shape as data, "
"or be a single column"
) from err
weights = weights[~isna(y)]
return weights
def _post_plot_logic(self, ax: Axes, data) -> None:
if self.orientation == "horizontal":
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
# type "Hashable"; expected "str"
ax.set_xlabel(
"Frequency"
if self.xlabel is None
else self.xlabel # type: ignore[arg-type]
)
ax.set_ylabel(self.ylabel) # type: ignore[arg-type]
else:
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
ax.set_ylabel(
"Frequency"
if self.ylabel is None
else self.ylabel # type: ignore[arg-type]
)
@property
def orientation(self) -> PlottingOrientation:
if self.kwds.get("orientation", None) == "horizontal":
return "horizontal"
else:
return "vertical"
class KdePlot(HistPlot):
@property
def _kind(self) -> Literal["kde"]:
return "kde"
@property
def orientation(self) -> Literal["vertical"]:
return "vertical"
def __init__(
self, data, bw_method=None, ind=None, *, weights=None, **kwargs
) -> None:
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
self.bw_method = bw_method
self.ind = ind
self.weights = weights
@staticmethod
def _get_ind(y: np.ndarray, ind):
if ind is None:
# np.nanmax() and np.nanmin() ignores the missing values
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
1000,
)
elif is_integer(ind):
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
ind,
)
return ind
@classmethod
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
def _plot( # type: ignore[override]
cls,
ax: Axes,
y: np.ndarray,
style=None,
bw_method=None,
ind=None,
column_num=None,
stacking_id: int | None = None,
**kwds,
):
from scipy.stats import gaussian_kde
y = remove_na_arraylike(y)
gkde = gaussian_kde(y, bw_method=bw_method)
y = gkde.evaluate(ind)
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
return lines
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
kwds["bw_method"] = self.bw_method
kwds["ind"] = type(self)._get_ind(y, ind=self.ind)
def _post_plot_logic(self, ax: Axes, data) -> None:
ax.set_ylabel("Density")
def _grouped_plot(
plotf,
data: Series | DataFrame,
column=None,
by=None,
numeric_only: bool = True,
figsize: tuple[float, float] | None = None,
sharex: bool = True,
sharey: bool = True,
layout=None,
rot: float = 0,
ax=None,
**kwargs,
):
# error: Non-overlapping equality check (left operand type: "Optional[Tuple[float,
# float]]", right operand type: "Literal['default']")
if figsize == "default": # type: ignore[comparison-overlap]
# allowed to specify mpl default with 'default'
raise ValueError(
"figsize='default' is no longer supported. "
"Specify figure size by tuple instead"
)
grouped = data.groupby(by)
if column is not None:
grouped = grouped[column]
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout
)
_axes = flatten_axes(axes)
for i, (key, group) in enumerate(grouped):
ax = _axes[i]
if numeric_only and isinstance(group, ABCDataFrame):
group = group._get_numeric_data()
plotf(group, ax, **kwargs)
ax.set_title(pprint_thing(key))
return fig, axes
def _grouped_hist(
data: Series | DataFrame,
column=None,
by=None,
ax=None,
bins: int = 50,
figsize: tuple[float, float] | None = None,
layout=None,
sharex: bool = False,
sharey: bool = False,
rot: float = 90,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
legend: bool = False,
**kwargs,
):
"""
Grouped histogram
Parameters
----------
data : Series/DataFrame
column : object, optional
by : object, optional
ax : axes, optional
bins : int, default 50
figsize : tuple, optional
layout : optional
sharex : bool, default False
sharey : bool, default False
rot : float, default 90
grid : bool, default True
legend: : bool, default False
kwargs : dict, keyword arguments passed to matplotlib.Axes.hist
Returns
-------
collection of Matplotlib Axes
"""
if legend:
assert "label" not in kwargs
if data.ndim == 1:
kwargs["label"] = data.name
elif column is None:
kwargs["label"] = data.columns
else:
kwargs["label"] = column
def plot_group(group, ax) -> None:
ax.hist(group.dropna().values, bins=bins, **kwargs)
if legend:
ax.legend()
if xrot is None:
xrot = rot
fig, axes = _grouped_plot(
plot_group,
data,
column=column,
by=by,
sharex=sharex,
sharey=sharey,
ax=ax,
figsize=figsize,
layout=layout,
rot=rot,
)
set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
maybe_adjust_figure(
fig, bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3
)
return axes
def hist_series(
self: Series,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
figsize: tuple[float, float] | None = None,
bins: int = 10,
legend: bool = False,
**kwds,
):
import matplotlib.pyplot as plt
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is None:
if kwds.get("layout", None) is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
# hack until the plotting interface is a bit more unified
fig = kwds.pop(
"figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)
)
if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()):
fig.set_size_inches(*figsize, forward=True)
if ax is None:
ax = fig.gca()
elif ax.get_figure() != fig:
raise AssertionError("passed axis not bound to passed figure")
values = self.dropna().values
if legend:
kwds["label"] = self.name
ax.hist(values, bins=bins, **kwds)
if legend:
ax.legend()
ax.grid(grid)
axes = np.array([ax])
# error: Argument 1 to "set_ticks_props" has incompatible type "ndarray[Any,
# dtype[Any]]"; expected "Axes | Sequence[Axes]"
set_ticks_props(
axes, # type: ignore[arg-type]
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
)
else:
if "figure" in kwds:
raise ValueError(
"Cannot pass 'figure' when using the "
"'by' argument, since a new 'Figure' instance will be created"
)
axes = _grouped_hist(
self,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
if hasattr(axes, "ndim"):
if axes.ndim == 1 and len(axes) == 1:
return axes[0]
return axes
def hist_frame(
data: DataFrame,
column=None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
ax=None,
sharex: bool = False,
sharey: bool = False,
figsize: tuple[float, float] | None = None,
layout=None,
bins: int = 10,
legend: bool = False,
**kwds,
):
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is not None:
axes = _grouped_hist(
data,
column=column,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
sharex=sharex,
sharey=sharey,
layout=layout,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
return axes
if column is not None:
if not isinstance(column, (list, np.ndarray, ABCIndex)):
column = [column]
data = data[column]
# GH32590
data = data.select_dtypes(
include=(np.number, "datetime64", "datetimetz"), exclude="timedelta"
)
naxes = len(data.columns)
if naxes == 0:
raise ValueError(
"hist method requires numerical or datetime columns, nothing to plot."
)
fig, axes = create_subplots(
naxes=naxes,
ax=ax,
squeeze=False,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
_axes = flatten_axes(axes)
can_set_label = "label" not in kwds
for i, col in enumerate(data.columns):
ax = _axes[i]
if legend and can_set_label:
kwds["label"] = col
ax.hist(data[col].dropna().values, bins=bins, **kwds)
ax.set_title(col)
ax.grid(grid)
if legend:
ax.legend()
set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
maybe_adjust_figure(fig, wspace=0.3, hspace=0.3)
return axes

View File

@ -0,0 +1,481 @@
from __future__ import annotations
import random
from typing import TYPE_CHECKING
from matplotlib import patches
import matplotlib.lines as mlines
import numpy as np
from pandas.core.dtypes.missing import notna
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
do_adjust_figure,
maybe_adjust_figure,
set_ticks_props,
)
if TYPE_CHECKING:
from collections.abc import Hashable
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas import (
DataFrame,
Index,
Series,
)
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax=None,
grid: bool = False,
diagonal: str = "hist",
marker: str = ".",
density_kwds=None,
hist_kwds=None,
range_padding: float = 0.05,
**kwds,
):
df = frame._get_numeric_data()
n = df.columns.size
naxes = n * n
fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)
# no gaps between subplots
maybe_adjust_figure(fig, wspace=0, hspace=0)
mask = notna(df)
marker = _get_marker_compat(marker)
hist_kwds = hist_kwds or {}
density_kwds = density_kwds or {}
# GH 14855
kwds.setdefault("edgecolors", "none")
boundaries_list = []
for a in df.columns:
values = df[a].values[mask[a].values]
rmin_, rmax_ = np.min(values), np.max(values)
rdelta_ext = (rmax_ - rmin_) * range_padding / 2
boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))
for i, a in enumerate(df.columns):
for j, b in enumerate(df.columns):
ax = axes[i, j]
if i == j:
values = df[a].values[mask[a].values]
# Deal with the diagonal by drawing a histogram there.
if diagonal == "hist":
ax.hist(values, **hist_kwds)
elif diagonal in ("kde", "density"):
from scipy.stats import gaussian_kde
y = values
gkde = gaussian_kde(y)
ind = np.linspace(y.min(), y.max(), 1000)
ax.plot(ind, gkde.evaluate(ind), **density_kwds)
ax.set_xlim(boundaries_list[i])
else:
common = (mask[a] & mask[b]).values
ax.scatter(
df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds
)
ax.set_xlim(boundaries_list[j])
ax.set_ylim(boundaries_list[i])
ax.set_xlabel(b)
ax.set_ylabel(a)
if j != 0:
ax.yaxis.set_visible(False)
if i != n - 1:
ax.xaxis.set_visible(False)
if len(df.columns) > 1:
lim1 = boundaries_list[0]
locs = axes[0][1].yaxis.get_majorticklocs()
locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
adj = (locs - lim1[0]) / (lim1[1] - lim1[0])
lim0 = axes[0][0].get_ylim()
adj = adj * (lim0[1] - lim0[0]) + lim0[0]
axes[0][0].yaxis.set_ticks(adj)
if np.all(locs == locs.astype(int)):
# if all ticks are int
locs = locs.astype(int)
axes[0][0].yaxis.set_ticklabels(locs)
set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
return axes
def _get_marker_compat(marker):
if marker not in mlines.lineMarkers:
return "o"
return marker
def radviz(
frame: DataFrame,
class_column,
ax: Axes | None = None,
color=None,
colormap=None,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
def normalize(series):
a = min(series)
b = max(series)
return (series - a) / (b - a)
n = len(frame)
classes = frame[class_column].drop_duplicates()
class_col = frame[class_column]
df = frame.drop(class_column, axis=1).apply(normalize)
if ax is None:
ax = plt.gca()
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
to_plot: dict[Hashable, list[list]] = {}
colors = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
for kls in classes:
to_plot[kls] = [[], []]
m = len(frame.columns) - 1
s = np.array(
[(np.cos(t), np.sin(t)) for t in [2 * np.pi * (i / m) for i in range(m)]]
)
for i in range(n):
row = df.iloc[i].values
row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
y = (s * row_).sum(axis=0) / row.sum()
kls = class_col.iat[i]
to_plot[kls][0].append(y[0])
to_plot[kls][1].append(y[1])
for i, kls in enumerate(classes):
ax.scatter(
to_plot[kls][0],
to_plot[kls][1],
color=colors[i],
label=pprint_thing(kls),
**kwds,
)
ax.legend()
ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor="none"))
for xy, name in zip(s, df.columns):
ax.add_patch(patches.Circle(xy, radius=0.025, facecolor="gray"))
if xy[0] < 0.0 and xy[1] < 0.0:
ax.text(
xy[0] - 0.025, xy[1] - 0.025, name, ha="right", va="top", size="small"
)
elif xy[0] < 0.0 <= xy[1]:
ax.text(
xy[0] - 0.025,
xy[1] + 0.025,
name,
ha="right",
va="bottom",
size="small",
)
elif xy[1] < 0.0 <= xy[0]:
ax.text(
xy[0] + 0.025, xy[1] - 0.025, name, ha="left", va="top", size="small"
)
elif xy[0] >= 0.0 and xy[1] >= 0.0:
ax.text(
xy[0] + 0.025, xy[1] + 0.025, name, ha="left", va="bottom", size="small"
)
ax.axis("equal")
return ax
def andrews_curves(
frame: DataFrame,
class_column,
ax: Axes | None = None,
samples: int = 200,
color=None,
colormap=None,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
def function(amplitudes):
def f(t):
x1 = amplitudes[0]
result = x1 / np.sqrt(2.0)
# Take the rest of the coefficients and resize them
# appropriately. Take a copy of amplitudes as otherwise numpy
# deletes the element from amplitudes itself.
coeffs = np.delete(np.copy(amplitudes), 0)
coeffs = np.resize(coeffs, (int((coeffs.size + 1) / 2), 2))
# Generate the harmonics and arguments for the sin and cos
# functions.
harmonics = np.arange(0, coeffs.shape[0]) + 1
trig_args = np.outer(harmonics, t)
result += np.sum(
coeffs[:, 0, np.newaxis] * np.sin(trig_args)
+ coeffs[:, 1, np.newaxis] * np.cos(trig_args),
axis=0,
)
return result
return f
n = len(frame)
class_col = frame[class_column]
classes = frame[class_column].drop_duplicates()
df = frame.drop(class_column, axis=1)
t = np.linspace(-np.pi, np.pi, samples)
used_legends: set[str] = set()
color_values = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
colors = dict(zip(classes, color_values))
if ax is None:
ax = plt.gca()
ax.set_xlim(-np.pi, np.pi)
for i in range(n):
row = df.iloc[i].values
f = function(row)
y = f(t)
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(t, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(t, y, color=colors[kls], **kwds)
ax.legend(loc="upper right")
ax.grid()
return ax
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure:
import matplotlib.pyplot as plt
# TODO: is the failure mentioned below still relevant?
# random.sample(ndarray, int) fails on python 3.3, sigh
data = list(series.values)
samplings = [random.sample(data, size) for _ in range(samples)]
means = np.array([np.mean(sampling) for sampling in samplings])
medians = np.array([np.median(sampling) for sampling in samplings])
midranges = np.array(
[(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]
)
if fig is None:
fig = plt.figure()
x = list(range(samples))
axes = []
ax1 = fig.add_subplot(2, 3, 1)
ax1.set_xlabel("Sample")
axes.append(ax1)
ax1.plot(x, means, **kwds)
ax2 = fig.add_subplot(2, 3, 2)
ax2.set_xlabel("Sample")
axes.append(ax2)
ax2.plot(x, medians, **kwds)
ax3 = fig.add_subplot(2, 3, 3)
ax3.set_xlabel("Sample")
axes.append(ax3)
ax3.plot(x, midranges, **kwds)
ax4 = fig.add_subplot(2, 3, 4)
ax4.set_xlabel("Mean")
axes.append(ax4)
ax4.hist(means, **kwds)
ax5 = fig.add_subplot(2, 3, 5)
ax5.set_xlabel("Median")
axes.append(ax5)
ax5.hist(medians, **kwds)
ax6 = fig.add_subplot(2, 3, 6)
ax6.set_xlabel("Midrange")
axes.append(ax6)
ax6.hist(midranges, **kwds)
for axis in axes:
plt.setp(axis.get_xticklabels(), fontsize=8)
plt.setp(axis.get_yticklabels(), fontsize=8)
if do_adjust_figure(fig):
plt.tight_layout()
return fig
def parallel_coordinates(
frame: DataFrame,
class_column,
cols=None,
ax: Axes | None = None,
color=None,
use_columns: bool = False,
xticks=None,
colormap=None,
axvlines: bool = True,
axvlines_kwds=None,
sort_labels: bool = False,
**kwds,
) -> Axes:
import matplotlib.pyplot as plt
if axvlines_kwds is None:
axvlines_kwds = {"linewidth": 1, "color": "black"}
n = len(frame)
classes = frame[class_column].drop_duplicates()
class_col = frame[class_column]
if cols is None:
df = frame.drop(class_column, axis=1)
else:
df = frame[cols]
used_legends: set[str] = set()
ncols = len(df.columns)
# determine values to use for xticks
x: list[int] | Index
if use_columns is True:
if not np.all(np.isreal(list(df.columns))):
raise ValueError("Columns must be numeric to be used as xticks")
x = df.columns
elif xticks is not None:
if not np.all(np.isreal(xticks)):
raise ValueError("xticks specified must be numeric")
if len(xticks) != ncols:
raise ValueError("Length of xticks must match number of columns")
x = xticks
else:
x = list(range(ncols))
if ax is None:
ax = plt.gca()
color_values = get_standard_colors(
num_colors=len(classes), colormap=colormap, color_type="random", color=color
)
if sort_labels:
classes = sorted(classes)
color_values = sorted(color_values)
colors = dict(zip(classes, color_values))
for i in range(n):
y = df.iloc[i].values
kls = class_col.iat[i]
label = pprint_thing(kls)
if label not in used_legends:
used_legends.add(label)
ax.plot(x, y, color=colors[kls], label=label, **kwds)
else:
ax.plot(x, y, color=colors[kls], **kwds)
if axvlines:
for i in x:
ax.axvline(i, **axvlines_kwds)
ax.set_xticks(x)
ax.set_xticklabels(df.columns)
ax.set_xlim(x[0], x[-1])
ax.legend(loc="upper right")
ax.grid()
return ax
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
# workaround because `c='b'` is hardcoded in matplotlib's scatter method
import matplotlib.pyplot as plt
kwds.setdefault("c", plt.rcParams["patch.facecolor"])
data = series.values
y1 = data[:-lag]
y2 = data[lag:]
if ax is None:
ax = plt.gca()
ax.set_xlabel("y(t)")
ax.set_ylabel(f"y(t + {lag})")
ax.scatter(y1, y2, **kwds)
return ax
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwds) -> Axes:
import matplotlib.pyplot as plt
n = len(series)
data = np.asarray(series)
if ax is None:
ax = plt.gca()
ax.set_xlim(1, n)
ax.set_ylim(-1.0, 1.0)
mean = np.mean(data)
c0 = np.sum((data - mean) ** 2) / n
def r(h):
return ((data[: n - h] - mean) * (data[h:] - mean)).sum() / n / c0
x = np.arange(n) + 1
y = [r(loc) for loc in x]
z95 = 1.959963984540054
z99 = 2.5758293035489004
ax.axhline(y=z99 / np.sqrt(n), linestyle="--", color="grey")
ax.axhline(y=z95 / np.sqrt(n), color="grey")
ax.axhline(y=0.0, color="black")
ax.axhline(y=-z95 / np.sqrt(n), color="grey")
ax.axhline(y=-z99 / np.sqrt(n), linestyle="--", color="grey")
ax.set_xlabel("Lag")
ax.set_ylabel("Autocorrelation")
ax.plot(x, y, **kwds)
if "label" in kwds:
ax.legend()
ax.grid()
return ax
def unpack_single_str_list(keys):
# GH 42795
if isinstance(keys, list) and len(keys) == 1:
keys = keys[0]
return keys

View File

@ -0,0 +1,278 @@
from __future__ import annotations
from collections.abc import (
Collection,
Iterator,
)
import itertools
from typing import (
TYPE_CHECKING,
cast,
)
import warnings
import matplotlib as mpl
import matplotlib.colors
import numpy as np
from pandas._typing import MatplotlibColor as Color
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import is_list_like
import pandas.core.common as com
if TYPE_CHECKING:
from matplotlib.colors import Colormap
def get_standard_colors(
num_colors: int,
colormap: Colormap | None = None,
color_type: str = "default",
color: dict[str, Color] | Color | Collection[Color] | None = None,
):
"""
Get standard colors based on `colormap`, `color_type` or `color` inputs.
Parameters
----------
num_colors : int
Minimum number of colors to be returned.
Ignored if `color` is a dictionary.
colormap : :py:class:`matplotlib.colors.Colormap`, optional
Matplotlib colormap.
When provided, the resulting colors will be derived from the colormap.
color_type : {"default", "random"}, optional
Type of colors to derive. Used if provided `color` and `colormap` are None.
Ignored if either `color` or `colormap` are not None.
color : dict or str or sequence, optional
Color(s) to be used for deriving sequence of colors.
Can be either be a dictionary, or a single color (single color string,
or sequence of floats representing a single color),
or a sequence of colors.
Returns
-------
dict or list
Standard colors. Can either be a mapping if `color` was a dictionary,
or a list of colors with a length of `num_colors` or more.
Warns
-----
UserWarning
If both `colormap` and `color` are provided.
Parameter `color` will override.
"""
if isinstance(color, dict):
return color
colors = _derive_colors(
color=color,
colormap=colormap,
color_type=color_type,
num_colors=num_colors,
)
return list(_cycle_colors(colors, num_colors=num_colors))
def _derive_colors(
*,
color: Color | Collection[Color] | None,
colormap: str | Colormap | None,
color_type: str,
num_colors: int,
) -> list[Color]:
"""
Derive colors from either `colormap`, `color_type` or `color` inputs.
Get a list of colors either from `colormap`, or from `color`,
or from `color_type` (if both `colormap` and `color` are None).
Parameters
----------
color : str or sequence, optional
Color(s) to be used for deriving sequence of colors.
Can be either be a single color (single color string, or sequence of floats
representing a single color), or a sequence of colors.
colormap : :py:class:`matplotlib.colors.Colormap`, optional
Matplotlib colormap.
When provided, the resulting colors will be derived from the colormap.
color_type : {"default", "random"}, optional
Type of colors to derive. Used if provided `color` and `colormap` are None.
Ignored if either `color` or `colormap`` are not None.
num_colors : int
Number of colors to be extracted.
Returns
-------
list
List of colors extracted.
Warns
-----
UserWarning
If both `colormap` and `color` are provided.
Parameter `color` will override.
"""
if color is None and colormap is not None:
return _get_colors_from_colormap(colormap, num_colors=num_colors)
elif color is not None:
if colormap is not None:
warnings.warn(
"'color' and 'colormap' cannot be used simultaneously. Using 'color'",
stacklevel=find_stack_level(),
)
return _get_colors_from_color(color)
else:
return _get_colors_from_color_type(color_type, num_colors=num_colors)
def _cycle_colors(colors: list[Color], num_colors: int) -> Iterator[Color]:
"""Cycle colors until achieving max of `num_colors` or length of `colors`.
Extra colors will be ignored by matplotlib if there are more colors
than needed and nothing needs to be done here.
"""
max_colors = max(num_colors, len(colors))
yield from itertools.islice(itertools.cycle(colors), max_colors)
def _get_colors_from_colormap(
colormap: str | Colormap,
num_colors: int,
) -> list[Color]:
"""Get colors from colormap."""
cmap = _get_cmap_instance(colormap)
return [cmap(num) for num in np.linspace(0, 1, num=num_colors)]
def _get_cmap_instance(colormap: str | Colormap) -> Colormap:
"""Get instance of matplotlib colormap."""
if isinstance(colormap, str):
cmap = colormap
colormap = mpl.colormaps[colormap]
if colormap is None:
raise ValueError(f"Colormap {cmap} is not recognized")
return colormap
def _get_colors_from_color(
color: Color | Collection[Color],
) -> list[Color]:
"""Get colors from user input color."""
if len(color) == 0:
raise ValueError(f"Invalid color argument: {color}")
if _is_single_color(color):
color = cast(Color, color)
return [color]
color = cast(Collection[Color], color)
return list(_gen_list_of_colors_from_iterable(color))
def _is_single_color(color: Color | Collection[Color]) -> bool:
"""Check if `color` is a single color, not a sequence of colors.
Single color is of these kinds:
- Named color "red", "C0", "firebrick"
- Alias "g"
- Sequence of floats, such as (0.1, 0.2, 0.3) or (0.1, 0.2, 0.3, 0.4).
See Also
--------
_is_single_string_color
"""
if isinstance(color, str) and _is_single_string_color(color):
# GH #36972
return True
if _is_floats_color(color):
return True
return False
def _gen_list_of_colors_from_iterable(color: Collection[Color]) -> Iterator[Color]:
"""
Yield colors from string of several letters or from collection of colors.
"""
for x in color:
if _is_single_color(x):
yield x
else:
raise ValueError(f"Invalid color {x}")
def _is_floats_color(color: Color | Collection[Color]) -> bool:
"""Check if color comprises a sequence of floats representing color."""
return bool(
is_list_like(color)
and (len(color) == 3 or len(color) == 4)
and all(isinstance(x, (int, float)) for x in color)
)
def _get_colors_from_color_type(color_type: str, num_colors: int) -> list[Color]:
"""Get colors from user input color type."""
if color_type == "default":
return _get_default_colors(num_colors)
elif color_type == "random":
return _get_random_colors(num_colors)
else:
raise ValueError("color_type must be either 'default' or 'random'")
def _get_default_colors(num_colors: int) -> list[Color]:
"""Get `num_colors` of default colors from matplotlib rc params."""
import matplotlib.pyplot as plt
colors = [c["color"] for c in plt.rcParams["axes.prop_cycle"]]
return colors[0:num_colors]
def _get_random_colors(num_colors: int) -> list[Color]:
"""Get `num_colors` of random colors."""
return [_random_color(num) for num in range(num_colors)]
def _random_color(column: int) -> list[float]:
"""Get a random color represented as a list of length 3"""
# GH17525 use common._random_state to avoid resetting the seed
rs = com.random_state(column)
return rs.rand(3).tolist()
def _is_single_string_color(color: Color) -> bool:
"""Check if `color` is a single string color.
Examples of single string colors:
- 'r'
- 'g'
- 'red'
- 'green'
- 'C3'
- 'firebrick'
Parameters
----------
color : Color
Color string or sequence of floats.
Returns
-------
bool
True if `color` looks like a valid color.
False otherwise.
"""
conv = matplotlib.colors.ColorConverter()
try:
# error: Argument 1 to "to_rgba" of "ColorConverter" has incompatible type
# "str | Sequence[float]"; expected "tuple[float, float, float] | ..."
conv.to_rgba(color) # type: ignore[arg-type]
except ValueError:
return False
else:
return True

View File

@ -0,0 +1,370 @@
# TODO: Use the fact that axis can have units to simplify the process
from __future__ import annotations
import functools
from typing import (
TYPE_CHECKING,
Any,
cast,
)
import warnings
import numpy as np
from pandas._libs.tslibs import (
BaseOffset,
Period,
to_offset,
)
from pandas._libs.tslibs.dtypes import (
OFFSET_TO_PERIOD_FREQSTR,
FreqGroup,
)
from pandas.core.dtypes.generic import (
ABCDatetimeIndex,
ABCPeriodIndex,
ABCTimedeltaIndex,
)
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.converter import (
TimeSeries_DateFormatter,
TimeSeries_DateLocator,
TimeSeries_TimedeltaFormatter,
)
from pandas.tseries.frequencies import (
get_period_alias,
is_subperiod,
is_superperiod,
)
if TYPE_CHECKING:
from datetime import timedelta
from matplotlib.axes import Axes
from pandas._typing import NDFrameT
from pandas import (
DataFrame,
DatetimeIndex,
Index,
PeriodIndex,
Series,
)
# ---------------------------------------------------------------------
# Plotting functions and monkey patches
def maybe_resample(series: Series, ax: Axes, kwargs: dict[str, Any]):
# resample against axes freq if necessary
if "how" in kwargs:
raise ValueError(
"'how' is not a valid keyword for plotting functions. If plotting "
"multiple objects on shared axes, resample manually first."
)
freq, ax_freq = _get_freq(ax, series)
if freq is None: # pragma: no cover
raise ValueError("Cannot use dynamic axis without frequency info")
# Convert DatetimeIndex to PeriodIndex
if isinstance(series.index, ABCDatetimeIndex):
series = series.to_period(freq=freq)
if ax_freq is not None and freq != ax_freq:
if is_superperiod(freq, ax_freq): # upsample input
series = series.copy()
# error: "Index" has no attribute "asfreq"
series.index = series.index.asfreq( # type: ignore[attr-defined]
ax_freq, how="s"
)
freq = ax_freq
elif _is_sup(freq, ax_freq): # one is weekly
# Resampling with PeriodDtype is deprecated, so we convert to
# DatetimeIndex, resample, then convert back.
ser_ts = series.to_timestamp()
ser_d = ser_ts.resample("D").last().dropna()
ser_freq = ser_d.resample(ax_freq).last().dropna()
series = ser_freq.to_period(ax_freq)
freq = ax_freq
elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
_upsample_others(ax, freq, kwargs)
else: # pragma: no cover
raise ValueError("Incompatible frequency conversion")
return freq, series
def _is_sub(f1: str, f2: str) -> bool:
return (f1.startswith("W") and is_subperiod("D", f2)) or (
f2.startswith("W") and is_subperiod(f1, "D")
)
def _is_sup(f1: str, f2: str) -> bool:
return (f1.startswith("W") and is_superperiod("D", f2)) or (
f2.startswith("W") and is_superperiod(f1, "D")
)
def _upsample_others(ax: Axes, freq: BaseOffset, kwargs: dict[str, Any]) -> None:
legend = ax.get_legend()
lines, labels = _replot_ax(ax, freq)
_replot_ax(ax, freq)
other_ax = None
if hasattr(ax, "left_ax"):
other_ax = ax.left_ax
if hasattr(ax, "right_ax"):
other_ax = ax.right_ax
if other_ax is not None:
rlines, rlabels = _replot_ax(other_ax, freq)
lines.extend(rlines)
labels.extend(rlabels)
if legend is not None and kwargs.get("legend", True) and len(lines) > 0:
title: str | None = legend.get_title().get_text()
if title == "None":
title = None
ax.legend(lines, labels, loc="best", title=title)
def _replot_ax(ax: Axes, freq: BaseOffset):
data = getattr(ax, "_plot_data", None)
# clear current axes and data
# TODO #54485
ax._plot_data = [] # type: ignore[attr-defined]
ax.clear()
decorate_axes(ax, freq)
lines = []
labels = []
if data is not None:
for series, plotf, kwds in data:
series = series.copy()
idx = series.index.asfreq(freq, how="S")
series.index = idx
# TODO #54485
ax._plot_data.append((series, plotf, kwds)) # type: ignore[attr-defined]
# for tsplot
if isinstance(plotf, str):
from pandas.plotting._matplotlib import PLOT_CLASSES
plotf = PLOT_CLASSES[plotf]._plot
lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0])
labels.append(pprint_thing(series.name))
return lines, labels
def decorate_axes(ax: Axes, freq: BaseOffset) -> None:
"""Initialize axes for time-series plotting"""
if not hasattr(ax, "_plot_data"):
# TODO #54485
ax._plot_data = [] # type: ignore[attr-defined]
# TODO #54485
ax.freq = freq # type: ignore[attr-defined]
xaxis = ax.get_xaxis()
# TODO #54485
xaxis.freq = freq # type: ignore[attr-defined]
def _get_ax_freq(ax: Axes):
"""
Get the freq attribute of the ax object if set.
Also checks shared axes (eg when using secondary yaxis, sharex=True
or twinx)
"""
ax_freq = getattr(ax, "freq", None)
if ax_freq is None:
# check for left/right ax in case of secondary yaxis
if hasattr(ax, "left_ax"):
ax_freq = getattr(ax.left_ax, "freq", None)
elif hasattr(ax, "right_ax"):
ax_freq = getattr(ax.right_ax, "freq", None)
if ax_freq is None:
# check if a shared ax (sharex/twinx) has already freq set
shared_axes = ax.get_shared_x_axes().get_siblings(ax)
if len(shared_axes) > 1:
for shared_ax in shared_axes:
ax_freq = getattr(shared_ax, "freq", None)
if ax_freq is not None:
break
return ax_freq
def _get_period_alias(freq: timedelta | BaseOffset | str) -> str | None:
if isinstance(freq, BaseOffset):
freqstr = freq.name
else:
freqstr = to_offset(freq, is_period=True).rule_code
return get_period_alias(freqstr)
def _get_freq(ax: Axes, series: Series):
# get frequency from data
freq = getattr(series.index, "freq", None)
if freq is None:
freq = getattr(series.index, "inferred_freq", None)
freq = to_offset(freq, is_period=True)
ax_freq = _get_ax_freq(ax)
# use axes freq if no data freq
if freq is None:
freq = ax_freq
# get the period frequency
freq = _get_period_alias(freq)
return freq, ax_freq
def use_dynamic_x(ax: Axes, data: DataFrame | Series) -> bool:
freq = _get_index_freq(data.index)
ax_freq = _get_ax_freq(ax)
if freq is None: # convert irregular if axes has freq info
freq = ax_freq
# do not use tsplot if irregular was plotted first
elif (ax_freq is None) and (len(ax.get_lines()) > 0):
return False
if freq is None:
return False
freq_str = _get_period_alias(freq)
if freq_str is None:
return False
# FIXME: hack this for 0.10.1, creating more technical debt...sigh
if isinstance(data.index, ABCDatetimeIndex):
# error: "BaseOffset" has no attribute "_period_dtype_code"
freq_str = OFFSET_TO_PERIOD_FREQSTR.get(freq_str, freq_str)
base = to_offset(
freq_str, is_period=True
)._period_dtype_code # type: ignore[attr-defined]
x = data.index
if base <= FreqGroup.FR_DAY.value:
return x[:1].is_normalized
period = Period(x[0], freq_str)
assert isinstance(period, Period)
return period.to_timestamp().tz_localize(x.tz) == x[0]
return True
def _get_index_freq(index: Index) -> BaseOffset | None:
freq = getattr(index, "freq", None)
if freq is None:
freq = getattr(index, "inferred_freq", None)
if freq == "B":
# error: "Index" has no attribute "dayofweek"
weekdays = np.unique(index.dayofweek) # type: ignore[attr-defined]
if (5 in weekdays) or (6 in weekdays):
freq = None
freq = to_offset(freq)
return freq
def maybe_convert_index(ax: Axes, data: NDFrameT) -> NDFrameT:
# tsplot converts automatically, but don't want to convert index
# over and over for DataFrames
if isinstance(data.index, (ABCDatetimeIndex, ABCPeriodIndex)):
freq: str | BaseOffset | None = data.index.freq
if freq is None:
# We only get here for DatetimeIndex
data.index = cast("DatetimeIndex", data.index)
freq = data.index.inferred_freq
freq = to_offset(freq)
if freq is None:
freq = _get_ax_freq(ax)
if freq is None:
raise ValueError("Could not get frequency alias for plotting")
freq_str = _get_period_alias(freq)
with warnings.catch_warnings():
# suppress Period[B] deprecation warning
# TODO: need to find an alternative to this before the deprecation
# is enforced!
warnings.filterwarnings(
"ignore",
r"PeriodDtype\[B\] is deprecated",
category=FutureWarning,
)
if isinstance(data.index, ABCDatetimeIndex):
data = data.tz_localize(None).to_period(freq=freq_str)
elif isinstance(data.index, ABCPeriodIndex):
data.index = data.index.asfreq(freq=freq_str)
return data
# Patch methods for subplot.
def _format_coord(freq, t, y) -> str:
time_period = Period(ordinal=int(t), freq=freq)
return f"t = {time_period} y = {y:8f}"
def format_dateaxis(
subplot, freq: BaseOffset, index: DatetimeIndex | PeriodIndex
) -> None:
"""
Pretty-formats the date axis (x-axis).
Major and minor ticks are automatically set for the frequency of the
current underlying series. As the dynamic mode is activated by
default, changing the limits of the x axis will intelligently change
the positions of the ticks.
"""
from matplotlib import pylab
# handle index specific formatting
# Note: DatetimeIndex does not use this
# interface. DatetimeIndex uses matplotlib.date directly
if isinstance(index, ABCPeriodIndex):
majlocator = TimeSeries_DateLocator(
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
)
minlocator = TimeSeries_DateLocator(
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
)
subplot.xaxis.set_major_locator(majlocator)
subplot.xaxis.set_minor_locator(minlocator)
majformatter = TimeSeries_DateFormatter(
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
)
minformatter = TimeSeries_DateFormatter(
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
)
subplot.xaxis.set_major_formatter(majformatter)
subplot.xaxis.set_minor_formatter(minformatter)
# x and y coord info
subplot.format_coord = functools.partial(_format_coord, freq)
elif isinstance(index, ABCTimedeltaIndex):
subplot.xaxis.set_major_formatter(TimeSeries_TimedeltaFormatter())
else:
raise TypeError("index type not supported")
pylab.draw_if_interactive()

View File

@ -0,0 +1,492 @@
# being a bit too dynamic
from __future__ import annotations
from math import ceil
from typing import TYPE_CHECKING
import warnings
from matplotlib import ticker
import matplotlib.table
import numpy as np
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import is_list_like
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndex,
ABCSeries,
)
if TYPE_CHECKING:
from collections.abc import (
Iterable,
Sequence,
)
from matplotlib.axes import Axes
from matplotlib.axis import Axis
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from matplotlib.table import Table
from pandas import (
DataFrame,
Series,
)
def do_adjust_figure(fig: Figure) -> bool:
"""Whether fig has constrained_layout enabled."""
if not hasattr(fig, "get_constrained_layout"):
return False
return not fig.get_constrained_layout()
def maybe_adjust_figure(fig: Figure, *args, **kwargs) -> None:
"""Call fig.subplots_adjust unless fig has constrained_layout enabled."""
if do_adjust_figure(fig):
fig.subplots_adjust(*args, **kwargs)
def format_date_labels(ax: Axes, rot) -> None:
# mini version of autofmt_xdate
for label in ax.get_xticklabels():
label.set_horizontalalignment("right")
label.set_rotation(rot)
fig = ax.get_figure()
if fig is not None:
# should always be a Figure but can technically be None
maybe_adjust_figure(fig, bottom=0.2)
def table(
ax, data: DataFrame | Series, rowLabels=None, colLabels=None, **kwargs
) -> Table:
if isinstance(data, ABCSeries):
data = data.to_frame()
elif isinstance(data, ABCDataFrame):
pass
else:
raise ValueError("Input data must be DataFrame or Series")
if rowLabels is None:
rowLabels = data.index
if colLabels is None:
colLabels = data.columns
cellText = data.values
# error: Argument "cellText" to "table" has incompatible type "ndarray[Any,
# Any]"; expected "Sequence[Sequence[str]] | None"
return matplotlib.table.table(
ax,
cellText=cellText, # type: ignore[arg-type]
rowLabels=rowLabels,
colLabels=colLabels,
**kwargs,
)
def _get_layout(
nplots: int,
layout: tuple[int, int] | None = None,
layout_type: str = "box",
) -> tuple[int, int]:
if layout is not None:
if not isinstance(layout, (tuple, list)) or len(layout) != 2:
raise ValueError("Layout must be a tuple of (rows, columns)")
nrows, ncols = layout
if nrows == -1 and ncols > 0:
layout = nrows, ncols = (ceil(nplots / ncols), ncols)
elif ncols == -1 and nrows > 0:
layout = nrows, ncols = (nrows, ceil(nplots / nrows))
elif ncols <= 0 and nrows <= 0:
msg = "At least one dimension of layout must be positive"
raise ValueError(msg)
if nrows * ncols < nplots:
raise ValueError(
f"Layout of {nrows}x{ncols} must be larger than required size {nplots}"
)
return layout
if layout_type == "single":
return (1, 1)
elif layout_type == "horizontal":
return (1, nplots)
elif layout_type == "vertical":
return (nplots, 1)
layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)}
try:
return layouts[nplots]
except KeyError:
k = 1
while k**2 < nplots:
k += 1
if (k - 1) * k >= nplots:
return k, (k - 1)
else:
return k, k
# copied from matplotlib/pyplot.py and modified for pandas.plotting
def create_subplots(
naxes: int,
sharex: bool = False,
sharey: bool = False,
squeeze: bool = True,
subplot_kw=None,
ax=None,
layout=None,
layout_type: str = "box",
**fig_kw,
):
"""
Create a figure with a set of subplots already made.
This utility wrapper makes it convenient to create common layouts of
subplots, including the enclosing figure object, in a single call.
Parameters
----------
naxes : int
Number of required axes. Exceeded axes are set invisible. Default is
nrows * ncols.
sharex : bool
If True, the X axis will be shared amongst all subplots.
sharey : bool
If True, the Y axis will be shared amongst all subplots.
squeeze : bool
If True, extra dimensions are squeezed out from the returned axis object:
- if only one subplot is constructed (nrows=ncols=1), the resulting
single Axis object is returned as a scalar.
- for Nx1 or 1xN subplots, the returned object is a 1-d numpy object
array of Axis objects are returned as numpy 1-d arrays.
- for NxM subplots with N>1 and M>1 are returned as a 2d array.
If False, no squeezing is done: the returned axis object is always
a 2-d array containing Axis instances, even if it ends up being 1x1.
subplot_kw : dict
Dict with keywords passed to the add_subplot() call used to create each
subplots.
ax : Matplotlib axis object, optional
layout : tuple
Number of rows and columns of the subplot grid.
If not specified, calculated from naxes and layout_type
layout_type : {'box', 'horizontal', 'vertical'}, default 'box'
Specify how to layout the subplot grid.
fig_kw : Other keyword arguments to be passed to the figure() call.
Note that all keywords not recognized above will be
automatically included here.
Returns
-------
fig, ax : tuple
- fig is the Matplotlib Figure object
- ax can be either a single axis object or an array of axis objects if
more than one subplot was created. The dimensions of the resulting array
can be controlled with the squeeze keyword, see above.
Examples
--------
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
# Just a figure and one subplot
f, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')
# Two subplots, unpack the output array immediately
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)
# Four polar axes
plt.subplots(2, 2, subplot_kw=dict(polar=True))
"""
import matplotlib.pyplot as plt
if subplot_kw is None:
subplot_kw = {}
if ax is None:
fig = plt.figure(**fig_kw)
else:
if is_list_like(ax):
if squeeze:
ax = flatten_axes(ax)
if layout is not None:
warnings.warn(
"When passing multiple axes, layout keyword is ignored.",
UserWarning,
stacklevel=find_stack_level(),
)
if sharex or sharey:
warnings.warn(
"When passing multiple axes, sharex and sharey "
"are ignored. These settings must be specified when creating axes.",
UserWarning,
stacklevel=find_stack_level(),
)
if ax.size == naxes:
fig = ax.flat[0].get_figure()
return fig, ax
else:
raise ValueError(
f"The number of passed axes must be {naxes}, the "
"same as the output plot"
)
fig = ax.get_figure()
# if ax is passed and a number of subplots is 1, return ax as it is
if naxes == 1:
if squeeze:
return fig, ax
else:
return fig, flatten_axes(ax)
else:
warnings.warn(
"To output multiple subplots, the figure containing "
"the passed axes is being cleared.",
UserWarning,
stacklevel=find_stack_level(),
)
fig.clear()
nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type)
nplots = nrows * ncols
# Create empty object array to hold all axes. It's easiest to make it 1-d
# so we can just append subplots upon creation, and then
axarr = np.empty(nplots, dtype=object)
# Create first subplot separately, so we can share it if requested
ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw)
if sharex:
subplot_kw["sharex"] = ax0
if sharey:
subplot_kw["sharey"] = ax0
axarr[0] = ax0
# Note off-by-one counting because add_subplot uses the MATLAB 1-based
# convention.
for i in range(1, nplots):
kwds = subplot_kw.copy()
# Set sharex and sharey to None for blank/dummy axes, these can
# interfere with proper axis limits on the visible axes if
# they share axes e.g. issue #7528
if i >= naxes:
kwds["sharex"] = None
kwds["sharey"] = None
ax = fig.add_subplot(nrows, ncols, i + 1, **kwds)
axarr[i] = ax
if naxes != nplots:
for ax in axarr[naxes:]:
ax.set_visible(False)
handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey)
if squeeze:
# Reshape the array to have the final desired dimension (nrow,ncol),
# though discarding unneeded dimensions that equal 1. If we only have
# one subplot, just return it instead of a 1-element array.
if nplots == 1:
axes = axarr[0]
else:
axes = axarr.reshape(nrows, ncols).squeeze()
else:
# returned axis array will be always 2-d, even if nrows=ncols=1
axes = axarr.reshape(nrows, ncols)
return fig, axes
def _remove_labels_from_axis(axis: Axis) -> None:
for t in axis.get_majorticklabels():
t.set_visible(False)
# set_visible will not be effective if
# minor axis has NullLocator and NullFormatter (default)
if isinstance(axis.get_minor_locator(), ticker.NullLocator):
axis.set_minor_locator(ticker.AutoLocator())
if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
axis.set_minor_formatter(ticker.FormatStrFormatter(""))
for t in axis.get_minorticklabels():
t.set_visible(False)
axis.get_label().set_visible(False)
def _has_externally_shared_axis(ax1: Axes, compare_axis: str) -> bool:
"""
Return whether an axis is externally shared.
Parameters
----------
ax1 : matplotlib.axes.Axes
Axis to query.
compare_axis : str
`"x"` or `"y"` according to whether the X-axis or Y-axis is being
compared.
Returns
-------
bool
`True` if the axis is externally shared. Otherwise `False`.
Notes
-----
If two axes with different positions are sharing an axis, they can be
referred to as *externally* sharing the common axis.
If two axes sharing an axis also have the same position, they can be
referred to as *internally* sharing the common axis (a.k.a twinning).
_handle_shared_axes() is only interested in axes externally sharing an
axis, regardless of whether either of the axes is also internally sharing
with a third axis.
"""
if compare_axis == "x":
axes = ax1.get_shared_x_axes()
elif compare_axis == "y":
axes = ax1.get_shared_y_axes()
else:
raise ValueError(
"_has_externally_shared_axis() needs 'x' or 'y' as a second parameter"
)
axes_siblings = axes.get_siblings(ax1)
# Retain ax1 and any of its siblings which aren't in the same position as it
ax1_points = ax1.get_position().get_points()
for ax2 in axes_siblings:
if not np.array_equal(ax1_points, ax2.get_position().get_points()):
return True
return False
def handle_shared_axes(
axarr: Iterable[Axes],
nplots: int,
naxes: int,
nrows: int,
ncols: int,
sharex: bool,
sharey: bool,
) -> None:
if nplots > 1:
row_num = lambda x: x.get_subplotspec().rowspan.start
col_num = lambda x: x.get_subplotspec().colspan.start
is_first_col = lambda x: x.get_subplotspec().is_first_col()
if nrows > 1:
try:
# first find out the ax layout,
# so that we can correctly handle 'gaps"
layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool_)
for ax in axarr:
layout[row_num(ax), col_num(ax)] = ax.get_visible()
for ax in axarr:
# only the last row of subplots should get x labels -> all
# other off layout handles the case that the subplot is
# the last in the column, because below is no subplot/gap.
if not layout[row_num(ax) + 1, col_num(ax)]:
continue
if sharex or _has_externally_shared_axis(ax, "x"):
_remove_labels_from_axis(ax.xaxis)
except IndexError:
# if gridspec is used, ax.rowNum and ax.colNum may different
# from layout shape. in this case, use last_row logic
is_last_row = lambda x: x.get_subplotspec().is_last_row()
for ax in axarr:
if is_last_row(ax):
continue
if sharex or _has_externally_shared_axis(ax, "x"):
_remove_labels_from_axis(ax.xaxis)
if ncols > 1:
for ax in axarr:
# only the first column should get y labels -> set all other to
# off as we only have labels in the first column and we always
# have a subplot there, we can skip the layout test
if is_first_col(ax):
continue
if sharey or _has_externally_shared_axis(ax, "y"):
_remove_labels_from_axis(ax.yaxis)
def flatten_axes(axes: Axes | Sequence[Axes]) -> np.ndarray:
if not is_list_like(axes):
return np.array([axes])
elif isinstance(axes, (np.ndarray, ABCIndex)):
return np.asarray(axes).ravel()
return np.array(axes)
def set_ticks_props(
axes: Axes | Sequence[Axes],
xlabelsize: int | None = None,
xrot=None,
ylabelsize: int | None = None,
yrot=None,
):
import matplotlib.pyplot as plt
for ax in flatten_axes(axes):
if xlabelsize is not None:
plt.setp(ax.get_xticklabels(), fontsize=xlabelsize)
if xrot is not None:
plt.setp(ax.get_xticklabels(), rotation=xrot)
if ylabelsize is not None:
plt.setp(ax.get_yticklabels(), fontsize=ylabelsize)
if yrot is not None:
plt.setp(ax.get_yticklabels(), rotation=yrot)
return axes
def get_all_lines(ax: Axes) -> list[Line2D]:
lines = ax.get_lines()
if hasattr(ax, "right_ax"):
lines += ax.right_ax.get_lines()
if hasattr(ax, "left_ax"):
lines += ax.left_ax.get_lines()
return lines
def get_xlim(lines: Iterable[Line2D]) -> tuple[float, float]:
left, right = np.inf, -np.inf
for line in lines:
x = line.get_xdata(orig=False)
left = min(np.nanmin(x), left)
right = max(np.nanmax(x), right)
return left, right

View File

@ -0,0 +1,688 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import (
TYPE_CHECKING,
Any,
)
from pandas.plotting._core import _get_plot_backend
if TYPE_CHECKING:
from collections.abc import (
Generator,
Mapping,
)
from matplotlib.axes import Axes
from matplotlib.colors import Colormap
from matplotlib.figure import Figure
from matplotlib.table import Table
import numpy as np
from pandas import (
DataFrame,
Series,
)
def table(ax: Axes, data: DataFrame | Series, **kwargs) -> Table:
"""
Helper function to convert DataFrame and Series to matplotlib.table.
Parameters
----------
ax : Matplotlib axes object
data : DataFrame or Series
Data for table contents.
**kwargs
Keyword arguments to be passed to matplotlib.table.table.
If `rowLabels` or `colLabels` is not specified, data index or column
name will be used.
Returns
-------
matplotlib table object
Examples
--------
.. plot::
:context: close-figs
>>> import matplotlib.pyplot as plt
>>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
>>> fix, ax = plt.subplots()
>>> ax.axis('off')
(0.0, 1.0, 0.0, 1.0)
>>> table = pd.plotting.table(ax, df, loc='center',
... cellLoc='center', colWidths=list([.2, .2]))
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.table(
ax=ax, data=data, rowLabels=None, colLabels=None, **kwargs
)
def register() -> None:
"""
Register pandas formatters and converters with matplotlib.
This function modifies the global ``matplotlib.units.registry``
dictionary. pandas adds custom converters for
* pd.Timestamp
* pd.Period
* np.datetime64
* datetime.datetime
* datetime.date
* datetime.time
See Also
--------
deregister_matplotlib_converters : Remove pandas formatters and converters.
Examples
--------
.. plot::
:context: close-figs
The following line is done automatically by pandas so
the plot can be rendered:
>>> pd.plotting.register_matplotlib_converters()
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
... 'y': [1, 2]
... })
>>> plot = df.plot.line(x='ts', y='y')
Unsetting the register manually an error will be raised:
>>> pd.set_option("plotting.matplotlib.register_converters",
... False) # doctest: +SKIP
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP
Traceback (most recent call last):
TypeError: float() argument must be a string or a real number, not 'Period'
"""
plot_backend = _get_plot_backend("matplotlib")
plot_backend.register()
def deregister() -> None:
"""
Remove pandas formatters and converters.
Removes the custom converters added by :func:`register`. This
attempts to set the state of the registry back to the state before
pandas registered its own units. Converters for pandas' own types like
Timestamp and Period are removed completely. Converters for types
pandas overwrites, like ``datetime.datetime``, are restored to their
original value.
See Also
--------
register_matplotlib_converters : Register pandas formatters and converters
with matplotlib.
Examples
--------
.. plot::
:context: close-figs
The following line is done automatically by pandas so
the plot can be rendered:
>>> pd.plotting.register_matplotlib_converters()
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
... 'y': [1, 2]
... })
>>> plot = df.plot.line(x='ts', y='y')
Unsetting the register manually an error will be raised:
>>> pd.set_option("plotting.matplotlib.register_converters",
... False) # doctest: +SKIP
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP
Traceback (most recent call last):
TypeError: float() argument must be a string or a real number, not 'Period'
"""
plot_backend = _get_plot_backend("matplotlib")
plot_backend.deregister()
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax: Axes | None = None,
grid: bool = False,
diagonal: str = "hist",
marker: str = ".",
density_kwds: Mapping[str, Any] | None = None,
hist_kwds: Mapping[str, Any] | None = None,
range_padding: float = 0.05,
**kwargs,
) -> np.ndarray:
"""
Draw a matrix of scatter plots.
Parameters
----------
frame : DataFrame
alpha : float, optional
Amount of transparency applied.
figsize : (float,float), optional
A tuple (width, height) in inches.
ax : Matplotlib axis object, optional
grid : bool, optional
Setting this to True will show the grid.
diagonal : {'hist', 'kde'}
Pick between 'kde' and 'hist' for either Kernel Density Estimation or
Histogram plot in the diagonal.
marker : str, optional
Matplotlib marker type, default '.'.
density_kwds : keywords
Keyword arguments to be passed to kernel density estimate plot.
hist_kwds : keywords
Keyword arguments to be passed to hist function.
range_padding : float, default 0.05
Relative extension of axis range in x and y with respect to
(x_max - x_min) or (y_max - y_min).
**kwargs
Keyword arguments to be passed to scatter function.
Returns
-------
numpy.ndarray
A matrix of scatter plots.
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>,
<Axes: xlabel='C', ylabel='A'>, <Axes: xlabel='D', ylabel='A'>],
[<Axes: xlabel='A', ylabel='B'>, <Axes: xlabel='B', ylabel='B'>,
<Axes: xlabel='C', ylabel='B'>, <Axes: xlabel='D', ylabel='B'>],
[<Axes: xlabel='A', ylabel='C'>, <Axes: xlabel='B', ylabel='C'>,
<Axes: xlabel='C', ylabel='C'>, <Axes: xlabel='D', ylabel='C'>],
[<Axes: xlabel='A', ylabel='D'>, <Axes: xlabel='B', ylabel='D'>,
<Axes: xlabel='C', ylabel='D'>, <Axes: xlabel='D', ylabel='D'>]],
dtype=object)
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.scatter_matrix(
frame=frame,
alpha=alpha,
figsize=figsize,
ax=ax,
grid=grid,
diagonal=diagonal,
marker=marker,
density_kwds=density_kwds,
hist_kwds=hist_kwds,
range_padding=range_padding,
**kwargs,
)
def radviz(
frame: DataFrame,
class_column: str,
ax: Axes | None = None,
color: list[str] | tuple[str, ...] | None = None,
colormap: Colormap | str | None = None,
**kwds,
) -> Axes:
"""
Plot a multidimensional dataset in 2D.
Each Series in the DataFrame is represented as a evenly distributed
slice on a circle. Each data point is rendered in the circle according to
the value on each Series. Highly correlated `Series` in the `DataFrame`
are placed closer on the unit circle.
RadViz allow to project a N-dimensional data set into a 2D space where the
influence of each dimension can be interpreted as a balance between the
influence of all dimensions.
More info available at the `original article
<https://doi.org/10.1145/331770.331775>`_
describing RadViz.
Parameters
----------
frame : `DataFrame`
Object holding the data.
class_column : str
Column name containing the name of the data point category.
ax : :class:`matplotlib.axes.Axes`, optional
A plot instance to which to add the information.
color : list[str] or tuple[str], optional
Assign a color to each category. Example: ['blue', 'green'].
colormap : str or :class:`matplotlib.colors.Colormap`, default None
Colormap to select colors from. If string, load colormap with that
name from matplotlib.
**kwds
Options to pass to matplotlib scatter plotting method.
Returns
-------
:class:`matplotlib.axes.Axes`
See Also
--------
pandas.plotting.andrews_curves : Plot clustering visualization.
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.DataFrame(
... {
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6],
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6],
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0],
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2],
... 'Category': [
... 'virginica',
... 'virginica',
... 'setosa',
... 'virginica',
... 'virginica',
... 'versicolor',
... 'versicolor',
... 'setosa',
... 'virginica',
... 'setosa'
... ]
... }
... )
>>> pd.plotting.radviz(df, 'Category') # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.radviz(
frame=frame,
class_column=class_column,
ax=ax,
color=color,
colormap=colormap,
**kwds,
)
def andrews_curves(
frame: DataFrame,
class_column: str,
ax: Axes | None = None,
samples: int = 200,
color: list[str] | tuple[str, ...] | None = None,
colormap: Colormap | str | None = None,
**kwargs,
) -> Axes:
"""
Generate a matplotlib plot for visualizing clusters of multivariate data.
Andrews curves have the functional form:
.. math::
f(t) = \\frac{x_1}{\\sqrt{2}} + x_2 \\sin(t) + x_3 \\cos(t) +
x_4 \\sin(2t) + x_5 \\cos(2t) + \\cdots
Where :math:`x` coefficients correspond to the values of each dimension
and :math:`t` is linearly spaced between :math:`-\\pi` and :math:`+\\pi`.
Each row of frame then corresponds to a single curve.
Parameters
----------
frame : DataFrame
Data to be plotted, preferably normalized to (0.0, 1.0).
class_column : label
Name of the column containing class names.
ax : axes object, default None
Axes to use.
samples : int
Number of points to plot in each curve.
color : str, list[str] or tuple[str], optional
Colors to use for the different classes. Colors can be strings
or 3-element floating point RGB values.
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If a string, load colormap with that
name from matplotlib.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
:class:`matplotlib.axes.Axes`
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.read_csv(
... 'https://raw.githubusercontent.com/pandas-dev/'
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
... )
>>> pd.plotting.andrews_curves(df, 'Name') # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.andrews_curves(
frame=frame,
class_column=class_column,
ax=ax,
samples=samples,
color=color,
colormap=colormap,
**kwargs,
)
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure:
"""
Bootstrap plot on mean, median and mid-range statistics.
The bootstrap plot is used to estimate the uncertainty of a statistic
by relying on random sampling with replacement [1]_. This function will
generate bootstrapping plots for mean, median and mid-range statistics
for the given number of samples of the given size.
.. [1] "Bootstrapping (statistics)" in \
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
Parameters
----------
series : pandas.Series
Series from where to get the samplings for the bootstrapping.
fig : matplotlib.figure.Figure, default None
If given, it will use the `fig` reference for plotting instead of
creating a new one with default parameters.
size : int, default 50
Number of data points to consider during each sampling. It must be
less than or equal to the length of the `series`.
samples : int, default 500
Number of times the bootstrap procedure is performed.
**kwds
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.figure.Figure
Matplotlib figure.
See Also
--------
pandas.DataFrame.plot : Basic plotting for DataFrame objects.
pandas.Series.plot : Basic plotting for Series objects.
Examples
--------
This example draws a basic bootstrap plot for a Series.
.. plot::
:context: close-figs
>>> s = pd.Series(np.random.uniform(size=100))
>>> pd.plotting.bootstrap_plot(s) # doctest: +SKIP
<Figure size 640x480 with 6 Axes>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.bootstrap_plot(
series=series, fig=fig, size=size, samples=samples, **kwds
)
def parallel_coordinates(
frame: DataFrame,
class_column: str,
cols: list[str] | None = None,
ax: Axes | None = None,
color: list[str] | tuple[str, ...] | None = None,
use_columns: bool = False,
xticks: list | tuple | None = None,
colormap: Colormap | str | None = None,
axvlines: bool = True,
axvlines_kwds: Mapping[str, Any] | None = None,
sort_labels: bool = False,
**kwargs,
) -> Axes:
"""
Parallel coordinates plotting.
Parameters
----------
frame : DataFrame
class_column : str
Column name containing class names.
cols : list, optional
A list of column names to use.
ax : matplotlib.axis, optional
Matplotlib axis object.
color : list or tuple, optional
Colors to use for the different classes.
use_columns : bool, optional
If true, columns will be used as xticks.
xticks : list or tuple, optional
A list of values to use for xticks.
colormap : str or matplotlib colormap, default None
Colormap to use for line colors.
axvlines : bool, optional
If true, vertical lines will be added at each xtick.
axvlines_kwds : keywords, optional
Options to be passed to axvline method for vertical lines.
sort_labels : bool, default False
Sort class_column labels, useful when assigning colors.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.axes.Axes
Examples
--------
.. plot::
:context: close-figs
>>> df = pd.read_csv(
... 'https://raw.githubusercontent.com/pandas-dev/'
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
... )
>>> pd.plotting.parallel_coordinates(
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
... ) # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.parallel_coordinates(
frame=frame,
class_column=class_column,
cols=cols,
ax=ax,
color=color,
use_columns=use_columns,
xticks=xticks,
colormap=colormap,
axvlines=axvlines,
axvlines_kwds=axvlines_kwds,
sort_labels=sort_labels,
**kwargs,
)
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
"""
Lag plot for time series.
Parameters
----------
series : Series
The time series to visualize.
lag : int, default 1
Lag length of the scatter plot.
ax : Matplotlib axis object, optional
The matplotlib axis object to use.
**kwds
Matplotlib scatter method keyword arguments.
Returns
-------
matplotlib.axes.Axes
Examples
--------
Lag plots are most commonly used to look for patterns in time series data.
Given the following time series
.. plot::
:context: close-figs
>>> np.random.seed(5)
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
>>> s = pd.Series(x)
>>> s.plot() # doctest: +SKIP
A lag plot with ``lag=1`` returns
.. plot::
:context: close-figs
>>> pd.plotting.lag_plot(s, lag=1)
<Axes: xlabel='y(t)', ylabel='y(t + 1)'>
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.lag_plot(series=series, lag=lag, ax=ax, **kwds)
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes:
"""
Autocorrelation plot for time series.
Parameters
----------
series : Series
The time series to visualize.
ax : Matplotlib axis object, optional
The matplotlib axis object to use.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
matplotlib.axes.Axes
Examples
--------
The horizontal lines in the plot correspond to 95% and 99% confidence bands.
The dashed line is 99% confidence band.
.. plot::
:context: close-figs
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
>>> pd.plotting.autocorrelation_plot(s) # doctest: +SKIP
"""
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.autocorrelation_plot(series=series, ax=ax, **kwargs)
class _Options(dict):
"""
Stores pandas plotting options.
Allows for parameter aliasing so you can just use parameter names that are
the same as the plot function parameters, but is stored in a canonical
format that makes it easy to breakdown into groups later.
Examples
--------
.. plot::
:context: close-figs
>>> np.random.seed(42)
>>> df = pd.DataFrame({'A': np.random.randn(10),
... 'B': np.random.randn(10)},
... index=pd.date_range("1/1/2000",
... freq='4MS', periods=10))
>>> with pd.plotting.plot_params.use("x_compat", True):
... _ = df["A"].plot(color="r")
... _ = df["B"].plot(color="g")
"""
# alias so the names are same as plotting method parameter names
_ALIASES = {"x_compat": "xaxis.compat"}
_DEFAULT_KEYS = ["xaxis.compat"]
def __init__(self, deprecated: bool = False) -> None:
self._deprecated = deprecated
super().__setitem__("xaxis.compat", False)
def __getitem__(self, key):
key = self._get_canonical_key(key)
if key not in self:
raise ValueError(f"{key} is not a valid pandas plotting option")
return super().__getitem__(key)
def __setitem__(self, key, value) -> None:
key = self._get_canonical_key(key)
super().__setitem__(key, value)
def __delitem__(self, key) -> None:
key = self._get_canonical_key(key)
if key in self._DEFAULT_KEYS:
raise ValueError(f"Cannot remove default parameter {key}")
super().__delitem__(key)
def __contains__(self, key) -> bool:
key = self._get_canonical_key(key)
return super().__contains__(key)
def reset(self) -> None:
"""
Reset the option store to its initial state
Returns
-------
None
"""
# error: Cannot access "__init__" directly
self.__init__() # type: ignore[misc]
def _get_canonical_key(self, key):
return self._ALIASES.get(key, key)
@contextmanager
def use(self, key, value) -> Generator[_Options, None, None]:
"""
Temporarily set a parameter value using the with statement.
Aliasing allowed.
"""
old_value = self[key]
try:
self[key] = value
yield self
finally:
self[key] = old_value
plot_params = _Options()