Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,416 @@
"""
Module responsible for execution of NDFrame.describe() method.
Method NDFrame.describe() delegates actual execution to function describe_ndframe().
"""
from __future__ import annotations
from abc import (
ABC,
abstractmethod,
)
from typing import (
TYPE_CHECKING,
Callable,
cast,
)
import numpy as np
from pandas._libs.tslibs import Timestamp
from pandas._typing import (
DtypeObj,
NDFrameT,
npt,
)
from pandas.util._validators import validate_percentile
from pandas.core.dtypes.common import (
is_bool_dtype,
is_numeric_dtype,
)
from pandas.core.dtypes.dtypes import (
ArrowDtype,
DatetimeTZDtype,
ExtensionDtype,
)
from pandas.core.arrays.floating import Float64Dtype
from pandas.core.reshape.concat import concat
from pandas.io.formats.format import format_percentiles
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Sequence,
)
from pandas import (
DataFrame,
Series,
)
def describe_ndframe(
*,
obj: NDFrameT,
include: str | Sequence[str] | None,
exclude: str | Sequence[str] | None,
percentiles: Sequence[float] | np.ndarray | None,
) -> NDFrameT:
"""Describe series or dataframe.
Called from pandas.core.generic.NDFrame.describe()
Parameters
----------
obj: DataFrame or Series
Either dataframe or series to be described.
include : 'all', list-like of dtypes or None (default), optional
A white list of data types to include in the result. Ignored for ``Series``.
exclude : list-like of dtypes or None (default), optional,
A black list of data types to omit from the result. Ignored for ``Series``.
percentiles : list-like of numbers, optional
The percentiles to include in the output. All should fall between 0 and 1.
The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and
75th percentiles.
Returns
-------
Dataframe or series description.
"""
percentiles = _refine_percentiles(percentiles)
describer: NDFrameDescriberAbstract
if obj.ndim == 1:
describer = SeriesDescriber(
obj=cast("Series", obj),
)
else:
describer = DataFrameDescriber(
obj=cast("DataFrame", obj),
include=include,
exclude=exclude,
)
result = describer.describe(percentiles=percentiles)
return cast(NDFrameT, result)
class NDFrameDescriberAbstract(ABC):
"""Abstract class for describing dataframe or series.
Parameters
----------
obj : Series or DataFrame
Object to be described.
"""
def __init__(self, obj: DataFrame | Series) -> None:
self.obj = obj
@abstractmethod
def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame | Series:
"""Do describe either series or dataframe.
Parameters
----------
percentiles : list-like of numbers
The percentiles to include in the output.
"""
class SeriesDescriber(NDFrameDescriberAbstract):
"""Class responsible for creating series description."""
obj: Series
def describe(self, percentiles: Sequence[float] | np.ndarray) -> Series:
describe_func = select_describe_func(
self.obj,
)
return describe_func(self.obj, percentiles)
class DataFrameDescriber(NDFrameDescriberAbstract):
"""Class responsible for creating dataobj description.
Parameters
----------
obj : DataFrame
DataFrame to be described.
include : 'all', list-like of dtypes or None
A white list of data types to include in the result.
exclude : list-like of dtypes or None
A black list of data types to omit from the result.
"""
obj: DataFrame
def __init__(
self,
obj: DataFrame,
*,
include: str | Sequence[str] | None,
exclude: str | Sequence[str] | None,
) -> None:
self.include = include
self.exclude = exclude
if obj.ndim == 2 and obj.columns.size == 0:
raise ValueError("Cannot describe a DataFrame without columns")
super().__init__(obj)
def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame:
data = self._select_data()
ldesc: list[Series] = []
for _, series in data.items():
describe_func = select_describe_func(series)
ldesc.append(describe_func(series, percentiles))
col_names = reorder_columns(ldesc)
d = concat(
[x.reindex(col_names, copy=False) for x in ldesc],
axis=1,
sort=False,
)
d.columns = data.columns.copy()
return d
def _select_data(self) -> DataFrame:
"""Select columns to be described."""
if (self.include is None) and (self.exclude is None):
# when some numerics are found, keep only numerics
default_include: list[npt.DTypeLike] = [np.number, "datetime"]
data = self.obj.select_dtypes(include=default_include)
if len(data.columns) == 0:
data = self.obj
elif self.include == "all":
if self.exclude is not None:
msg = "exclude must be None when include is 'all'"
raise ValueError(msg)
data = self.obj
else:
data = self.obj.select_dtypes(
include=self.include,
exclude=self.exclude,
)
return data
def reorder_columns(ldesc: Sequence[Series]) -> list[Hashable]:
"""Set a convenient order for rows for display."""
names: list[Hashable] = []
seen_names: set[Hashable] = set()
ldesc_indexes = sorted((x.index for x in ldesc), key=len)
for idxnames in ldesc_indexes:
for name in idxnames:
if name not in seen_names:
seen_names.add(name)
names.append(name)
return names
def describe_numeric_1d(series: Series, percentiles: Sequence[float]) -> Series:
"""Describe series containing numerical data.
Parameters
----------
series : Series
Series to be described.
percentiles : list-like of numbers
The percentiles to include in the output.
"""
from pandas import Series
formatted_percentiles = format_percentiles(percentiles)
stat_index = ["count", "mean", "std", "min"] + formatted_percentiles + ["max"]
d = (
[series.count(), series.mean(), series.std(), series.min()]
+ series.quantile(percentiles).tolist()
+ [series.max()]
)
# GH#48340 - always return float on non-complex numeric data
dtype: DtypeObj | None
if isinstance(series.dtype, ExtensionDtype):
if isinstance(series.dtype, ArrowDtype):
if series.dtype.kind == "m":
# GH53001: describe timedeltas with object dtype
dtype = None
else:
import pyarrow as pa
dtype = ArrowDtype(pa.float64())
else:
dtype = Float64Dtype()
elif series.dtype.kind in "iufb":
# i.e. numeric but exclude complex dtype
dtype = np.dtype("float")
else:
dtype = None
return Series(d, index=stat_index, name=series.name, dtype=dtype)
def describe_categorical_1d(
data: Series,
percentiles_ignored: Sequence[float],
) -> Series:
"""Describe series containing categorical data.
Parameters
----------
data : Series
Series to be described.
percentiles_ignored : list-like of numbers
Ignored, but in place to unify interface.
"""
names = ["count", "unique", "top", "freq"]
objcounts = data.value_counts()
count_unique = len(objcounts[objcounts != 0])
if count_unique > 0:
top, freq = objcounts.index[0], objcounts.iloc[0]
dtype = None
else:
# If the DataFrame is empty, set 'top' and 'freq' to None
# to maintain output shape consistency
top, freq = np.nan, np.nan
dtype = "object"
result = [data.count(), count_unique, top, freq]
from pandas import Series
return Series(result, index=names, name=data.name, dtype=dtype)
def describe_timestamp_as_categorical_1d(
data: Series,
percentiles_ignored: Sequence[float],
) -> Series:
"""Describe series containing timestamp data treated as categorical.
Parameters
----------
data : Series
Series to be described.
percentiles_ignored : list-like of numbers
Ignored, but in place to unify interface.
"""
names = ["count", "unique"]
objcounts = data.value_counts()
count_unique = len(objcounts[objcounts != 0])
result: list[float | Timestamp] = [data.count(), count_unique]
dtype = None
if count_unique > 0:
top, freq = objcounts.index[0], objcounts.iloc[0]
tz = data.dt.tz
asint = data.dropna().values.view("i8")
top = Timestamp(top)
if top.tzinfo is not None and tz is not None:
# Don't tz_localize(None) if key is already tz-aware
top = top.tz_convert(tz)
else:
top = top.tz_localize(tz)
names += ["top", "freq", "first", "last"]
result += [
top,
freq,
Timestamp(asint.min(), tz=tz),
Timestamp(asint.max(), tz=tz),
]
# If the DataFrame is empty, set 'top' and 'freq' to None
# to maintain output shape consistency
else:
names += ["top", "freq"]
result += [np.nan, np.nan]
dtype = "object"
from pandas import Series
return Series(result, index=names, name=data.name, dtype=dtype)
def describe_timestamp_1d(data: Series, percentiles: Sequence[float]) -> Series:
"""Describe series containing datetime64 dtype.
Parameters
----------
data : Series
Series to be described.
percentiles : list-like of numbers
The percentiles to include in the output.
"""
# GH-30164
from pandas import Series
formatted_percentiles = format_percentiles(percentiles)
stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"]
d = (
[data.count(), data.mean(), data.min()]
+ data.quantile(percentiles).tolist()
+ [data.max()]
)
return Series(d, index=stat_index, name=data.name)
def select_describe_func(
data: Series,
) -> Callable:
"""Select proper function for describing series based on data type.
Parameters
----------
data : Series
Series to be described.
"""
if is_bool_dtype(data.dtype):
return describe_categorical_1d
elif is_numeric_dtype(data):
return describe_numeric_1d
elif data.dtype.kind == "M" or isinstance(data.dtype, DatetimeTZDtype):
return describe_timestamp_1d
elif data.dtype.kind == "m":
return describe_numeric_1d
else:
return describe_categorical_1d
def _refine_percentiles(
percentiles: Sequence[float] | np.ndarray | None,
) -> npt.NDArray[np.float64]:
"""
Ensure that percentiles are unique and sorted.
Parameters
----------
percentiles : list-like of numbers, optional
The percentiles to include in the output.
"""
if percentiles is None:
return np.array([0.25, 0.5, 0.75])
# explicit conversion of `percentiles` to list
percentiles = list(percentiles)
# get them all to be in [0, 1]
validate_percentile(percentiles)
# median should always be included
if 0.5 not in percentiles:
percentiles.append(0.5)
percentiles = np.asarray(percentiles)
# sort and check for duplicates
unique_pcts = np.unique(percentiles)
assert percentiles is not None
if len(unique_pcts) < len(percentiles):
raise ValueError("percentiles cannot contain duplicates")
return unique_pcts

View File

@ -0,0 +1,269 @@
"""
Implementation of nlargest and nsmallest.
"""
from __future__ import annotations
from collections.abc import (
Hashable,
Sequence,
)
from typing import (
TYPE_CHECKING,
cast,
final,
)
import numpy as np
from pandas._libs import algos as libalgos
from pandas.core.dtypes.common import (
is_bool_dtype,
is_complex_dtype,
is_integer_dtype,
is_list_like,
is_numeric_dtype,
needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import BaseMaskedDtype
if TYPE_CHECKING:
from pandas._typing import (
DtypeObj,
IndexLabel,
)
from pandas import (
DataFrame,
Series,
)
class SelectN:
def __init__(self, obj, n: int, keep: str) -> None:
self.obj = obj
self.n = n
self.keep = keep
if self.keep not in ("first", "last", "all"):
raise ValueError('keep must be either "first", "last" or "all"')
def compute(self, method: str) -> DataFrame | Series:
raise NotImplementedError
@final
def nlargest(self):
return self.compute("nlargest")
@final
def nsmallest(self):
return self.compute("nsmallest")
@final
@staticmethod
def is_valid_dtype_n_method(dtype: DtypeObj) -> bool:
"""
Helper function to determine if dtype is valid for
nsmallest/nlargest methods
"""
if is_numeric_dtype(dtype):
return not is_complex_dtype(dtype)
return needs_i8_conversion(dtype)
class SelectNSeries(SelectN):
"""
Implement n largest/smallest for Series
Parameters
----------
obj : Series
n : int
keep : {'first', 'last'}, default 'first'
Returns
-------
nordered : Series
"""
def compute(self, method: str) -> Series:
from pandas.core.reshape.concat import concat
n = self.n
dtype = self.obj.dtype
if not self.is_valid_dtype_n_method(dtype):
raise TypeError(f"Cannot use method '{method}' with dtype {dtype}")
if n <= 0:
return self.obj[[]]
dropped = self.obj.dropna()
nan_index = self.obj.drop(dropped.index)
# slow method
if n >= len(self.obj):
ascending = method == "nsmallest"
return self.obj.sort_values(ascending=ascending).head(n)
# fast method
new_dtype = dropped.dtype
# Similar to algorithms._ensure_data
arr = dropped._values
if needs_i8_conversion(arr.dtype):
arr = arr.view("i8")
elif isinstance(arr.dtype, BaseMaskedDtype):
arr = arr._data
else:
arr = np.asarray(arr)
if arr.dtype.kind == "b":
arr = arr.view(np.uint8)
if method == "nlargest":
arr = -arr
if is_integer_dtype(new_dtype):
# GH 21426: ensure reverse ordering at boundaries
arr -= 1
elif is_bool_dtype(new_dtype):
# GH 26154: ensure False is smaller than True
arr = 1 - (-arr)
if self.keep == "last":
arr = arr[::-1]
nbase = n
narr = len(arr)
n = min(n, narr)
# arr passed into kth_smallest must be contiguous. We copy
# here because kth_smallest will modify its input
# avoid OOB access with kth_smallest_c when n <= 0
if len(arr) > 0:
kth_val = libalgos.kth_smallest(arr.copy(order="C"), n - 1)
else:
kth_val = np.nan
(ns,) = np.nonzero(arr <= kth_val)
inds = ns[arr[ns].argsort(kind="mergesort")]
if self.keep != "all":
inds = inds[:n]
findex = nbase
else:
if len(inds) < nbase <= len(nan_index) + len(inds):
findex = len(nan_index) + len(inds)
else:
findex = len(inds)
if self.keep == "last":
# reverse indices
inds = narr - 1 - inds
return concat([dropped.iloc[inds], nan_index]).iloc[:findex]
class SelectNFrame(SelectN):
"""
Implement n largest/smallest for DataFrame
Parameters
----------
obj : DataFrame
n : int
keep : {'first', 'last'}, default 'first'
columns : list or str
Returns
-------
nordered : DataFrame
"""
def __init__(self, obj: DataFrame, n: int, keep: str, columns: IndexLabel) -> None:
super().__init__(obj, n, keep)
if not is_list_like(columns) or isinstance(columns, tuple):
columns = [columns]
columns = cast(Sequence[Hashable], columns)
columns = list(columns)
self.columns = columns
def compute(self, method: str) -> DataFrame:
from pandas.core.api import Index
n = self.n
frame = self.obj
columns = self.columns
for column in columns:
dtype = frame[column].dtype
if not self.is_valid_dtype_n_method(dtype):
raise TypeError(
f"Column {repr(column)} has dtype {dtype}, "
f"cannot use method {repr(method)} with this dtype"
)
def get_indexer(current_indexer, other_indexer):
"""
Helper function to concat `current_indexer` and `other_indexer`
depending on `method`
"""
if method == "nsmallest":
return current_indexer.append(other_indexer)
else:
return other_indexer.append(current_indexer)
# Below we save and reset the index in case index contains duplicates
original_index = frame.index
cur_frame = frame = frame.reset_index(drop=True)
cur_n = n
indexer = Index([], dtype=np.int64)
for i, column in enumerate(columns):
# For each column we apply method to cur_frame[column].
# If it's the last column or if we have the number of
# results desired we are done.
# Otherwise there are duplicates of the largest/smallest
# value and we need to look at the rest of the columns
# to determine which of the rows with the largest/smallest
# value in the column to keep.
series = cur_frame[column]
is_last_column = len(columns) - 1 == i
values = getattr(series, method)(
cur_n, keep=self.keep if is_last_column else "all"
)
if is_last_column or len(values) <= cur_n:
indexer = get_indexer(indexer, values.index)
break
# Now find all values which are equal to
# the (nsmallest: largest)/(nlargest: smallest)
# from our series.
border_value = values == values[values.index[-1]]
# Some of these values are among the top-n
# some aren't.
unsafe_values = values[border_value]
# These values are definitely among the top-n
safe_values = values[~border_value]
indexer = get_indexer(indexer, safe_values.index)
# Go on and separate the unsafe_values on the remaining
# columns.
cur_frame = cur_frame.loc[unsafe_values.index]
cur_n = n - len(indexer)
frame = frame.take(indexer)
# Restore the index on frame
frame.index = original_index.take(indexer)
# If there is only one column, the frame is already sorted.
if len(columns) == 1:
return frame
ascending = method == "nsmallest"
return frame.sort_values(columns, ascending=ascending, kind="mergesort")

View File

@ -0,0 +1,272 @@
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Literal,
overload,
)
import warnings
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.cast import maybe_box_native
from pandas.core.dtypes.dtypes import (
BaseMaskedDtype,
ExtensionDtype,
)
from pandas.core import common as com
if TYPE_CHECKING:
from pandas._typing import MutableMappingT
from pandas import DataFrame
@overload
def to_dict(
df: DataFrame,
orient: Literal["dict", "list", "series", "split", "tight", "index"] = ...,
*,
into: type[MutableMappingT] | MutableMappingT,
index: bool = ...,
) -> MutableMappingT:
...
@overload
def to_dict(
df: DataFrame,
orient: Literal["records"],
*,
into: type[MutableMappingT] | MutableMappingT,
index: bool = ...,
) -> list[MutableMappingT]:
...
@overload
def to_dict(
df: DataFrame,
orient: Literal["dict", "list", "series", "split", "tight", "index"] = ...,
*,
into: type[dict] = ...,
index: bool = ...,
) -> dict:
...
@overload
def to_dict(
df: DataFrame,
orient: Literal["records"],
*,
into: type[dict] = ...,
index: bool = ...,
) -> list[dict]:
...
# error: Incompatible default for argument "into" (default has type "type[dict
# [Any, Any]]", argument has type "type[MutableMappingT] | MutableMappingT")
def to_dict(
df: DataFrame,
orient: Literal[
"dict", "list", "series", "split", "tight", "records", "index"
] = "dict",
*,
into: type[MutableMappingT] | MutableMappingT = dict, # type: ignore[assignment]
index: bool = True,
) -> MutableMappingT | list[MutableMappingT]:
"""
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters
(see below).
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'}
Determines the type of the values of the dictionary.
- 'dict' (default) : dict like {column -> {index -> value}}
- 'list' : dict like {column -> [values]}
- 'series' : dict like {column -> Series(values)}
- 'split' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
- 'tight' : dict like
{'index' -> [index], 'columns' -> [columns], 'data' -> [values],
'index_names' -> [index.names], 'column_names' -> [column.names]}
- 'records' : list like
[{column -> value}, ... , {column -> value}]
- 'index' : dict like {index -> {column -> value}}
.. versionadded:: 1.4.0
'tight' as an allowed value for the ``orient`` argument
into : class, default dict
The collections.abc.MutableMapping subclass used for all Mappings
in the return value. Can be the actual class or an empty
instance of the mapping type you want. If you want a
collections.defaultdict, you must pass it initialized.
index : bool, default True
Whether to include the index item (and index_names item if `orient`
is 'tight') in the returned dictionary. Can only be ``False``
when `orient` is 'split' or 'tight'.
.. versionadded:: 2.0.0
Returns
-------
dict, list or collections.abc.Mapping
Return a collections.abc.MutableMapping object representing the
DataFrame. The resulting transformation depends on the `orient` parameter.
"""
if not df.columns.is_unique:
warnings.warn(
"DataFrame columns are not unique, some columns will be omitted.",
UserWarning,
stacklevel=find_stack_level(),
)
# GH16122
into_c = com.standardize_mapping(into)
# error: Incompatible types in assignment (expression has type "str",
# variable has type "Literal['dict', 'list', 'series', 'split', 'tight',
# 'records', 'index']")
orient = orient.lower() # type: ignore[assignment]
if not index and orient not in ["split", "tight"]:
raise ValueError(
"'index=False' is only valid when 'orient' is 'split' or 'tight'"
)
if orient == "series":
# GH46470 Return quickly if orient series to avoid creating dtype objects
return into_c((k, v) for k, v in df.items())
box_native_indices = [
i
for i, col_dtype in enumerate(df.dtypes.values)
if col_dtype == np.dtype(object) or isinstance(col_dtype, ExtensionDtype)
]
box_na_values = [
lib.no_default if not isinstance(col_dtype, BaseMaskedDtype) else libmissing.NA
for i, col_dtype in enumerate(df.dtypes.values)
]
are_all_object_dtype_cols = len(box_native_indices) == len(df.dtypes)
if orient == "dict":
return into_c((k, v.to_dict(into=into)) for k, v in df.items())
elif orient == "list":
object_dtype_indices_as_set: set[int] = set(box_native_indices)
return into_c(
(
k,
list(map(maybe_box_native, v.to_numpy(na_value=box_na_values[i])))
if i in object_dtype_indices_as_set
else list(map(maybe_box_native, v.to_numpy())),
)
for i, (k, v) in enumerate(df.items())
)
elif orient == "split":
data = df._create_data_for_split_and_tight_to_dict(
are_all_object_dtype_cols, box_native_indices
)
return into_c(
((("index", df.index.tolist()),) if index else ())
+ (
("columns", df.columns.tolist()),
("data", data),
)
)
elif orient == "tight":
data = df._create_data_for_split_and_tight_to_dict(
are_all_object_dtype_cols, box_native_indices
)
return into_c(
((("index", df.index.tolist()),) if index else ())
+ (
("columns", df.columns.tolist()),
(
"data",
[
list(map(maybe_box_native, t))
for t in df.itertuples(index=False, name=None)
],
),
)
+ ((("index_names", list(df.index.names)),) if index else ())
+ (("column_names", list(df.columns.names)),)
)
elif orient == "records":
columns = df.columns.tolist()
if are_all_object_dtype_cols:
rows = (
dict(zip(columns, row)) for row in df.itertuples(index=False, name=None)
)
return [
into_c((k, maybe_box_native(v)) for k, v in row.items()) for row in rows
]
else:
data = [
into_c(zip(columns, t)) for t in df.itertuples(index=False, name=None)
]
if box_native_indices:
object_dtype_indices_as_set = set(box_native_indices)
object_dtype_cols = {
col
for i, col in enumerate(df.columns)
if i in object_dtype_indices_as_set
}
for row in data:
for col in object_dtype_cols:
row[col] = maybe_box_native(row[col])
return data
elif orient == "index":
if not df.index.is_unique:
raise ValueError("DataFrame index must be unique for orient='index'.")
columns = df.columns.tolist()
if are_all_object_dtype_cols:
return into_c(
(t[0], dict(zip(df.columns, map(maybe_box_native, t[1:]))))
for t in df.itertuples(name=None)
)
elif box_native_indices:
object_dtype_indices_as_set = set(box_native_indices)
is_object_dtype_by_index = [
i in object_dtype_indices_as_set for i in range(len(df.columns))
]
return into_c(
(
t[0],
{
columns[i]: maybe_box_native(v)
if is_object_dtype_by_index[i]
else v
for i, v in enumerate(t[1:])
},
)
for t in df.itertuples(name=None)
)
else:
return into_c(
(t[0], dict(zip(df.columns, t[1:]))) for t in df.itertuples(name=None)
)
else:
raise ValueError(f"orient '{orient}' not understood")