Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@@ -0,0 +1,583 @@
"""
Extend pandas with custom array types.
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
TypeVar,
cast,
overload,
)
import numpy as np
from pandas._libs import missing as libmissing
from pandas._libs.hashtable import object_hash
from pandas._libs.properties import cache_readonly
from pandas.errors import AbstractMethodError
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCIndex,
ABCSeries,
)
if TYPE_CHECKING:
from pandas._typing import (
DtypeObj,
Self,
Shape,
npt,
type_t,
)
from pandas import Index
from pandas.core.arrays import ExtensionArray
# To parameterize on same ExtensionDtype
ExtensionDtypeT = TypeVar("ExtensionDtypeT", bound="ExtensionDtype")
class ExtensionDtype:
"""
A custom data type, to be paired with an ExtensionArray.
See Also
--------
extensions.register_extension_dtype: Register an ExtensionType
with pandas as class decorator.
extensions.ExtensionArray: Abstract base class for custom 1-D array types.
Notes
-----
The interface includes the following abstract methods that must
be implemented by subclasses:
* type
* name
* construct_array_type
The following attributes and methods influence the behavior of the dtype in
pandas operations
* _is_numeric
* _is_boolean
* _get_common_dtype
The `na_value` class attribute can be used to set the default NA value
for this type. :attr:`numpy.nan` is used by default.
ExtensionDtypes are required to be hashable. The base class provides
a default implementation, which relies on the ``_metadata`` class
attribute. ``_metadata`` should be a tuple containing the strings
that define your data type. For example, with ``PeriodDtype`` that's
the ``freq`` attribute.
**If you have a parametrized dtype you should set the ``_metadata``
class property**.
Ideally, the attributes in ``_metadata`` will match the
parameters to your ``ExtensionDtype.__init__`` (if any). If any of
the attributes in ``_metadata`` don't implement the standard
``__eq__`` or ``__hash__``, the default implementations here will not
work.
Examples
--------
For interaction with Apache Arrow (pyarrow), a ``__from_arrow__`` method
can be implemented: this method receives a pyarrow Array or ChunkedArray
as only argument and is expected to return the appropriate pandas
ExtensionArray for this dtype and the passed values:
>>> import pyarrow
>>> from pandas.api.extensions import ExtensionArray
>>> class ExtensionDtype:
... def __from_arrow__(
... self,
... array: pyarrow.Array | pyarrow.ChunkedArray
... ) -> ExtensionArray:
... ...
This class does not inherit from 'abc.ABCMeta' for performance reasons.
Methods and properties required by the interface raise
``pandas.errors.AbstractMethodError`` and no ``register`` method is
provided for registering virtual subclasses.
"""
_metadata: tuple[str, ...] = ()
def __str__(self) -> str:
return self.name
def __eq__(self, other: object) -> bool:
"""
Check whether 'other' is equal to self.
By default, 'other' is considered equal if either
* it's a string matching 'self.name'.
* it's an instance of this type and all of the attributes
in ``self._metadata`` are equal between `self` and `other`.
Parameters
----------
other : Any
Returns
-------
bool
"""
if isinstance(other, str):
try:
other = self.construct_from_string(other)
except TypeError:
return False
if isinstance(other, type(self)):
return all(
getattr(self, attr) == getattr(other, attr) for attr in self._metadata
)
return False
def __hash__(self) -> int:
# for python>=3.10, different nan objects have different hashes
# we need to avoid that and thus use hash function with old behavior
return object_hash(tuple(getattr(self, attr) for attr in self._metadata))
def __ne__(self, other: object) -> bool:
return not self.__eq__(other)
@property
def na_value(self) -> object:
"""
Default NA value to use for this type.
This is used in e.g. ExtensionArray.take. This should be the
user-facing "boxed" version of the NA value, not the physical NA value
for storage. e.g. for JSONArray, this is an empty dictionary.
"""
return np.nan
@property
def type(self) -> type_t[Any]:
"""
The scalar type for the array, e.g. ``int``
It's expected ``ExtensionArray[item]`` returns an instance
of ``ExtensionDtype.type`` for scalar ``item``, assuming
that value is valid (not NA). NA values do not need to be
instances of `type`.
"""
raise AbstractMethodError(self)
@property
def kind(self) -> str:
"""
A character code (one of 'biufcmMOSUV'), default 'O'
This should match the NumPy dtype used when the array is
converted to an ndarray, which is probably 'O' for object if
the extension type cannot be represented as a built-in NumPy
type.
See Also
--------
numpy.dtype.kind
"""
return "O"
@property
def name(self) -> str:
"""
A string identifying the data type.
Will be used for display in, e.g. ``Series.dtype``
"""
raise AbstractMethodError(self)
@property
def names(self) -> list[str] | None:
"""
Ordered list of field names, or None if there are no fields.
This is for compatibility with NumPy arrays, and may be removed in the
future.
"""
return None
@classmethod
def construct_array_type(cls) -> type_t[ExtensionArray]:
"""
Return the array type associated with this dtype.
Returns
-------
type
"""
raise AbstractMethodError(cls)
def empty(self, shape: Shape) -> ExtensionArray:
"""
Construct an ExtensionArray of this dtype with the given shape.
Analogous to numpy.empty.
Parameters
----------
shape : int or tuple[int]
Returns
-------
ExtensionArray
"""
cls = self.construct_array_type()
return cls._empty(shape, dtype=self)
@classmethod
def construct_from_string(cls, string: str) -> Self:
r"""
Construct this type from a string.
This is useful mainly for data types that accept parameters.
For example, a period dtype accepts a frequency parameter that
can be set as ``period[h]`` (where H means hourly frequency).
By default, in the abstract class, just the name of the type is
expected. But subclasses can overwrite this method to accept
parameters.
Parameters
----------
string : str
The name of the type, for example ``category``.
Returns
-------
ExtensionDtype
Instance of the dtype.
Raises
------
TypeError
If a class cannot be constructed from this 'string'.
Examples
--------
For extension dtypes with arguments the following may be an
adequate implementation.
>>> import re
>>> @classmethod
... def construct_from_string(cls, string):
... pattern = re.compile(r"^my_type\[(?P<arg_name>.+)\]$")
... match = pattern.match(string)
... if match:
... return cls(**match.groupdict())
... else:
... raise TypeError(
... f"Cannot construct a '{cls.__name__}' from '{string}'"
... )
"""
if not isinstance(string, str):
raise TypeError(
f"'construct_from_string' expects a string, got {type(string)}"
)
# error: Non-overlapping equality check (left operand type: "str", right
# operand type: "Callable[[ExtensionDtype], str]") [comparison-overlap]
assert isinstance(cls.name, str), (cls, type(cls.name))
if string != cls.name:
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
return cls()
@classmethod
def is_dtype(cls, dtype: object) -> bool:
"""
Check if we match 'dtype'.
Parameters
----------
dtype : object
The object to check.
Returns
-------
bool
Notes
-----
The default implementation is True if
1. ``cls.construct_from_string(dtype)`` is an instance
of ``cls``.
2. ``dtype`` is an object and is an instance of ``cls``
3. ``dtype`` has a ``dtype`` attribute, and any of the above
conditions is true for ``dtype.dtype``.
"""
dtype = getattr(dtype, "dtype", dtype)
if isinstance(dtype, (ABCSeries, ABCIndex, ABCDataFrame, np.dtype)):
# https://github.com/pandas-dev/pandas/issues/22960
# avoid passing data to `construct_from_string`. This could
# cause a FutureWarning from numpy about failing elementwise
# comparison from, e.g., comparing DataFrame == 'category'.
return False
elif dtype is None:
return False
elif isinstance(dtype, cls):
return True
if isinstance(dtype, str):
try:
return cls.construct_from_string(dtype) is not None
except TypeError:
return False
return False
@property
def _is_numeric(self) -> bool:
"""
Whether columns with this dtype should be considered numeric.
By default ExtensionDtypes are assumed to be non-numeric.
They'll be excluded from operations that exclude non-numeric
columns, like (groupby) reductions, plotting, etc.
"""
return False
@property
def _is_boolean(self) -> bool:
"""
Whether this dtype should be considered boolean.
By default, ExtensionDtypes are assumed to be non-numeric.
Setting this to True will affect the behavior of several places,
e.g.
* is_bool
* boolean indexing
Returns
-------
bool
"""
return False
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
"""
Return the common dtype, if one exists.
Used in `find_common_type` implementation. This is for example used
to determine the resulting dtype in a concat operation.
If no common dtype exists, return None (which gives the other dtypes
the chance to determine a common dtype). If all dtypes in the list
return None, then the common dtype will be "object" dtype (this means
it is never needed to return "object" dtype from this method itself).
Parameters
----------
dtypes : list of dtypes
The dtypes for which to determine a common dtype. This is a list
of np.dtype or ExtensionDtype instances.
Returns
-------
Common dtype (np.dtype or ExtensionDtype) or None
"""
if len(set(dtypes)) == 1:
# only itself
return self
else:
return None
@property
def _can_hold_na(self) -> bool:
"""
Can arrays of this dtype hold NA values?
"""
return True
@property
def _is_immutable(self) -> bool:
"""
Can arrays with this dtype be modified with __setitem__? If not, return
True.
Immutable arrays are expected to raise TypeError on __setitem__ calls.
"""
return False
@cache_readonly
def index_class(self) -> type_t[Index]:
"""
The Index subclass to return from Index.__new__ when this dtype is
encountered.
"""
from pandas import Index
return Index
@property
def _supports_2d(self) -> bool:
"""
Do ExtensionArrays with this dtype support 2D arrays?
Historically ExtensionArrays were limited to 1D. By returning True here,
authors can indicate that their arrays support 2D instances. This can
improve performance in some cases, particularly operations with `axis=1`.
Arrays that support 2D values should:
- implement Array.reshape
- subclass the Dim2CompatTests in tests.extension.base
- _concat_same_type should support `axis` keyword
- _reduce and reductions should support `axis` keyword
"""
return False
@property
def _can_fast_transpose(self) -> bool:
"""
Is transposing an array with this dtype zero-copy?
Only relevant for cases where _supports_2d is True.
"""
return False
class StorageExtensionDtype(ExtensionDtype):
"""ExtensionDtype that may be backed by more than one implementation."""
name: str
_metadata = ("storage",)
def __init__(self, storage: str | None = None) -> None:
self.storage = storage
def __repr__(self) -> str:
return f"{self.name}[{self.storage}]"
def __str__(self) -> str:
return self.name
def __eq__(self, other: object) -> bool:
if isinstance(other, str) and other == self.name:
return True
return super().__eq__(other)
def __hash__(self) -> int:
# custom __eq__ so have to override __hash__
return super().__hash__()
@property
def na_value(self) -> libmissing.NAType:
return libmissing.NA
def register_extension_dtype(cls: type_t[ExtensionDtypeT]) -> type_t[ExtensionDtypeT]:
"""
Register an ExtensionType with pandas as class decorator.
This enables operations like ``.astype(name)`` for the name
of the ExtensionDtype.
Returns
-------
callable
A class decorator.
Examples
--------
>>> from pandas.api.extensions import register_extension_dtype, ExtensionDtype
>>> @register_extension_dtype
... class MyExtensionDtype(ExtensionDtype):
... name = "myextension"
"""
_registry.register(cls)
return cls
class Registry:
"""
Registry for dtype inference.
The registry allows one to map a string repr of a extension
dtype to an extension dtype. The string alias can be used in several
places, including
* Series and Index constructors
* :meth:`pandas.array`
* :meth:`pandas.Series.astype`
Multiple extension types can be registered.
These are tried in order.
"""
def __init__(self) -> None:
self.dtypes: list[type_t[ExtensionDtype]] = []
def register(self, dtype: type_t[ExtensionDtype]) -> None:
"""
Parameters
----------
dtype : ExtensionDtype class
"""
if not issubclass(dtype, ExtensionDtype):
raise ValueError("can only register pandas extension dtypes")
self.dtypes.append(dtype)
@overload
def find(self, dtype: type_t[ExtensionDtypeT]) -> type_t[ExtensionDtypeT]:
...
@overload
def find(self, dtype: ExtensionDtypeT) -> ExtensionDtypeT:
...
@overload
def find(self, dtype: str) -> ExtensionDtype | None:
...
@overload
def find(
self, dtype: npt.DTypeLike
) -> type_t[ExtensionDtype] | ExtensionDtype | None:
...
def find(
self, dtype: type_t[ExtensionDtype] | ExtensionDtype | npt.DTypeLike
) -> type_t[ExtensionDtype] | ExtensionDtype | None:
"""
Parameters
----------
dtype : ExtensionDtype class or instance or str or numpy dtype or python type
Returns
-------
return the first matching dtype, otherwise return None
"""
if not isinstance(dtype, str):
dtype_type: type_t
if not isinstance(dtype, type):
dtype_type = type(dtype)
else:
dtype_type = dtype
if issubclass(dtype_type, ExtensionDtype):
# cast needed here as mypy doesn't know we have figured
# out it is an ExtensionDtype or type_t[ExtensionDtype]
return cast("ExtensionDtype | type_t[ExtensionDtype]", dtype)
return None
for dtype_type in self.dtypes:
try:
return dtype_type.construct_from_string(dtype)
except TypeError:
pass
return None
_registry = Registry()