Updated script that can be controled by Nodejs web app
This commit is contained in:
@@ -0,0 +1,19 @@
|
||||
from pandas.core.arrays.sparse.accessor import (
|
||||
SparseAccessor,
|
||||
SparseFrameAccessor,
|
||||
)
|
||||
from pandas.core.arrays.sparse.array import (
|
||||
BlockIndex,
|
||||
IntIndex,
|
||||
SparseArray,
|
||||
make_sparse_index,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"BlockIndex",
|
||||
"IntIndex",
|
||||
"make_sparse_index",
|
||||
"SparseAccessor",
|
||||
"SparseArray",
|
||||
"SparseFrameAccessor",
|
||||
]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,414 @@
|
||||
"""Sparse accessor"""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
|
||||
from pandas.core.dtypes.cast import find_common_type
|
||||
from pandas.core.dtypes.dtypes import SparseDtype
|
||||
|
||||
from pandas.core.accessor import (
|
||||
PandasDelegate,
|
||||
delegate_names,
|
||||
)
|
||||
from pandas.core.arrays.sparse.array import SparseArray
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
|
||||
|
||||
class BaseAccessor:
|
||||
_validation_msg = "Can only use the '.sparse' accessor with Sparse data."
|
||||
|
||||
def __init__(self, data=None) -> None:
|
||||
self._parent = data
|
||||
self._validate(data)
|
||||
|
||||
def _validate(self, data):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@delegate_names(
|
||||
SparseArray, ["npoints", "density", "fill_value", "sp_values"], typ="property"
|
||||
)
|
||||
class SparseAccessor(BaseAccessor, PandasDelegate):
|
||||
"""
|
||||
Accessor for SparseSparse from other sparse matrix data types.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> ser = pd.Series([0, 0, 2, 2, 2], dtype="Sparse[int]")
|
||||
>>> ser.sparse.density
|
||||
0.6
|
||||
>>> ser.sparse.sp_values
|
||||
array([2, 2, 2])
|
||||
"""
|
||||
|
||||
def _validate(self, data):
|
||||
if not isinstance(data.dtype, SparseDtype):
|
||||
raise AttributeError(self._validation_msg)
|
||||
|
||||
def _delegate_property_get(self, name: str, *args, **kwargs):
|
||||
return getattr(self._parent.array, name)
|
||||
|
||||
def _delegate_method(self, name: str, *args, **kwargs):
|
||||
if name == "from_coo":
|
||||
return self.from_coo(*args, **kwargs)
|
||||
elif name == "to_coo":
|
||||
return self.to_coo(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
@classmethod
|
||||
def from_coo(cls, A, dense_index: bool = False) -> Series:
|
||||
"""
|
||||
Create a Series with sparse values from a scipy.sparse.coo_matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : scipy.sparse.coo_matrix
|
||||
dense_index : bool, default False
|
||||
If False (default), the index consists of only the
|
||||
coords of the non-null entries of the original coo_matrix.
|
||||
If True, the index consists of the full sorted
|
||||
(row, col) coordinates of the coo_matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
s : Series
|
||||
A Series with sparse values.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from scipy import sparse
|
||||
|
||||
>>> A = sparse.coo_matrix(
|
||||
... ([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)
|
||||
... )
|
||||
>>> A
|
||||
<COOrdinate sparse matrix of dtype 'float64'
|
||||
with 3 stored elements and shape (3, 4)>
|
||||
|
||||
>>> A.todense()
|
||||
matrix([[0., 0., 1., 2.],
|
||||
[3., 0., 0., 0.],
|
||||
[0., 0., 0., 0.]])
|
||||
|
||||
>>> ss = pd.Series.sparse.from_coo(A)
|
||||
>>> ss
|
||||
0 2 1.0
|
||||
3 2.0
|
||||
1 0 3.0
|
||||
dtype: Sparse[float64, nan]
|
||||
"""
|
||||
from pandas import Series
|
||||
from pandas.core.arrays.sparse.scipy_sparse import coo_to_sparse_series
|
||||
|
||||
result = coo_to_sparse_series(A, dense_index=dense_index)
|
||||
result = Series(result.array, index=result.index, copy=False)
|
||||
|
||||
return result
|
||||
|
||||
def to_coo(self, row_levels=(0,), column_levels=(1,), sort_labels: bool = False):
|
||||
"""
|
||||
Create a scipy.sparse.coo_matrix from a Series with MultiIndex.
|
||||
|
||||
Use row_levels and column_levels to determine the row and column
|
||||
coordinates respectively. row_levels and column_levels are the names
|
||||
(labels) or numbers of the levels. {row_levels, column_levels} must be
|
||||
a partition of the MultiIndex level names (or numbers).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
row_levels : tuple/list
|
||||
column_levels : tuple/list
|
||||
sort_labels : bool, default False
|
||||
Sort the row and column labels before forming the sparse matrix.
|
||||
When `row_levels` and/or `column_levels` refer to a single level,
|
||||
set to `True` for a faster execution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : scipy.sparse.coo_matrix
|
||||
rows : list (row labels)
|
||||
columns : list (column labels)
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
|
||||
>>> s.index = pd.MultiIndex.from_tuples(
|
||||
... [
|
||||
... (1, 2, "a", 0),
|
||||
... (1, 2, "a", 1),
|
||||
... (1, 1, "b", 0),
|
||||
... (1, 1, "b", 1),
|
||||
... (2, 1, "b", 0),
|
||||
... (2, 1, "b", 1)
|
||||
... ],
|
||||
... names=["A", "B", "C", "D"],
|
||||
... )
|
||||
>>> s
|
||||
A B C D
|
||||
1 2 a 0 3.0
|
||||
1 NaN
|
||||
1 b 0 1.0
|
||||
1 3.0
|
||||
2 1 b 0 NaN
|
||||
1 NaN
|
||||
dtype: float64
|
||||
|
||||
>>> ss = s.astype("Sparse")
|
||||
>>> ss
|
||||
A B C D
|
||||
1 2 a 0 3.0
|
||||
1 NaN
|
||||
1 b 0 1.0
|
||||
1 3.0
|
||||
2 1 b 0 NaN
|
||||
1 NaN
|
||||
dtype: Sparse[float64, nan]
|
||||
|
||||
>>> A, rows, columns = ss.sparse.to_coo(
|
||||
... row_levels=["A", "B"], column_levels=["C", "D"], sort_labels=True
|
||||
... )
|
||||
>>> A
|
||||
<COOrdinate sparse matrix of dtype 'float64'
|
||||
with 3 stored elements and shape (3, 4)>
|
||||
>>> A.todense()
|
||||
matrix([[0., 0., 1., 3.],
|
||||
[3., 0., 0., 0.],
|
||||
[0., 0., 0., 0.]])
|
||||
|
||||
>>> rows
|
||||
[(1, 1), (1, 2), (2, 1)]
|
||||
>>> columns
|
||||
[('a', 0), ('a', 1), ('b', 0), ('b', 1)]
|
||||
"""
|
||||
from pandas.core.arrays.sparse.scipy_sparse import sparse_series_to_coo
|
||||
|
||||
A, rows, columns = sparse_series_to_coo(
|
||||
self._parent, row_levels, column_levels, sort_labels=sort_labels
|
||||
)
|
||||
return A, rows, columns
|
||||
|
||||
def to_dense(self) -> Series:
|
||||
"""
|
||||
Convert a Series from sparse values to dense.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Series:
|
||||
A Series with the same values, stored as a dense array.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> series = pd.Series(pd.arrays.SparseArray([0, 1, 0]))
|
||||
>>> series
|
||||
0 0
|
||||
1 1
|
||||
2 0
|
||||
dtype: Sparse[int64, 0]
|
||||
|
||||
>>> series.sparse.to_dense()
|
||||
0 0
|
||||
1 1
|
||||
2 0
|
||||
dtype: int64
|
||||
"""
|
||||
from pandas import Series
|
||||
|
||||
return Series(
|
||||
self._parent.array.to_dense(),
|
||||
index=self._parent.index,
|
||||
name=self._parent.name,
|
||||
copy=False,
|
||||
)
|
||||
|
||||
|
||||
class SparseFrameAccessor(BaseAccessor, PandasDelegate):
|
||||
"""
|
||||
DataFrame accessor for sparse data.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame({"a": [1, 2, 0, 0],
|
||||
... "b": [3, 0, 0, 4]}, dtype="Sparse[int]")
|
||||
>>> df.sparse.density
|
||||
0.5
|
||||
"""
|
||||
|
||||
def _validate(self, data):
|
||||
dtypes = data.dtypes
|
||||
if not all(isinstance(t, SparseDtype) for t in dtypes):
|
||||
raise AttributeError(self._validation_msg)
|
||||
|
||||
@classmethod
|
||||
def from_spmatrix(cls, data, index=None, columns=None) -> DataFrame:
|
||||
"""
|
||||
Create a new DataFrame from a scipy sparse matrix.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : scipy.sparse.spmatrix
|
||||
Must be convertible to csc format.
|
||||
index, columns : Index, optional
|
||||
Row and column labels to use for the resulting DataFrame.
|
||||
Defaults to a RangeIndex.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
Each column of the DataFrame is stored as a
|
||||
:class:`arrays.SparseArray`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import scipy.sparse
|
||||
>>> mat = scipy.sparse.eye(3, dtype=float)
|
||||
>>> pd.DataFrame.sparse.from_spmatrix(mat)
|
||||
0 1 2
|
||||
0 1.0 0 0
|
||||
1 0 1.0 0
|
||||
2 0 0 1.0
|
||||
"""
|
||||
from pandas._libs.sparse import IntIndex
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
data = data.tocsc()
|
||||
index, columns = cls._prep_index(data, index, columns)
|
||||
n_rows, n_columns = data.shape
|
||||
# We need to make sure indices are sorted, as we create
|
||||
# IntIndex with no input validation (i.e. check_integrity=False ).
|
||||
# Indices may already be sorted in scipy in which case this adds
|
||||
# a small overhead.
|
||||
data.sort_indices()
|
||||
indices = data.indices
|
||||
indptr = data.indptr
|
||||
array_data = data.data
|
||||
dtype = SparseDtype(array_data.dtype, 0)
|
||||
arrays = []
|
||||
for i in range(n_columns):
|
||||
sl = slice(indptr[i], indptr[i + 1])
|
||||
idx = IntIndex(n_rows, indices[sl], check_integrity=False)
|
||||
arr = SparseArray._simple_new(array_data[sl], idx, dtype)
|
||||
arrays.append(arr)
|
||||
return DataFrame._from_arrays(
|
||||
arrays, columns=columns, index=index, verify_integrity=False
|
||||
)
|
||||
|
||||
def to_dense(self) -> DataFrame:
|
||||
"""
|
||||
Convert a DataFrame with sparse values to dense.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
A DataFrame with the same values stored as dense arrays.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 1, 0])})
|
||||
>>> df.sparse.to_dense()
|
||||
A
|
||||
0 0
|
||||
1 1
|
||||
2 0
|
||||
"""
|
||||
from pandas import DataFrame
|
||||
|
||||
data = {k: v.array.to_dense() for k, v in self._parent.items()}
|
||||
return DataFrame(data, index=self._parent.index, columns=self._parent.columns)
|
||||
|
||||
def to_coo(self):
|
||||
"""
|
||||
Return the contents of the frame as a sparse SciPy COO matrix.
|
||||
|
||||
Returns
|
||||
-------
|
||||
scipy.sparse.spmatrix
|
||||
If the caller is heterogeneous and contains booleans or objects,
|
||||
the result will be of dtype=object. See Notes.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The dtype will be the lowest-common-denominator type (implicit
|
||||
upcasting); that is to say if the dtypes (even of numeric types)
|
||||
are mixed, the one that accommodates all will be chosen.
|
||||
|
||||
e.g. If the dtypes are float16 and float32, dtype will be upcast to
|
||||
float32. By numpy.find_common_type convention, mixing int64 and
|
||||
and uint64 will result in a float64 dtype.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 1, 0, 1])})
|
||||
>>> df.sparse.to_coo()
|
||||
<COOrdinate sparse matrix of dtype 'int64'
|
||||
with 2 stored elements and shape (4, 1)>
|
||||
"""
|
||||
import_optional_dependency("scipy")
|
||||
from scipy.sparse import coo_matrix
|
||||
|
||||
dtype = find_common_type(self._parent.dtypes.to_list())
|
||||
if isinstance(dtype, SparseDtype):
|
||||
dtype = dtype.subtype
|
||||
|
||||
cols, rows, data = [], [], []
|
||||
for col, (_, ser) in enumerate(self._parent.items()):
|
||||
sp_arr = ser.array
|
||||
if sp_arr.fill_value != 0:
|
||||
raise ValueError("fill value must be 0 when converting to COO matrix")
|
||||
|
||||
row = sp_arr.sp_index.indices
|
||||
cols.append(np.repeat(col, len(row)))
|
||||
rows.append(row)
|
||||
data.append(sp_arr.sp_values.astype(dtype, copy=False))
|
||||
|
||||
cols = np.concatenate(cols)
|
||||
rows = np.concatenate(rows)
|
||||
data = np.concatenate(data)
|
||||
return coo_matrix((data, (rows, cols)), shape=self._parent.shape)
|
||||
|
||||
@property
|
||||
def density(self) -> float:
|
||||
"""
|
||||
Ratio of non-sparse points to total (dense) data points.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame({"A": pd.arrays.SparseArray([0, 1, 0, 1])})
|
||||
>>> df.sparse.density
|
||||
0.5
|
||||
"""
|
||||
tmp = np.mean([column.array.density for _, column in self._parent.items()])
|
||||
return tmp
|
||||
|
||||
@staticmethod
|
||||
def _prep_index(data, index, columns):
|
||||
from pandas.core.indexes.api import (
|
||||
default_index,
|
||||
ensure_index,
|
||||
)
|
||||
|
||||
N, K = data.shape
|
||||
if index is None:
|
||||
index = default_index(N)
|
||||
else:
|
||||
index = ensure_index(index)
|
||||
if columns is None:
|
||||
columns = default_index(K)
|
||||
else:
|
||||
columns = ensure_index(columns)
|
||||
|
||||
if len(columns) != K:
|
||||
raise ValueError(f"Column length mismatch: {len(columns)} vs. {K}")
|
||||
if len(index) != N:
|
||||
raise ValueError(f"Index length mismatch: {len(index)} vs. {N}")
|
||||
return index, columns
|
1929
lib/python3.13/site-packages/pandas/core/arrays/sparse/array.py
Normal file
1929
lib/python3.13/site-packages/pandas/core/arrays/sparse/array.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,207 @@
|
||||
"""
|
||||
Interaction with scipy.sparse matrices.
|
||||
|
||||
Currently only includes to_coo helpers.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pandas._libs import lib
|
||||
|
||||
from pandas.core.dtypes.missing import notna
|
||||
|
||||
from pandas.core.algorithms import factorize
|
||||
from pandas.core.indexes.api import MultiIndex
|
||||
from pandas.core.series import Series
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Iterable
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse
|
||||
|
||||
from pandas._typing import (
|
||||
IndexLabel,
|
||||
npt,
|
||||
)
|
||||
|
||||
|
||||
def _check_is_partition(parts: Iterable, whole: Iterable):
|
||||
whole = set(whole)
|
||||
parts = [set(x) for x in parts]
|
||||
if set.intersection(*parts) != set():
|
||||
raise ValueError("Is not a partition because intersection is not null.")
|
||||
if set.union(*parts) != whole:
|
||||
raise ValueError("Is not a partition because union is not the whole.")
|
||||
|
||||
|
||||
def _levels_to_axis(
|
||||
ss,
|
||||
levels: tuple[int] | list[int],
|
||||
valid_ilocs: npt.NDArray[np.intp],
|
||||
sort_labels: bool = False,
|
||||
) -> tuple[npt.NDArray[np.intp], list[IndexLabel]]:
|
||||
"""
|
||||
For a MultiIndexed sparse Series `ss`, return `ax_coords` and `ax_labels`,
|
||||
where `ax_coords` are the coordinates along one of the two axes of the
|
||||
destination sparse matrix, and `ax_labels` are the labels from `ss`' Index
|
||||
which correspond to these coordinates.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ss : Series
|
||||
levels : tuple/list
|
||||
valid_ilocs : numpy.ndarray
|
||||
Array of integer positions of valid values for the sparse matrix in ss.
|
||||
sort_labels : bool, default False
|
||||
Sort the axis labels before forming the sparse matrix. When `levels`
|
||||
refers to a single level, set to True for a faster execution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ax_coords : numpy.ndarray (axis coordinates)
|
||||
ax_labels : list (axis labels)
|
||||
"""
|
||||
# Since the labels are sorted in `Index.levels`, when we wish to sort and
|
||||
# there is only one level of the MultiIndex for this axis, the desired
|
||||
# output can be obtained in the following simpler, more efficient way.
|
||||
if sort_labels and len(levels) == 1:
|
||||
ax_coords = ss.index.codes[levels[0]][valid_ilocs]
|
||||
ax_labels = ss.index.levels[levels[0]]
|
||||
|
||||
else:
|
||||
levels_values = lib.fast_zip(
|
||||
[ss.index.get_level_values(lvl).to_numpy() for lvl in levels]
|
||||
)
|
||||
codes, ax_labels = factorize(levels_values, sort=sort_labels)
|
||||
ax_coords = codes[valid_ilocs]
|
||||
|
||||
ax_labels = ax_labels.tolist()
|
||||
return ax_coords, ax_labels
|
||||
|
||||
|
||||
def _to_ijv(
|
||||
ss,
|
||||
row_levels: tuple[int] | list[int] = (0,),
|
||||
column_levels: tuple[int] | list[int] = (1,),
|
||||
sort_labels: bool = False,
|
||||
) -> tuple[
|
||||
np.ndarray,
|
||||
npt.NDArray[np.intp],
|
||||
npt.NDArray[np.intp],
|
||||
list[IndexLabel],
|
||||
list[IndexLabel],
|
||||
]:
|
||||
"""
|
||||
For an arbitrary MultiIndexed sparse Series return (v, i, j, ilabels,
|
||||
jlabels) where (v, (i, j)) is suitable for passing to scipy.sparse.coo
|
||||
constructor, and ilabels and jlabels are the row and column labels
|
||||
respectively.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ss : Series
|
||||
row_levels : tuple/list
|
||||
column_levels : tuple/list
|
||||
sort_labels : bool, default False
|
||||
Sort the row and column labels before forming the sparse matrix.
|
||||
When `row_levels` and/or `column_levels` refer to a single level,
|
||||
set to `True` for a faster execution.
|
||||
|
||||
Returns
|
||||
-------
|
||||
values : numpy.ndarray
|
||||
Valid values to populate a sparse matrix, extracted from
|
||||
ss.
|
||||
i_coords : numpy.ndarray (row coordinates of the values)
|
||||
j_coords : numpy.ndarray (column coordinates of the values)
|
||||
i_labels : list (row labels)
|
||||
j_labels : list (column labels)
|
||||
"""
|
||||
# index and column levels must be a partition of the index
|
||||
_check_is_partition([row_levels, column_levels], range(ss.index.nlevels))
|
||||
# From the sparse Series, get the integer indices and data for valid sparse
|
||||
# entries.
|
||||
sp_vals = ss.array.sp_values
|
||||
na_mask = notna(sp_vals)
|
||||
values = sp_vals[na_mask]
|
||||
valid_ilocs = ss.array.sp_index.indices[na_mask]
|
||||
|
||||
i_coords, i_labels = _levels_to_axis(
|
||||
ss, row_levels, valid_ilocs, sort_labels=sort_labels
|
||||
)
|
||||
|
||||
j_coords, j_labels = _levels_to_axis(
|
||||
ss, column_levels, valid_ilocs, sort_labels=sort_labels
|
||||
)
|
||||
|
||||
return values, i_coords, j_coords, i_labels, j_labels
|
||||
|
||||
|
||||
def sparse_series_to_coo(
|
||||
ss: Series,
|
||||
row_levels: Iterable[int] = (0,),
|
||||
column_levels: Iterable[int] = (1,),
|
||||
sort_labels: bool = False,
|
||||
) -> tuple[scipy.sparse.coo_matrix, list[IndexLabel], list[IndexLabel]]:
|
||||
"""
|
||||
Convert a sparse Series to a scipy.sparse.coo_matrix using index
|
||||
levels row_levels, column_levels as the row and column
|
||||
labels respectively. Returns the sparse_matrix, row and column labels.
|
||||
"""
|
||||
import scipy.sparse
|
||||
|
||||
if ss.index.nlevels < 2:
|
||||
raise ValueError("to_coo requires MultiIndex with nlevels >= 2.")
|
||||
if not ss.index.is_unique:
|
||||
raise ValueError(
|
||||
"Duplicate index entries are not allowed in to_coo transformation."
|
||||
)
|
||||
|
||||
# to keep things simple, only rely on integer indexing (not labels)
|
||||
row_levels = [ss.index._get_level_number(x) for x in row_levels]
|
||||
column_levels = [ss.index._get_level_number(x) for x in column_levels]
|
||||
|
||||
v, i, j, rows, columns = _to_ijv(
|
||||
ss, row_levels=row_levels, column_levels=column_levels, sort_labels=sort_labels
|
||||
)
|
||||
sparse_matrix = scipy.sparse.coo_matrix(
|
||||
(v, (i, j)), shape=(len(rows), len(columns))
|
||||
)
|
||||
return sparse_matrix, rows, columns
|
||||
|
||||
|
||||
def coo_to_sparse_series(
|
||||
A: scipy.sparse.coo_matrix, dense_index: bool = False
|
||||
) -> Series:
|
||||
"""
|
||||
Convert a scipy.sparse.coo_matrix to a Series with type sparse.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
A : scipy.sparse.coo_matrix
|
||||
dense_index : bool, default False
|
||||
|
||||
Returns
|
||||
-------
|
||||
Series
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError if A is not a coo_matrix
|
||||
"""
|
||||
from pandas import SparseDtype
|
||||
|
||||
try:
|
||||
ser = Series(A.data, MultiIndex.from_arrays((A.row, A.col)), copy=False)
|
||||
except AttributeError as err:
|
||||
raise TypeError(
|
||||
f"Expected coo_matrix. Got {type(A).__name__} instead."
|
||||
) from err
|
||||
ser = ser.sort_index()
|
||||
ser = ser.astype(SparseDtype(ser.dtype))
|
||||
if dense_index:
|
||||
ind = MultiIndex.from_product([A.row, A.col])
|
||||
ser = ser.reindex(ind)
|
||||
return ser
|
Reference in New Issue
Block a user