Updated script that can be controled by Nodejs web app
This commit is contained in:
@ -0,0 +1,127 @@
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Literal,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._typing import (
|
||||
WindowingRankType,
|
||||
npt,
|
||||
)
|
||||
|
||||
def roll_sum(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_mean(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_var(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
ddof: int = ...,
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_skew(
|
||||
values: np.ndarray, # np.ndarray[np.float64]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_kurt(
|
||||
values: np.ndarray, # np.ndarray[np.float64]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_median_c(
|
||||
values: np.ndarray, # np.ndarray[np.float64]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_max(
|
||||
values: np.ndarray, # np.ndarray[np.float64]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_min(
|
||||
values: np.ndarray, # np.ndarray[np.float64]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_quantile(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
quantile: float, # float64_t
|
||||
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_rank(
|
||||
values: np.ndarray,
|
||||
start: np.ndarray,
|
||||
end: np.ndarray,
|
||||
minp: int,
|
||||
percentile: bool,
|
||||
method: WindowingRankType,
|
||||
ascending: bool,
|
||||
) -> np.ndarray: ... # np.ndarray[float]
|
||||
def roll_apply(
|
||||
obj: object,
|
||||
start: np.ndarray, # np.ndarray[np.int64]
|
||||
end: np.ndarray, # np.ndarray[np.int64]
|
||||
minp: int, # int64_t
|
||||
function: Callable[..., Any],
|
||||
raw: bool,
|
||||
args: tuple[Any, ...],
|
||||
kwargs: dict[str, Any],
|
||||
) -> npt.NDArray[np.float64]: ...
|
||||
def roll_weighted_sum(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
weights: np.ndarray, # const float64_t[:]
|
||||
minp: int,
|
||||
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||||
def roll_weighted_mean(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
weights: np.ndarray, # const float64_t[:]
|
||||
minp: int,
|
||||
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||||
def roll_weighted_var(
|
||||
values: np.ndarray, # const float64_t[:]
|
||||
weights: np.ndarray, # const float64_t[:]
|
||||
minp: int, # int64_t
|
||||
ddof: int, # unsigned int
|
||||
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||||
def ewm(
|
||||
vals: np.ndarray, # const float64_t[:]
|
||||
start: np.ndarray, # const int64_t[:]
|
||||
end: np.ndarray, # const int64_t[:]
|
||||
minp: int,
|
||||
com: float, # float64_t
|
||||
adjust: bool,
|
||||
ignore_na: bool,
|
||||
deltas: np.ndarray | None = None, # const float64_t[:]
|
||||
normalize: bool = True,
|
||||
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||||
def ewmcov(
|
||||
input_x: np.ndarray, # const float64_t[:]
|
||||
start: np.ndarray, # const int64_t[:]
|
||||
end: np.ndarray, # const int64_t[:]
|
||||
minp: int,
|
||||
input_y: np.ndarray, # const float64_t[:]
|
||||
com: float, # float64_t
|
||||
adjust: bool,
|
||||
ignore_na: bool,
|
||||
bias: bool,
|
||||
) -> np.ndarray: ... # np.ndarray[np.float64]
|
Reference in New Issue
Block a user