Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,619 @@
"""Tests for chebyshev module.
"""
from functools import reduce
import numpy as np
import numpy.polynomial.chebyshev as cheb
from numpy.polynomial.polynomial import polyval
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
def trim(x):
return cheb.chebtrim(x, tol=1e-6)
T0 = [1]
T1 = [0, 1]
T2 = [-1, 0, 2]
T3 = [0, -3, 0, 4]
T4 = [1, 0, -8, 0, 8]
T5 = [0, 5, 0, -20, 0, 16]
T6 = [-1, 0, 18, 0, -48, 0, 32]
T7 = [0, -7, 0, 56, 0, -112, 0, 64]
T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
class TestPrivate:
def test__cseries_to_zseries(self):
for i in range(5):
inp = np.array([2] + [1]*i, np.double)
tgt = np.array([.5]*i + [2] + [.5]*i, np.double)
res = cheb._cseries_to_zseries(inp)
assert_equal(res, tgt)
def test__zseries_to_cseries(self):
for i in range(5):
inp = np.array([.5]*i + [2] + [.5]*i, np.double)
tgt = np.array([2] + [1]*i, np.double)
res = cheb._zseries_to_cseries(inp)
assert_equal(res, tgt)
class TestConstants:
def test_chebdomain(self):
assert_equal(cheb.chebdomain, [-1, 1])
def test_chebzero(self):
assert_equal(cheb.chebzero, [0])
def test_chebone(self):
assert_equal(cheb.chebone, [1])
def test_chebx(self):
assert_equal(cheb.chebx, [0, 1])
class TestArithmetic:
def test_chebadd(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] += 1
res = cheb.chebadd([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_chebsub(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] -= 1
res = cheb.chebsub([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_chebmulx(self):
assert_equal(cheb.chebmulx([0]), [0])
assert_equal(cheb.chebmulx([1]), [0, 1])
for i in range(1, 5):
ser = [0]*i + [1]
tgt = [0]*(i - 1) + [.5, 0, .5]
assert_equal(cheb.chebmulx(ser), tgt)
def test_chebmul(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(i + j + 1)
tgt[i + j] += .5
tgt[abs(i - j)] += .5
res = cheb.chebmul([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_chebdiv(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
ci = [0]*i + [1]
cj = [0]*j + [1]
tgt = cheb.chebadd(ci, cj)
quo, rem = cheb.chebdiv(tgt, ci)
res = cheb.chebadd(cheb.chebmul(quo, ci), rem)
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_chebpow(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
c = np.arange(i + 1)
tgt = reduce(cheb.chebmul, [c]*j, np.array([1]))
res = cheb.chebpow(c, j)
assert_equal(trim(res), trim(tgt), err_msg=msg)
class TestEvaluation:
# coefficients of 1 + 2*x + 3*x**2
c1d = np.array([2.5, 2., 1.5])
c2d = np.einsum('i,j->ij', c1d, c1d)
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
y = polyval(x, [1., 2., 3.])
def test_chebval(self):
#check empty input
assert_equal(cheb.chebval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Tlist]
for i in range(10):
msg = f"At i={i}"
tgt = y[i]
res = cheb.chebval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(cheb.chebval(x, [1]).shape, dims)
assert_equal(cheb.chebval(x, [1, 0]).shape, dims)
assert_equal(cheb.chebval(x, [1, 0, 0]).shape, dims)
def test_chebval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, cheb.chebval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = cheb.chebval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = cheb.chebval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
def test_chebval3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, cheb.chebval3d, x1, x2, x3[:2], self.c3d)
#test values
tgt = y1*y2*y3
res = cheb.chebval3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = cheb.chebval3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3))
def test_chebgrid2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j->ij', y1, y2)
res = cheb.chebgrid2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = cheb.chebgrid2d(z, z, self.c2d)
assert_(res.shape == (2, 3)*2)
def test_chebgrid3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
res = cheb.chebgrid3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = cheb.chebgrid3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3)*3)
class TestIntegral:
def test_chebint(self):
# check exceptions
assert_raises(TypeError, cheb.chebint, [0], .5)
assert_raises(ValueError, cheb.chebint, [0], -1)
assert_raises(ValueError, cheb.chebint, [0], 1, [0, 0])
assert_raises(ValueError, cheb.chebint, [0], lbnd=[0])
assert_raises(ValueError, cheb.chebint, [0], scl=[0])
assert_raises(TypeError, cheb.chebint, [0], axis=.5)
# test integration of zero polynomial
for i in range(2, 5):
k = [0]*(i - 2) + [1]
res = cheb.chebint([0], m=i, k=k)
assert_almost_equal(res, [0, 1])
# check single integration with integration constant
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [1/scl]
chebpol = cheb.poly2cheb(pol)
chebint = cheb.chebint(chebpol, m=1, k=[i])
res = cheb.cheb2poly(chebint)
assert_almost_equal(trim(res), trim(tgt))
# check single integration with integration constant and lbnd
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
chebpol = cheb.poly2cheb(pol)
chebint = cheb.chebint(chebpol, m=1, k=[i], lbnd=-1)
assert_almost_equal(cheb.chebval(-1, chebint), i)
# check single integration with integration constant and scaling
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [2/scl]
chebpol = cheb.poly2cheb(pol)
chebint = cheb.chebint(chebpol, m=1, k=[i], scl=2)
res = cheb.cheb2poly(chebint)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with default k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = cheb.chebint(tgt, m=1)
res = cheb.chebint(pol, m=j)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with defined k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = cheb.chebint(tgt, m=1, k=[k])
res = cheb.chebint(pol, m=j, k=list(range(j)))
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with lbnd
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = cheb.chebint(tgt, m=1, k=[k], lbnd=-1)
res = cheb.chebint(pol, m=j, k=list(range(j)), lbnd=-1)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with scaling
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = cheb.chebint(tgt, m=1, k=[k], scl=2)
res = cheb.chebint(pol, m=j, k=list(range(j)), scl=2)
assert_almost_equal(trim(res), trim(tgt))
def test_chebint_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([cheb.chebint(c) for c in c2d.T]).T
res = cheb.chebint(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([cheb.chebint(c) for c in c2d])
res = cheb.chebint(c2d, axis=1)
assert_almost_equal(res, tgt)
tgt = np.vstack([cheb.chebint(c, k=3) for c in c2d])
res = cheb.chebint(c2d, k=3, axis=1)
assert_almost_equal(res, tgt)
class TestDerivative:
def test_chebder(self):
# check exceptions
assert_raises(TypeError, cheb.chebder, [0], .5)
assert_raises(ValueError, cheb.chebder, [0], -1)
# check that zeroth derivative does nothing
for i in range(5):
tgt = [0]*i + [1]
res = cheb.chebder(tgt, m=0)
assert_equal(trim(res), trim(tgt))
# check that derivation is the inverse of integration
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = cheb.chebder(cheb.chebint(tgt, m=j), m=j)
assert_almost_equal(trim(res), trim(tgt))
# check derivation with scaling
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = cheb.chebder(cheb.chebint(tgt, m=j, scl=2), m=j, scl=.5)
assert_almost_equal(trim(res), trim(tgt))
def test_chebder_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([cheb.chebder(c) for c in c2d.T]).T
res = cheb.chebder(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([cheb.chebder(c) for c in c2d])
res = cheb.chebder(c2d, axis=1)
assert_almost_equal(res, tgt)
class TestVander:
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
def test_chebvander(self):
# check for 1d x
x = np.arange(3)
v = cheb.chebvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], cheb.chebval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = cheb.chebvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], cheb.chebval(x, coef))
def test_chebvander2d(self):
# also tests chebval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = cheb.chebvander2d(x1, x2, [1, 2])
tgt = cheb.chebval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = cheb.chebvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
def test_chebvander3d(self):
# also tests chebval3d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3, 4))
van = cheb.chebvander3d(x1, x2, x3, [1, 2, 3])
tgt = cheb.chebval3d(x1, x2, x3, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = cheb.chebvander3d([x1], [x2], [x3], [1, 2, 3])
assert_(van.shape == (1, 5, 24))
class TestFitting:
def test_chebfit(self):
def f(x):
return x*(x - 1)*(x - 2)
def f2(x):
return x**4 + x**2 + 1
# Test exceptions
assert_raises(ValueError, cheb.chebfit, [1], [1], -1)
assert_raises(TypeError, cheb.chebfit, [[1]], [1], 0)
assert_raises(TypeError, cheb.chebfit, [], [1], 0)
assert_raises(TypeError, cheb.chebfit, [1], [[[1]]], 0)
assert_raises(TypeError, cheb.chebfit, [1, 2], [1], 0)
assert_raises(TypeError, cheb.chebfit, [1], [1, 2], 0)
assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[[1]])
assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[1, 1])
assert_raises(ValueError, cheb.chebfit, [1], [1], [-1,])
assert_raises(ValueError, cheb.chebfit, [1], [1], [2, -1, 6])
assert_raises(TypeError, cheb.chebfit, [1], [1], [])
# Test fit
x = np.linspace(0, 2)
y = f(x)
#
coef3 = cheb.chebfit(x, y, 3)
assert_equal(len(coef3), 4)
assert_almost_equal(cheb.chebval(x, coef3), y)
coef3 = cheb.chebfit(x, y, [0, 1, 2, 3])
assert_equal(len(coef3), 4)
assert_almost_equal(cheb.chebval(x, coef3), y)
#
coef4 = cheb.chebfit(x, y, 4)
assert_equal(len(coef4), 5)
assert_almost_equal(cheb.chebval(x, coef4), y)
coef4 = cheb.chebfit(x, y, [0, 1, 2, 3, 4])
assert_equal(len(coef4), 5)
assert_almost_equal(cheb.chebval(x, coef4), y)
# check things still work if deg is not in strict increasing
coef4 = cheb.chebfit(x, y, [2, 3, 4, 1, 0])
assert_equal(len(coef4), 5)
assert_almost_equal(cheb.chebval(x, coef4), y)
#
coef2d = cheb.chebfit(x, np.array([y, y]).T, 3)
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
coef2d = cheb.chebfit(x, np.array([y, y]).T, [0, 1, 2, 3])
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
# test weighting
w = np.zeros_like(x)
yw = y.copy()
w[1::2] = 1
y[0::2] = 0
wcoef3 = cheb.chebfit(x, yw, 3, w=w)
assert_almost_equal(wcoef3, coef3)
wcoef3 = cheb.chebfit(x, yw, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef3, coef3)
#
wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, 3, w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
# test scaling with complex values x points whose square
# is zero when summed.
x = [1, 1j, -1, -1j]
assert_almost_equal(cheb.chebfit(x, x, 1), [0, 1])
assert_almost_equal(cheb.chebfit(x, x, [0, 1]), [0, 1])
# test fitting only even polynomials
x = np.linspace(-1, 1)
y = f2(x)
coef1 = cheb.chebfit(x, y, 4)
assert_almost_equal(cheb.chebval(x, coef1), y)
coef2 = cheb.chebfit(x, y, [0, 2, 4])
assert_almost_equal(cheb.chebval(x, coef2), y)
assert_almost_equal(coef1, coef2)
class TestInterpolate:
def f(self, x):
return x * (x - 1) * (x - 2)
def test_raises(self):
assert_raises(ValueError, cheb.chebinterpolate, self.f, -1)
assert_raises(TypeError, cheb.chebinterpolate, self.f, 10.)
def test_dimensions(self):
for deg in range(1, 5):
assert_(cheb.chebinterpolate(self.f, deg).shape == (deg + 1,))
def test_approximation(self):
def powx(x, p):
return x**p
x = np.linspace(-1, 1, 10)
for deg in range(0, 10):
for p in range(0, deg + 1):
c = cheb.chebinterpolate(powx, deg, (p,))
assert_almost_equal(cheb.chebval(x, c), powx(x, p), decimal=12)
class TestCompanion:
def test_raises(self):
assert_raises(ValueError, cheb.chebcompanion, [])
assert_raises(ValueError, cheb.chebcompanion, [1])
def test_dimensions(self):
for i in range(1, 5):
coef = [0]*i + [1]
assert_(cheb.chebcompanion(coef).shape == (i, i))
def test_linear_root(self):
assert_(cheb.chebcompanion([1, 2])[0, 0] == -.5)
class TestGauss:
def test_100(self):
x, w = cheb.chebgauss(100)
# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.
v = cheb.chebvander(x, 99)
vv = np.dot(v.T * w, v)
vd = 1/np.sqrt(vv.diagonal())
vv = vd[:, None] * vv * vd
assert_almost_equal(vv, np.eye(100))
# check that the integral of 1 is correct
tgt = np.pi
assert_almost_equal(w.sum(), tgt)
class TestMisc:
def test_chebfromroots(self):
res = cheb.chebfromroots([])
assert_almost_equal(trim(res), [1])
for i in range(1, 5):
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
tgt = [0]*i + [1]
res = cheb.chebfromroots(roots)*2**(i-1)
assert_almost_equal(trim(res), trim(tgt))
def test_chebroots(self):
assert_almost_equal(cheb.chebroots([1]), [])
assert_almost_equal(cheb.chebroots([1, 2]), [-.5])
for i in range(2, 5):
tgt = np.linspace(-1, 1, i)
res = cheb.chebroots(cheb.chebfromroots(tgt))
assert_almost_equal(trim(res), trim(tgt))
def test_chebtrim(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, cheb.chebtrim, coef, -1)
# Test results
assert_equal(cheb.chebtrim(coef), coef[:-1])
assert_equal(cheb.chebtrim(coef, 1), coef[:-3])
assert_equal(cheb.chebtrim(coef, 2), [0])
def test_chebline(self):
assert_equal(cheb.chebline(3, 4), [3, 4])
def test_cheb2poly(self):
for i in range(10):
assert_almost_equal(cheb.cheb2poly([0]*i + [1]), Tlist[i])
def test_poly2cheb(self):
for i in range(10):
assert_almost_equal(cheb.poly2cheb(Tlist[i]), [0]*i + [1])
def test_weight(self):
x = np.linspace(-1, 1, 11)[1:-1]
tgt = 1./(np.sqrt(1 + x) * np.sqrt(1 - x))
res = cheb.chebweight(x)
assert_almost_equal(res, tgt)
def test_chebpts1(self):
#test exceptions
assert_raises(ValueError, cheb.chebpts1, 1.5)
assert_raises(ValueError, cheb.chebpts1, 0)
#test points
tgt = [0]
assert_almost_equal(cheb.chebpts1(1), tgt)
tgt = [-0.70710678118654746, 0.70710678118654746]
assert_almost_equal(cheb.chebpts1(2), tgt)
tgt = [-0.86602540378443871, 0, 0.86602540378443871]
assert_almost_equal(cheb.chebpts1(3), tgt)
tgt = [-0.9238795325, -0.3826834323, 0.3826834323, 0.9238795325]
assert_almost_equal(cheb.chebpts1(4), tgt)
def test_chebpts2(self):
#test exceptions
assert_raises(ValueError, cheb.chebpts2, 1.5)
assert_raises(ValueError, cheb.chebpts2, 1)
#test points
tgt = [-1, 1]
assert_almost_equal(cheb.chebpts2(2), tgt)
tgt = [-1, 0, 1]
assert_almost_equal(cheb.chebpts2(3), tgt)
tgt = [-1, -0.5, .5, 1]
assert_almost_equal(cheb.chebpts2(4), tgt)
tgt = [-1.0, -0.707106781187, 0, 0.707106781187, 1.0]
assert_almost_equal(cheb.chebpts2(5), tgt)

View File

@ -0,0 +1,607 @@
"""Test inter-conversion of different polynomial classes.
This tests the convert and cast methods of all the polynomial classes.
"""
import operator as op
from numbers import Number
import pytest
import numpy as np
from numpy.polynomial import (
Polynomial, Legendre, Chebyshev, Laguerre, Hermite, HermiteE)
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
from numpy.exceptions import RankWarning
#
# fixtures
#
classes = (
Polynomial, Legendre, Chebyshev, Laguerre,
Hermite, HermiteE
)
classids = tuple(cls.__name__ for cls in classes)
@pytest.fixture(params=classes, ids=classids)
def Poly(request):
return request.param
#
# helper functions
#
random = np.random.random
def assert_poly_almost_equal(p1, p2, msg=""):
try:
assert_(np.all(p1.domain == p2.domain))
assert_(np.all(p1.window == p2.window))
assert_almost_equal(p1.coef, p2.coef)
except AssertionError:
msg = f"Result: {p1}\nTarget: {p2}"
raise AssertionError(msg)
#
# Test conversion methods that depend on combinations of two classes.
#
Poly1 = Poly
Poly2 = Poly
def test_conversion(Poly1, Poly2):
x = np.linspace(0, 1, 10)
coef = random((3,))
d1 = Poly1.domain + random((2,))*.25
w1 = Poly1.window + random((2,))*.25
p1 = Poly1(coef, domain=d1, window=w1)
d2 = Poly2.domain + random((2,))*.25
w2 = Poly2.window + random((2,))*.25
p2 = p1.convert(kind=Poly2, domain=d2, window=w2)
assert_almost_equal(p2.domain, d2)
assert_almost_equal(p2.window, w2)
assert_almost_equal(p2(x), p1(x))
def test_cast(Poly1, Poly2):
x = np.linspace(0, 1, 10)
coef = random((3,))
d1 = Poly1.domain + random((2,))*.25
w1 = Poly1.window + random((2,))*.25
p1 = Poly1(coef, domain=d1, window=w1)
d2 = Poly2.domain + random((2,))*.25
w2 = Poly2.window + random((2,))*.25
p2 = Poly2.cast(p1, domain=d2, window=w2)
assert_almost_equal(p2.domain, d2)
assert_almost_equal(p2.window, w2)
assert_almost_equal(p2(x), p1(x))
#
# test methods that depend on one class
#
def test_identity(Poly):
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
x = np.linspace(d[0], d[1], 11)
p = Poly.identity(domain=d, window=w)
assert_equal(p.domain, d)
assert_equal(p.window, w)
assert_almost_equal(p(x), x)
def test_basis(Poly):
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
p = Poly.basis(5, domain=d, window=w)
assert_equal(p.domain, d)
assert_equal(p.window, w)
assert_equal(p.coef, [0]*5 + [1])
def test_fromroots(Poly):
# check that requested roots are zeros of a polynomial
# of correct degree, domain, and window.
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
r = random((5,))
p1 = Poly.fromroots(r, domain=d, window=w)
assert_equal(p1.degree(), len(r))
assert_equal(p1.domain, d)
assert_equal(p1.window, w)
assert_almost_equal(p1(r), 0)
# check that polynomial is monic
pdom = Polynomial.domain
pwin = Polynomial.window
p2 = Polynomial.cast(p1, domain=pdom, window=pwin)
assert_almost_equal(p2.coef[-1], 1)
def test_bad_conditioned_fit(Poly):
x = [0., 0., 1.]
y = [1., 2., 3.]
# check RankWarning is raised
with pytest.warns(RankWarning) as record:
Poly.fit(x, y, 2)
assert record[0].message.args[0] == "The fit may be poorly conditioned"
def test_fit(Poly):
def f(x):
return x*(x - 1)*(x - 2)
x = np.linspace(0, 3)
y = f(x)
# check default value of domain and window
p = Poly.fit(x, y, 3)
assert_almost_equal(p.domain, [0, 3])
assert_almost_equal(p(x), y)
assert_equal(p.degree(), 3)
# check with given domains and window
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
p = Poly.fit(x, y, 3, domain=d, window=w)
assert_almost_equal(p(x), y)
assert_almost_equal(p.domain, d)
assert_almost_equal(p.window, w)
p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w)
assert_almost_equal(p(x), y)
assert_almost_equal(p.domain, d)
assert_almost_equal(p.window, w)
# check with class domain default
p = Poly.fit(x, y, 3, [])
assert_equal(p.domain, Poly.domain)
assert_equal(p.window, Poly.window)
p = Poly.fit(x, y, [0, 1, 2, 3], [])
assert_equal(p.domain, Poly.domain)
assert_equal(p.window, Poly.window)
# check that fit accepts weights.
w = np.zeros_like(x)
z = y + random(y.shape)*.25
w[::2] = 1
p1 = Poly.fit(x[::2], z[::2], 3)
p2 = Poly.fit(x, z, 3, w=w)
p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w)
assert_almost_equal(p1(x), p2(x))
assert_almost_equal(p2(x), p3(x))
def test_equal(Poly):
p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
assert_(p1 == p1)
assert_(not p1 == p2)
assert_(not p1 == p3)
assert_(not p1 == p4)
def test_not_equal(Poly):
p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
assert_(not p1 != p1)
assert_(p1 != p2)
assert_(p1 != p3)
assert_(p1 != p4)
def test_add(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = p1 + p2
assert_poly_almost_equal(p2 + p1, p3)
assert_poly_almost_equal(p1 + c2, p3)
assert_poly_almost_equal(c2 + p1, p3)
assert_poly_almost_equal(p1 + tuple(c2), p3)
assert_poly_almost_equal(tuple(c2) + p1, p3)
assert_poly_almost_equal(p1 + np.array(c2), p3)
assert_poly_almost_equal(np.array(c2) + p1, p3)
assert_raises(TypeError, op.add, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.add, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.add, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.add, p1, Polynomial([0]))
def test_sub(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = p1 - p2
assert_poly_almost_equal(p2 - p1, -p3)
assert_poly_almost_equal(p1 - c2, p3)
assert_poly_almost_equal(c2 - p1, -p3)
assert_poly_almost_equal(p1 - tuple(c2), p3)
assert_poly_almost_equal(tuple(c2) - p1, -p3)
assert_poly_almost_equal(p1 - np.array(c2), p3)
assert_poly_almost_equal(np.array(c2) - p1, -p3)
assert_raises(TypeError, op.sub, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.sub, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.sub, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.sub, p1, Polynomial([0]))
def test_mul(Poly):
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = p1 * p2
assert_poly_almost_equal(p2 * p1, p3)
assert_poly_almost_equal(p1 * c2, p3)
assert_poly_almost_equal(c2 * p1, p3)
assert_poly_almost_equal(p1 * tuple(c2), p3)
assert_poly_almost_equal(tuple(c2) * p1, p3)
assert_poly_almost_equal(p1 * np.array(c2), p3)
assert_poly_almost_equal(np.array(c2) * p1, p3)
assert_poly_almost_equal(p1 * 2, p1 * Poly([2]))
assert_poly_almost_equal(2 * p1, p1 * Poly([2]))
assert_raises(TypeError, op.mul, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mul, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mul, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mul, p1, Polynomial([0]))
def test_floordiv(Poly):
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 // p2, p1)
assert_poly_almost_equal(p4 // c2, p1)
assert_poly_almost_equal(c4 // p2, p1)
assert_poly_almost_equal(p4 // tuple(c2), p1)
assert_poly_almost_equal(tuple(c4) // p2, p1)
assert_poly_almost_equal(p4 // np.array(c2), p1)
assert_poly_almost_equal(np.array(c4) // p2, p1)
assert_poly_almost_equal(2 // p2, Poly([0]))
assert_poly_almost_equal(p2 // 2, 0.5*p2)
assert_raises(
TypeError, op.floordiv, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(
TypeError, op.floordiv, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.floordiv, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.floordiv, p1, Polynomial([0]))
def test_truediv(Poly):
# true division is valid only if the denominator is a Number and
# not a python bool.
p1 = Poly([1,2,3])
p2 = p1 * 5
for stype in np.ScalarType:
if not issubclass(stype, Number) or issubclass(stype, bool):
continue
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in (int, float):
s = stype(5)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for stype in [complex]:
s = stype(5, 0)
assert_poly_almost_equal(op.truediv(p2, s), p1)
assert_raises(TypeError, op.truediv, s, p2)
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
assert_raises(TypeError, op.truediv, p2, s)
assert_raises(TypeError, op.truediv, s, p2)
for ptype in classes:
assert_raises(TypeError, op.truediv, p2, ptype(1))
def test_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def test_divmod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
quo, rem = divmod(p4, p2)
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(p4, c2)
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(c4, p2)
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(p4, tuple(c2))
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(tuple(c4), p2)
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(p4, np.array(c2))
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(np.array(c4), p2)
assert_poly_almost_equal(quo, p1)
assert_poly_almost_equal(rem, p3)
quo, rem = divmod(p2, 2)
assert_poly_almost_equal(quo, 0.5*p2)
assert_poly_almost_equal(rem, Poly([0]))
quo, rem = divmod(2, p2)
assert_poly_almost_equal(quo, Poly([0]))
assert_poly_almost_equal(rem, Poly([2]))
assert_raises(TypeError, divmod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, divmod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, divmod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, divmod, p1, Polynomial([0]))
def test_roots(Poly):
d = Poly.domain * 1.25 + .25
w = Poly.window
tgt = np.linspace(d[0], d[1], 5)
res = np.sort(Poly.fromroots(tgt, domain=d, window=w).roots())
assert_almost_equal(res, tgt)
# default domain and window
res = np.sort(Poly.fromroots(tgt).roots())
assert_almost_equal(res, tgt)
def test_degree(Poly):
p = Poly.basis(5)
assert_equal(p.degree(), 5)
def test_copy(Poly):
p1 = Poly.basis(5)
p2 = p1.copy()
assert_(p1 == p2)
assert_(p1 is not p2)
assert_(p1.coef is not p2.coef)
assert_(p1.domain is not p2.domain)
assert_(p1.window is not p2.window)
def test_integ(Poly):
P = Polynomial
# Check defaults
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
p1 = P.cast(p0.integ())
p2 = P.cast(p0.integ(2))
assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
# Check with k
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
p1 = P.cast(p0.integ(k=1))
p2 = P.cast(p0.integ(2, k=[1, 1]))
assert_poly_almost_equal(p1, P([1, 2, 3, 4]))
assert_poly_almost_equal(p2, P([1, 1, 1, 1, 1]))
# Check with lbnd
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
p1 = P.cast(p0.integ(lbnd=1))
p2 = P.cast(p0.integ(2, lbnd=1))
assert_poly_almost_equal(p1, P([-9, 2, 3, 4]))
assert_poly_almost_equal(p2, P([6, -9, 1, 1, 1]))
# Check scaling
d = 2*Poly.domain
p0 = Poly.cast(P([1*2, 2*3, 3*4]), domain=d)
p1 = P.cast(p0.integ())
p2 = P.cast(p0.integ(2))
assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
def test_deriv(Poly):
# Check that the derivative is the inverse of integration. It is
# assumes that the integration has been checked elsewhere.
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
p1 = Poly([1, 2, 3], domain=d, window=w)
p2 = p1.integ(2, k=[1, 2])
p3 = p1.integ(1, k=[1])
assert_almost_equal(p2.deriv(1).coef, p3.coef)
assert_almost_equal(p2.deriv(2).coef, p1.coef)
# default domain and window
p1 = Poly([1, 2, 3])
p2 = p1.integ(2, k=[1, 2])
p3 = p1.integ(1, k=[1])
assert_almost_equal(p2.deriv(1).coef, p3.coef)
assert_almost_equal(p2.deriv(2).coef, p1.coef)
def test_linspace(Poly):
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
p = Poly([1, 2, 3], domain=d, window=w)
# check default domain
xtgt = np.linspace(d[0], d[1], 20)
ytgt = p(xtgt)
xres, yres = p.linspace(20)
assert_almost_equal(xres, xtgt)
assert_almost_equal(yres, ytgt)
# check specified domain
xtgt = np.linspace(0, 2, 20)
ytgt = p(xtgt)
xres, yres = p.linspace(20, domain=[0, 2])
assert_almost_equal(xres, xtgt)
assert_almost_equal(yres, ytgt)
def test_pow(Poly):
d = Poly.domain + random((2,))*.25
w = Poly.window + random((2,))*.25
tgt = Poly([1], domain=d, window=w)
tst = Poly([1, 2, 3], domain=d, window=w)
for i in range(5):
assert_poly_almost_equal(tst**i, tgt)
tgt = tgt * tst
# default domain and window
tgt = Poly([1])
tst = Poly([1, 2, 3])
for i in range(5):
assert_poly_almost_equal(tst**i, tgt)
tgt = tgt * tst
# check error for invalid powers
assert_raises(ValueError, op.pow, tgt, 1.5)
assert_raises(ValueError, op.pow, tgt, -1)
def test_call(Poly):
P = Polynomial
d = Poly.domain
x = np.linspace(d[0], d[1], 11)
# Check defaults
p = Poly.cast(P([1, 2, 3]))
tgt = 1 + x*(2 + 3*x)
res = p(x)
assert_almost_equal(res, tgt)
def test_call_with_list(Poly):
p = Poly([1, 2, 3])
x = [-1, 0, 2]
res = p(x)
assert_equal(res, p(np.array(x)))
def test_cutdeg(Poly):
p = Poly([1, 2, 3])
assert_raises(ValueError, p.cutdeg, .5)
assert_raises(ValueError, p.cutdeg, -1)
assert_equal(len(p.cutdeg(3)), 3)
assert_equal(len(p.cutdeg(2)), 3)
assert_equal(len(p.cutdeg(1)), 2)
assert_equal(len(p.cutdeg(0)), 1)
def test_truncate(Poly):
p = Poly([1, 2, 3])
assert_raises(ValueError, p.truncate, .5)
assert_raises(ValueError, p.truncate, 0)
assert_equal(len(p.truncate(4)), 3)
assert_equal(len(p.truncate(3)), 3)
assert_equal(len(p.truncate(2)), 2)
assert_equal(len(p.truncate(1)), 1)
def test_trim(Poly):
c = [1, 1e-6, 1e-12, 0]
p = Poly(c)
assert_equal(p.trim().coef, c[:3])
assert_equal(p.trim(1e-10).coef, c[:2])
assert_equal(p.trim(1e-5).coef, c[:1])
def test_mapparms(Poly):
# check with defaults. Should be identity.
d = Poly.domain
w = Poly.window
p = Poly([1], domain=d, window=w)
assert_almost_equal([0, 1], p.mapparms())
#
w = 2*d + 1
p = Poly([1], domain=d, window=w)
assert_almost_equal([1, 2], p.mapparms())
def test_ufunc_override(Poly):
p = Poly([1, 2, 3])
x = np.ones(3)
assert_raises(TypeError, np.add, p, x)
assert_raises(TypeError, np.add, x, p)
#
# Test class method that only exists for some classes
#
class TestInterpolate:
def f(self, x):
return x * (x - 1) * (x - 2)
def test_raises(self):
assert_raises(ValueError, Chebyshev.interpolate, self.f, -1)
assert_raises(TypeError, Chebyshev.interpolate, self.f, 10.)
def test_dimensions(self):
for deg in range(1, 5):
assert_(Chebyshev.interpolate(self.f, deg).degree() == deg)
def test_approximation(self):
def powx(x, p):
return x**p
x = np.linspace(0, 2, 10)
for deg in range(0, 10):
for t in range(0, deg + 1):
p = Chebyshev.interpolate(powx, deg, domain=[0, 2], args=(t,))
assert_almost_equal(p(x), powx(x, t), decimal=11)

View File

@ -0,0 +1,555 @@
"""Tests for hermite module.
"""
from functools import reduce
import numpy as np
import numpy.polynomial.hermite as herm
from numpy.polynomial.polynomial import polyval
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
H0 = np.array([1])
H1 = np.array([0, 2])
H2 = np.array([-2, 0, 4])
H3 = np.array([0, -12, 0, 8])
H4 = np.array([12, 0, -48, 0, 16])
H5 = np.array([0, 120, 0, -160, 0, 32])
H6 = np.array([-120, 0, 720, 0, -480, 0, 64])
H7 = np.array([0, -1680, 0, 3360, 0, -1344, 0, 128])
H8 = np.array([1680, 0, -13440, 0, 13440, 0, -3584, 0, 256])
H9 = np.array([0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512])
Hlist = [H0, H1, H2, H3, H4, H5, H6, H7, H8, H9]
def trim(x):
return herm.hermtrim(x, tol=1e-6)
class TestConstants:
def test_hermdomain(self):
assert_equal(herm.hermdomain, [-1, 1])
def test_hermzero(self):
assert_equal(herm.hermzero, [0])
def test_hermone(self):
assert_equal(herm.hermone, [1])
def test_hermx(self):
assert_equal(herm.hermx, [0, .5])
class TestArithmetic:
x = np.linspace(-3, 3, 100)
def test_hermadd(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] += 1
res = herm.hermadd([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_hermsub(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] -= 1
res = herm.hermsub([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_hermmulx(self):
assert_equal(herm.hermmulx([0]), [0])
assert_equal(herm.hermmulx([1]), [0, .5])
for i in range(1, 5):
ser = [0]*i + [1]
tgt = [0]*(i - 1) + [i, 0, .5]
assert_equal(herm.hermmulx(ser), tgt)
def test_hermmul(self):
# check values of result
for i in range(5):
pol1 = [0]*i + [1]
val1 = herm.hermval(self.x, pol1)
for j in range(5):
msg = f"At i={i}, j={j}"
pol2 = [0]*j + [1]
val2 = herm.hermval(self.x, pol2)
pol3 = herm.hermmul(pol1, pol2)
val3 = herm.hermval(self.x, pol3)
assert_(len(pol3) == i + j + 1, msg)
assert_almost_equal(val3, val1*val2, err_msg=msg)
def test_hermdiv(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
ci = [0]*i + [1]
cj = [0]*j + [1]
tgt = herm.hermadd(ci, cj)
quo, rem = herm.hermdiv(tgt, ci)
res = herm.hermadd(herm.hermmul(quo, ci), rem)
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_hermpow(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
c = np.arange(i + 1)
tgt = reduce(herm.hermmul, [c]*j, np.array([1]))
res = herm.hermpow(c, j)
assert_equal(trim(res), trim(tgt), err_msg=msg)
class TestEvaluation:
# coefficients of 1 + 2*x + 3*x**2
c1d = np.array([2.5, 1., .75])
c2d = np.einsum('i,j->ij', c1d, c1d)
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
y = polyval(x, [1., 2., 3.])
def test_hermval(self):
#check empty input
assert_equal(herm.hermval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Hlist]
for i in range(10):
msg = f"At i={i}"
tgt = y[i]
res = herm.hermval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(herm.hermval(x, [1]).shape, dims)
assert_equal(herm.hermval(x, [1, 0]).shape, dims)
assert_equal(herm.hermval(x, [1, 0, 0]).shape, dims)
def test_hermval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, herm.hermval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = herm.hermval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herm.hermval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
def test_hermval3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, herm.hermval3d, x1, x2, x3[:2], self.c3d)
#test values
tgt = y1*y2*y3
res = herm.hermval3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herm.hermval3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3))
def test_hermgrid2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j->ij', y1, y2)
res = herm.hermgrid2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herm.hermgrid2d(z, z, self.c2d)
assert_(res.shape == (2, 3)*2)
def test_hermgrid3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
res = herm.hermgrid3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herm.hermgrid3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3)*3)
class TestIntegral:
def test_hermint(self):
# check exceptions
assert_raises(TypeError, herm.hermint, [0], .5)
assert_raises(ValueError, herm.hermint, [0], -1)
assert_raises(ValueError, herm.hermint, [0], 1, [0, 0])
assert_raises(ValueError, herm.hermint, [0], lbnd=[0])
assert_raises(ValueError, herm.hermint, [0], scl=[0])
assert_raises(TypeError, herm.hermint, [0], axis=.5)
# test integration of zero polynomial
for i in range(2, 5):
k = [0]*(i - 2) + [1]
res = herm.hermint([0], m=i, k=k)
assert_almost_equal(res, [0, .5])
# check single integration with integration constant
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [1/scl]
hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i])
res = herm.herm2poly(hermint)
assert_almost_equal(trim(res), trim(tgt))
# check single integration with integration constant and lbnd
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i], lbnd=-1)
assert_almost_equal(herm.hermval(-1, hermint), i)
# check single integration with integration constant and scaling
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [2/scl]
hermpol = herm.poly2herm(pol)
hermint = herm.hermint(hermpol, m=1, k=[i], scl=2)
res = herm.herm2poly(hermint)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with default k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herm.hermint(tgt, m=1)
res = herm.hermint(pol, m=j)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with defined k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herm.hermint(tgt, m=1, k=[k])
res = herm.hermint(pol, m=j, k=list(range(j)))
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with lbnd
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herm.hermint(tgt, m=1, k=[k], lbnd=-1)
res = herm.hermint(pol, m=j, k=list(range(j)), lbnd=-1)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with scaling
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herm.hermint(tgt, m=1, k=[k], scl=2)
res = herm.hermint(pol, m=j, k=list(range(j)), scl=2)
assert_almost_equal(trim(res), trim(tgt))
def test_hermint_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([herm.hermint(c) for c in c2d.T]).T
res = herm.hermint(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([herm.hermint(c) for c in c2d])
res = herm.hermint(c2d, axis=1)
assert_almost_equal(res, tgt)
tgt = np.vstack([herm.hermint(c, k=3) for c in c2d])
res = herm.hermint(c2d, k=3, axis=1)
assert_almost_equal(res, tgt)
class TestDerivative:
def test_hermder(self):
# check exceptions
assert_raises(TypeError, herm.hermder, [0], .5)
assert_raises(ValueError, herm.hermder, [0], -1)
# check that zeroth derivative does nothing
for i in range(5):
tgt = [0]*i + [1]
res = herm.hermder(tgt, m=0)
assert_equal(trim(res), trim(tgt))
# check that derivation is the inverse of integration
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = herm.hermder(herm.hermint(tgt, m=j), m=j)
assert_almost_equal(trim(res), trim(tgt))
# check derivation with scaling
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = herm.hermder(herm.hermint(tgt, m=j, scl=2), m=j, scl=.5)
assert_almost_equal(trim(res), trim(tgt))
def test_hermder_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([herm.hermder(c) for c in c2d.T]).T
res = herm.hermder(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([herm.hermder(c) for c in c2d])
res = herm.hermder(c2d, axis=1)
assert_almost_equal(res, tgt)
class TestVander:
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
def test_hermvander(self):
# check for 1d x
x = np.arange(3)
v = herm.hermvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herm.hermval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = herm.hermvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herm.hermval(x, coef))
def test_hermvander2d(self):
# also tests hermval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = herm.hermvander2d(x1, x2, [1, 2])
tgt = herm.hermval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = herm.hermvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
def test_hermvander3d(self):
# also tests hermval3d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3, 4))
van = herm.hermvander3d(x1, x2, x3, [1, 2, 3])
tgt = herm.hermval3d(x1, x2, x3, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = herm.hermvander3d([x1], [x2], [x3], [1, 2, 3])
assert_(van.shape == (1, 5, 24))
class TestFitting:
def test_hermfit(self):
def f(x):
return x*(x - 1)*(x - 2)
def f2(x):
return x**4 + x**2 + 1
# Test exceptions
assert_raises(ValueError, herm.hermfit, [1], [1], -1)
assert_raises(TypeError, herm.hermfit, [[1]], [1], 0)
assert_raises(TypeError, herm.hermfit, [], [1], 0)
assert_raises(TypeError, herm.hermfit, [1], [[[1]]], 0)
assert_raises(TypeError, herm.hermfit, [1, 2], [1], 0)
assert_raises(TypeError, herm.hermfit, [1], [1, 2], 0)
assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[[1]])
assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[1, 1])
assert_raises(ValueError, herm.hermfit, [1], [1], [-1,])
assert_raises(ValueError, herm.hermfit, [1], [1], [2, -1, 6])
assert_raises(TypeError, herm.hermfit, [1], [1], [])
# Test fit
x = np.linspace(0, 2)
y = f(x)
#
coef3 = herm.hermfit(x, y, 3)
assert_equal(len(coef3), 4)
assert_almost_equal(herm.hermval(x, coef3), y)
coef3 = herm.hermfit(x, y, [0, 1, 2, 3])
assert_equal(len(coef3), 4)
assert_almost_equal(herm.hermval(x, coef3), y)
#
coef4 = herm.hermfit(x, y, 4)
assert_equal(len(coef4), 5)
assert_almost_equal(herm.hermval(x, coef4), y)
coef4 = herm.hermfit(x, y, [0, 1, 2, 3, 4])
assert_equal(len(coef4), 5)
assert_almost_equal(herm.hermval(x, coef4), y)
# check things still work if deg is not in strict increasing
coef4 = herm.hermfit(x, y, [2, 3, 4, 1, 0])
assert_equal(len(coef4), 5)
assert_almost_equal(herm.hermval(x, coef4), y)
#
coef2d = herm.hermfit(x, np.array([y, y]).T, 3)
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
coef2d = herm.hermfit(x, np.array([y, y]).T, [0, 1, 2, 3])
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
# test weighting
w = np.zeros_like(x)
yw = y.copy()
w[1::2] = 1
y[0::2] = 0
wcoef3 = herm.hermfit(x, yw, 3, w=w)
assert_almost_equal(wcoef3, coef3)
wcoef3 = herm.hermfit(x, yw, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef3, coef3)
#
wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, 3, w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
# test scaling with complex values x points whose square
# is zero when summed.
x = [1, 1j, -1, -1j]
assert_almost_equal(herm.hermfit(x, x, 1), [0, .5])
assert_almost_equal(herm.hermfit(x, x, [0, 1]), [0, .5])
# test fitting only even Legendre polynomials
x = np.linspace(-1, 1)
y = f2(x)
coef1 = herm.hermfit(x, y, 4)
assert_almost_equal(herm.hermval(x, coef1), y)
coef2 = herm.hermfit(x, y, [0, 2, 4])
assert_almost_equal(herm.hermval(x, coef2), y)
assert_almost_equal(coef1, coef2)
class TestCompanion:
def test_raises(self):
assert_raises(ValueError, herm.hermcompanion, [])
assert_raises(ValueError, herm.hermcompanion, [1])
def test_dimensions(self):
for i in range(1, 5):
coef = [0]*i + [1]
assert_(herm.hermcompanion(coef).shape == (i, i))
def test_linear_root(self):
assert_(herm.hermcompanion([1, 2])[0, 0] == -.25)
class TestGauss:
def test_100(self):
x, w = herm.hermgauss(100)
# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.
v = herm.hermvander(x, 99)
vv = np.dot(v.T * w, v)
vd = 1/np.sqrt(vv.diagonal())
vv = vd[:, None] * vv * vd
assert_almost_equal(vv, np.eye(100))
# check that the integral of 1 is correct
tgt = np.sqrt(np.pi)
assert_almost_equal(w.sum(), tgt)
class TestMisc:
def test_hermfromroots(self):
res = herm.hermfromroots([])
assert_almost_equal(trim(res), [1])
for i in range(1, 5):
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
pol = herm.hermfromroots(roots)
res = herm.hermval(roots, pol)
tgt = 0
assert_(len(pol) == i + 1)
assert_almost_equal(herm.herm2poly(pol)[-1], 1)
assert_almost_equal(res, tgt)
def test_hermroots(self):
assert_almost_equal(herm.hermroots([1]), [])
assert_almost_equal(herm.hermroots([1, 1]), [-.5])
for i in range(2, 5):
tgt = np.linspace(-1, 1, i)
res = herm.hermroots(herm.hermfromroots(tgt))
assert_almost_equal(trim(res), trim(tgt))
def test_hermtrim(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, herm.hermtrim, coef, -1)
# Test results
assert_equal(herm.hermtrim(coef), coef[:-1])
assert_equal(herm.hermtrim(coef, 1), coef[:-3])
assert_equal(herm.hermtrim(coef, 2), [0])
def test_hermline(self):
assert_equal(herm.hermline(3, 4), [3, 2])
def test_herm2poly(self):
for i in range(10):
assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i])
def test_poly2herm(self):
for i in range(10):
assert_almost_equal(herm.poly2herm(Hlist[i]), [0]*i + [1])
def test_weight(self):
x = np.linspace(-5, 5, 11)
tgt = np.exp(-x**2)
res = herm.hermweight(x)
assert_almost_equal(res, tgt)

View File

@ -0,0 +1,556 @@
"""Tests for hermite_e module.
"""
from functools import reduce
import numpy as np
import numpy.polynomial.hermite_e as herme
from numpy.polynomial.polynomial import polyval
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
He0 = np.array([1])
He1 = np.array([0, 1])
He2 = np.array([-1, 0, 1])
He3 = np.array([0, -3, 0, 1])
He4 = np.array([3, 0, -6, 0, 1])
He5 = np.array([0, 15, 0, -10, 0, 1])
He6 = np.array([-15, 0, 45, 0, -15, 0, 1])
He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1])
He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1])
He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1])
Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9]
def trim(x):
return herme.hermetrim(x, tol=1e-6)
class TestConstants:
def test_hermedomain(self):
assert_equal(herme.hermedomain, [-1, 1])
def test_hermezero(self):
assert_equal(herme.hermezero, [0])
def test_hermeone(self):
assert_equal(herme.hermeone, [1])
def test_hermex(self):
assert_equal(herme.hermex, [0, 1])
class TestArithmetic:
x = np.linspace(-3, 3, 100)
def test_hermeadd(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] += 1
res = herme.hermeadd([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_hermesub(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] -= 1
res = herme.hermesub([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_hermemulx(self):
assert_equal(herme.hermemulx([0]), [0])
assert_equal(herme.hermemulx([1]), [0, 1])
for i in range(1, 5):
ser = [0]*i + [1]
tgt = [0]*(i - 1) + [i, 0, 1]
assert_equal(herme.hermemulx(ser), tgt)
def test_hermemul(self):
# check values of result
for i in range(5):
pol1 = [0]*i + [1]
val1 = herme.hermeval(self.x, pol1)
for j in range(5):
msg = f"At i={i}, j={j}"
pol2 = [0]*j + [1]
val2 = herme.hermeval(self.x, pol2)
pol3 = herme.hermemul(pol1, pol2)
val3 = herme.hermeval(self.x, pol3)
assert_(len(pol3) == i + j + 1, msg)
assert_almost_equal(val3, val1*val2, err_msg=msg)
def test_hermediv(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
ci = [0]*i + [1]
cj = [0]*j + [1]
tgt = herme.hermeadd(ci, cj)
quo, rem = herme.hermediv(tgt, ci)
res = herme.hermeadd(herme.hermemul(quo, ci), rem)
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_hermepow(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
c = np.arange(i + 1)
tgt = reduce(herme.hermemul, [c]*j, np.array([1]))
res = herme.hermepow(c, j)
assert_equal(trim(res), trim(tgt), err_msg=msg)
class TestEvaluation:
# coefficients of 1 + 2*x + 3*x**2
c1d = np.array([4., 2., 3.])
c2d = np.einsum('i,j->ij', c1d, c1d)
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
y = polyval(x, [1., 2., 3.])
def test_hermeval(self):
#check empty input
assert_equal(herme.hermeval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Helist]
for i in range(10):
msg = f"At i={i}"
tgt = y[i]
res = herme.hermeval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(herme.hermeval(x, [1]).shape, dims)
assert_equal(herme.hermeval(x, [1, 0]).shape, dims)
assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims)
def test_hermeval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = herme.hermeval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herme.hermeval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
def test_hermeval3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d)
#test values
tgt = y1*y2*y3
res = herme.hermeval3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herme.hermeval3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3))
def test_hermegrid2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j->ij', y1, y2)
res = herme.hermegrid2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herme.hermegrid2d(z, z, self.c2d)
assert_(res.shape == (2, 3)*2)
def test_hermegrid3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
res = herme.hermegrid3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = herme.hermegrid3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3)*3)
class TestIntegral:
def test_hermeint(self):
# check exceptions
assert_raises(TypeError, herme.hermeint, [0], .5)
assert_raises(ValueError, herme.hermeint, [0], -1)
assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0])
assert_raises(ValueError, herme.hermeint, [0], lbnd=[0])
assert_raises(ValueError, herme.hermeint, [0], scl=[0])
assert_raises(TypeError, herme.hermeint, [0], axis=.5)
# test integration of zero polynomial
for i in range(2, 5):
k = [0]*(i - 2) + [1]
res = herme.hermeint([0], m=i, k=k)
assert_almost_equal(res, [0, 1])
# check single integration with integration constant
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [1/scl]
hermepol = herme.poly2herme(pol)
hermeint = herme.hermeint(hermepol, m=1, k=[i])
res = herme.herme2poly(hermeint)
assert_almost_equal(trim(res), trim(tgt))
# check single integration with integration constant and lbnd
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
hermepol = herme.poly2herme(pol)
hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1)
assert_almost_equal(herme.hermeval(-1, hermeint), i)
# check single integration with integration constant and scaling
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [2/scl]
hermepol = herme.poly2herme(pol)
hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2)
res = herme.herme2poly(hermeint)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with default k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herme.hermeint(tgt, m=1)
res = herme.hermeint(pol, m=j)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with defined k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herme.hermeint(tgt, m=1, k=[k])
res = herme.hermeint(pol, m=j, k=list(range(j)))
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with lbnd
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1)
res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with scaling
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = herme.hermeint(tgt, m=1, k=[k], scl=2)
res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2)
assert_almost_equal(trim(res), trim(tgt))
def test_hermeint_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T
res = herme.hermeint(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([herme.hermeint(c) for c in c2d])
res = herme.hermeint(c2d, axis=1)
assert_almost_equal(res, tgt)
tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d])
res = herme.hermeint(c2d, k=3, axis=1)
assert_almost_equal(res, tgt)
class TestDerivative:
def test_hermeder(self):
# check exceptions
assert_raises(TypeError, herme.hermeder, [0], .5)
assert_raises(ValueError, herme.hermeder, [0], -1)
# check that zeroth derivative does nothing
for i in range(5):
tgt = [0]*i + [1]
res = herme.hermeder(tgt, m=0)
assert_equal(trim(res), trim(tgt))
# check that derivation is the inverse of integration
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = herme.hermeder(herme.hermeint(tgt, m=j), m=j)
assert_almost_equal(trim(res), trim(tgt))
# check derivation with scaling
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = herme.hermeder(
herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5)
assert_almost_equal(trim(res), trim(tgt))
def test_hermeder_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T
res = herme.hermeder(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([herme.hermeder(c) for c in c2d])
res = herme.hermeder(c2d, axis=1)
assert_almost_equal(res, tgt)
class TestVander:
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
def test_hermevander(self):
# check for 1d x
x = np.arange(3)
v = herme.hermevander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herme.hermeval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = herme.hermevander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], herme.hermeval(x, coef))
def test_hermevander2d(self):
# also tests hermeval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = herme.hermevander2d(x1, x2, [1, 2])
tgt = herme.hermeval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = herme.hermevander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
def test_hermevander3d(self):
# also tests hermeval3d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3, 4))
van = herme.hermevander3d(x1, x2, x3, [1, 2, 3])
tgt = herme.hermeval3d(x1, x2, x3, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3])
assert_(van.shape == (1, 5, 24))
class TestFitting:
def test_hermefit(self):
def f(x):
return x*(x - 1)*(x - 2)
def f2(x):
return x**4 + x**2 + 1
# Test exceptions
assert_raises(ValueError, herme.hermefit, [1], [1], -1)
assert_raises(TypeError, herme.hermefit, [[1]], [1], 0)
assert_raises(TypeError, herme.hermefit, [], [1], 0)
assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0)
assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0)
assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0)
assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]])
assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1])
assert_raises(ValueError, herme.hermefit, [1], [1], [-1,])
assert_raises(ValueError, herme.hermefit, [1], [1], [2, -1, 6])
assert_raises(TypeError, herme.hermefit, [1], [1], [])
# Test fit
x = np.linspace(0, 2)
y = f(x)
#
coef3 = herme.hermefit(x, y, 3)
assert_equal(len(coef3), 4)
assert_almost_equal(herme.hermeval(x, coef3), y)
coef3 = herme.hermefit(x, y, [0, 1, 2, 3])
assert_equal(len(coef3), 4)
assert_almost_equal(herme.hermeval(x, coef3), y)
#
coef4 = herme.hermefit(x, y, 4)
assert_equal(len(coef4), 5)
assert_almost_equal(herme.hermeval(x, coef4), y)
coef4 = herme.hermefit(x, y, [0, 1, 2, 3, 4])
assert_equal(len(coef4), 5)
assert_almost_equal(herme.hermeval(x, coef4), y)
# check things still work if deg is not in strict increasing
coef4 = herme.hermefit(x, y, [2, 3, 4, 1, 0])
assert_equal(len(coef4), 5)
assert_almost_equal(herme.hermeval(x, coef4), y)
#
coef2d = herme.hermefit(x, np.array([y, y]).T, 3)
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
coef2d = herme.hermefit(x, np.array([y, y]).T, [0, 1, 2, 3])
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
# test weighting
w = np.zeros_like(x)
yw = y.copy()
w[1::2] = 1
y[0::2] = 0
wcoef3 = herme.hermefit(x, yw, 3, w=w)
assert_almost_equal(wcoef3, coef3)
wcoef3 = herme.hermefit(x, yw, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef3, coef3)
#
wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
# test scaling with complex values x points whose square
# is zero when summed.
x = [1, 1j, -1, -1j]
assert_almost_equal(herme.hermefit(x, x, 1), [0, 1])
assert_almost_equal(herme.hermefit(x, x, [0, 1]), [0, 1])
# test fitting only even Legendre polynomials
x = np.linspace(-1, 1)
y = f2(x)
coef1 = herme.hermefit(x, y, 4)
assert_almost_equal(herme.hermeval(x, coef1), y)
coef2 = herme.hermefit(x, y, [0, 2, 4])
assert_almost_equal(herme.hermeval(x, coef2), y)
assert_almost_equal(coef1, coef2)
class TestCompanion:
def test_raises(self):
assert_raises(ValueError, herme.hermecompanion, [])
assert_raises(ValueError, herme.hermecompanion, [1])
def test_dimensions(self):
for i in range(1, 5):
coef = [0]*i + [1]
assert_(herme.hermecompanion(coef).shape == (i, i))
def test_linear_root(self):
assert_(herme.hermecompanion([1, 2])[0, 0] == -.5)
class TestGauss:
def test_100(self):
x, w = herme.hermegauss(100)
# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.
v = herme.hermevander(x, 99)
vv = np.dot(v.T * w, v)
vd = 1/np.sqrt(vv.diagonal())
vv = vd[:, None] * vv * vd
assert_almost_equal(vv, np.eye(100))
# check that the integral of 1 is correct
tgt = np.sqrt(2*np.pi)
assert_almost_equal(w.sum(), tgt)
class TestMisc:
def test_hermefromroots(self):
res = herme.hermefromroots([])
assert_almost_equal(trim(res), [1])
for i in range(1, 5):
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
pol = herme.hermefromroots(roots)
res = herme.hermeval(roots, pol)
tgt = 0
assert_(len(pol) == i + 1)
assert_almost_equal(herme.herme2poly(pol)[-1], 1)
assert_almost_equal(res, tgt)
def test_hermeroots(self):
assert_almost_equal(herme.hermeroots([1]), [])
assert_almost_equal(herme.hermeroots([1, 1]), [-1])
for i in range(2, 5):
tgt = np.linspace(-1, 1, i)
res = herme.hermeroots(herme.hermefromroots(tgt))
assert_almost_equal(trim(res), trim(tgt))
def test_hermetrim(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, herme.hermetrim, coef, -1)
# Test results
assert_equal(herme.hermetrim(coef), coef[:-1])
assert_equal(herme.hermetrim(coef, 1), coef[:-3])
assert_equal(herme.hermetrim(coef, 2), [0])
def test_hermeline(self):
assert_equal(herme.hermeline(3, 4), [3, 4])
def test_herme2poly(self):
for i in range(10):
assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i])
def test_poly2herme(self):
for i in range(10):
assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1])
def test_weight(self):
x = np.linspace(-5, 5, 11)
tgt = np.exp(-.5*x**2)
res = herme.hermeweight(x)
assert_almost_equal(res, tgt)

View File

@ -0,0 +1,537 @@
"""Tests for laguerre module.
"""
from functools import reduce
import numpy as np
import numpy.polynomial.laguerre as lag
from numpy.polynomial.polynomial import polyval
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
L0 = np.array([1])/1
L1 = np.array([1, -1])/1
L2 = np.array([2, -4, 1])/2
L3 = np.array([6, -18, 9, -1])/6
L4 = np.array([24, -96, 72, -16, 1])/24
L5 = np.array([120, -600, 600, -200, 25, -1])/120
L6 = np.array([720, -4320, 5400, -2400, 450, -36, 1])/720
Llist = [L0, L1, L2, L3, L4, L5, L6]
def trim(x):
return lag.lagtrim(x, tol=1e-6)
class TestConstants:
def test_lagdomain(self):
assert_equal(lag.lagdomain, [0, 1])
def test_lagzero(self):
assert_equal(lag.lagzero, [0])
def test_lagone(self):
assert_equal(lag.lagone, [1])
def test_lagx(self):
assert_equal(lag.lagx, [1, -1])
class TestArithmetic:
x = np.linspace(-3, 3, 100)
def test_lagadd(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] += 1
res = lag.lagadd([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_lagsub(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] -= 1
res = lag.lagsub([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_lagmulx(self):
assert_equal(lag.lagmulx([0]), [0])
assert_equal(lag.lagmulx([1]), [1, -1])
for i in range(1, 5):
ser = [0]*i + [1]
tgt = [0]*(i - 1) + [-i, 2*i + 1, -(i + 1)]
assert_almost_equal(lag.lagmulx(ser), tgt)
def test_lagmul(self):
# check values of result
for i in range(5):
pol1 = [0]*i + [1]
val1 = lag.lagval(self.x, pol1)
for j in range(5):
msg = f"At i={i}, j={j}"
pol2 = [0]*j + [1]
val2 = lag.lagval(self.x, pol2)
pol3 = lag.lagmul(pol1, pol2)
val3 = lag.lagval(self.x, pol3)
assert_(len(pol3) == i + j + 1, msg)
assert_almost_equal(val3, val1*val2, err_msg=msg)
def test_lagdiv(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
ci = [0]*i + [1]
cj = [0]*j + [1]
tgt = lag.lagadd(ci, cj)
quo, rem = lag.lagdiv(tgt, ci)
res = lag.lagadd(lag.lagmul(quo, ci), rem)
assert_almost_equal(trim(res), trim(tgt), err_msg=msg)
def test_lagpow(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
c = np.arange(i + 1)
tgt = reduce(lag.lagmul, [c]*j, np.array([1]))
res = lag.lagpow(c, j)
assert_equal(trim(res), trim(tgt), err_msg=msg)
class TestEvaluation:
# coefficients of 1 + 2*x + 3*x**2
c1d = np.array([9., -14., 6.])
c2d = np.einsum('i,j->ij', c1d, c1d)
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
y = polyval(x, [1., 2., 3.])
def test_lagval(self):
#check empty input
assert_equal(lag.lagval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Llist]
for i in range(7):
msg = f"At i={i}"
tgt = y[i]
res = lag.lagval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(lag.lagval(x, [1]).shape, dims)
assert_equal(lag.lagval(x, [1, 0]).shape, dims)
assert_equal(lag.lagval(x, [1, 0, 0]).shape, dims)
def test_lagval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, lag.lagval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = lag.lagval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = lag.lagval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
def test_lagval3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, lag.lagval3d, x1, x2, x3[:2], self.c3d)
#test values
tgt = y1*y2*y3
res = lag.lagval3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = lag.lagval3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3))
def test_laggrid2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j->ij', y1, y2)
res = lag.laggrid2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = lag.laggrid2d(z, z, self.c2d)
assert_(res.shape == (2, 3)*2)
def test_laggrid3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
res = lag.laggrid3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = lag.laggrid3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3)*3)
class TestIntegral:
def test_lagint(self):
# check exceptions
assert_raises(TypeError, lag.lagint, [0], .5)
assert_raises(ValueError, lag.lagint, [0], -1)
assert_raises(ValueError, lag.lagint, [0], 1, [0, 0])
assert_raises(ValueError, lag.lagint, [0], lbnd=[0])
assert_raises(ValueError, lag.lagint, [0], scl=[0])
assert_raises(TypeError, lag.lagint, [0], axis=.5)
# test integration of zero polynomial
for i in range(2, 5):
k = [0]*(i - 2) + [1]
res = lag.lagint([0], m=i, k=k)
assert_almost_equal(res, [1, -1])
# check single integration with integration constant
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [1/scl]
lagpol = lag.poly2lag(pol)
lagint = lag.lagint(lagpol, m=1, k=[i])
res = lag.lag2poly(lagint)
assert_almost_equal(trim(res), trim(tgt))
# check single integration with integration constant and lbnd
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
lagpol = lag.poly2lag(pol)
lagint = lag.lagint(lagpol, m=1, k=[i], lbnd=-1)
assert_almost_equal(lag.lagval(-1, lagint), i)
# check single integration with integration constant and scaling
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [2/scl]
lagpol = lag.poly2lag(pol)
lagint = lag.lagint(lagpol, m=1, k=[i], scl=2)
res = lag.lag2poly(lagint)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with default k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = lag.lagint(tgt, m=1)
res = lag.lagint(pol, m=j)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with defined k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = lag.lagint(tgt, m=1, k=[k])
res = lag.lagint(pol, m=j, k=list(range(j)))
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with lbnd
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = lag.lagint(tgt, m=1, k=[k], lbnd=-1)
res = lag.lagint(pol, m=j, k=list(range(j)), lbnd=-1)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with scaling
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = lag.lagint(tgt, m=1, k=[k], scl=2)
res = lag.lagint(pol, m=j, k=list(range(j)), scl=2)
assert_almost_equal(trim(res), trim(tgt))
def test_lagint_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([lag.lagint(c) for c in c2d.T]).T
res = lag.lagint(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([lag.lagint(c) for c in c2d])
res = lag.lagint(c2d, axis=1)
assert_almost_equal(res, tgt)
tgt = np.vstack([lag.lagint(c, k=3) for c in c2d])
res = lag.lagint(c2d, k=3, axis=1)
assert_almost_equal(res, tgt)
class TestDerivative:
def test_lagder(self):
# check exceptions
assert_raises(TypeError, lag.lagder, [0], .5)
assert_raises(ValueError, lag.lagder, [0], -1)
# check that zeroth derivative does nothing
for i in range(5):
tgt = [0]*i + [1]
res = lag.lagder(tgt, m=0)
assert_equal(trim(res), trim(tgt))
# check that derivation is the inverse of integration
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = lag.lagder(lag.lagint(tgt, m=j), m=j)
assert_almost_equal(trim(res), trim(tgt))
# check derivation with scaling
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = lag.lagder(lag.lagint(tgt, m=j, scl=2), m=j, scl=.5)
assert_almost_equal(trim(res), trim(tgt))
def test_lagder_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([lag.lagder(c) for c in c2d.T]).T
res = lag.lagder(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([lag.lagder(c) for c in c2d])
res = lag.lagder(c2d, axis=1)
assert_almost_equal(res, tgt)
class TestVander:
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
def test_lagvander(self):
# check for 1d x
x = np.arange(3)
v = lag.lagvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], lag.lagval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = lag.lagvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], lag.lagval(x, coef))
def test_lagvander2d(self):
# also tests lagval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = lag.lagvander2d(x1, x2, [1, 2])
tgt = lag.lagval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = lag.lagvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
def test_lagvander3d(self):
# also tests lagval3d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3, 4))
van = lag.lagvander3d(x1, x2, x3, [1, 2, 3])
tgt = lag.lagval3d(x1, x2, x3, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = lag.lagvander3d([x1], [x2], [x3], [1, 2, 3])
assert_(van.shape == (1, 5, 24))
class TestFitting:
def test_lagfit(self):
def f(x):
return x*(x - 1)*(x - 2)
# Test exceptions
assert_raises(ValueError, lag.lagfit, [1], [1], -1)
assert_raises(TypeError, lag.lagfit, [[1]], [1], 0)
assert_raises(TypeError, lag.lagfit, [], [1], 0)
assert_raises(TypeError, lag.lagfit, [1], [[[1]]], 0)
assert_raises(TypeError, lag.lagfit, [1, 2], [1], 0)
assert_raises(TypeError, lag.lagfit, [1], [1, 2], 0)
assert_raises(TypeError, lag.lagfit, [1], [1], 0, w=[[1]])
assert_raises(TypeError, lag.lagfit, [1], [1], 0, w=[1, 1])
assert_raises(ValueError, lag.lagfit, [1], [1], [-1,])
assert_raises(ValueError, lag.lagfit, [1], [1], [2, -1, 6])
assert_raises(TypeError, lag.lagfit, [1], [1], [])
# Test fit
x = np.linspace(0, 2)
y = f(x)
#
coef3 = lag.lagfit(x, y, 3)
assert_equal(len(coef3), 4)
assert_almost_equal(lag.lagval(x, coef3), y)
coef3 = lag.lagfit(x, y, [0, 1, 2, 3])
assert_equal(len(coef3), 4)
assert_almost_equal(lag.lagval(x, coef3), y)
#
coef4 = lag.lagfit(x, y, 4)
assert_equal(len(coef4), 5)
assert_almost_equal(lag.lagval(x, coef4), y)
coef4 = lag.lagfit(x, y, [0, 1, 2, 3, 4])
assert_equal(len(coef4), 5)
assert_almost_equal(lag.lagval(x, coef4), y)
#
coef2d = lag.lagfit(x, np.array([y, y]).T, 3)
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
coef2d = lag.lagfit(x, np.array([y, y]).T, [0, 1, 2, 3])
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
# test weighting
w = np.zeros_like(x)
yw = y.copy()
w[1::2] = 1
y[0::2] = 0
wcoef3 = lag.lagfit(x, yw, 3, w=w)
assert_almost_equal(wcoef3, coef3)
wcoef3 = lag.lagfit(x, yw, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef3, coef3)
#
wcoef2d = lag.lagfit(x, np.array([yw, yw]).T, 3, w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
wcoef2d = lag.lagfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
# test scaling with complex values x points whose square
# is zero when summed.
x = [1, 1j, -1, -1j]
assert_almost_equal(lag.lagfit(x, x, 1), [1, -1])
assert_almost_equal(lag.lagfit(x, x, [0, 1]), [1, -1])
class TestCompanion:
def test_raises(self):
assert_raises(ValueError, lag.lagcompanion, [])
assert_raises(ValueError, lag.lagcompanion, [1])
def test_dimensions(self):
for i in range(1, 5):
coef = [0]*i + [1]
assert_(lag.lagcompanion(coef).shape == (i, i))
def test_linear_root(self):
assert_(lag.lagcompanion([1, 2])[0, 0] == 1.5)
class TestGauss:
def test_100(self):
x, w = lag.laggauss(100)
# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.
v = lag.lagvander(x, 99)
vv = np.dot(v.T * w, v)
vd = 1/np.sqrt(vv.diagonal())
vv = vd[:, None] * vv * vd
assert_almost_equal(vv, np.eye(100))
# check that the integral of 1 is correct
tgt = 1.0
assert_almost_equal(w.sum(), tgt)
class TestMisc:
def test_lagfromroots(self):
res = lag.lagfromroots([])
assert_almost_equal(trim(res), [1])
for i in range(1, 5):
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
pol = lag.lagfromroots(roots)
res = lag.lagval(roots, pol)
tgt = 0
assert_(len(pol) == i + 1)
assert_almost_equal(lag.lag2poly(pol)[-1], 1)
assert_almost_equal(res, tgt)
def test_lagroots(self):
assert_almost_equal(lag.lagroots([1]), [])
assert_almost_equal(lag.lagroots([0, 1]), [1])
for i in range(2, 5):
tgt = np.linspace(0, 3, i)
res = lag.lagroots(lag.lagfromroots(tgt))
assert_almost_equal(trim(res), trim(tgt))
def test_lagtrim(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, lag.lagtrim, coef, -1)
# Test results
assert_equal(lag.lagtrim(coef), coef[:-1])
assert_equal(lag.lagtrim(coef, 1), coef[:-3])
assert_equal(lag.lagtrim(coef, 2), [0])
def test_lagline(self):
assert_equal(lag.lagline(3, 4), [7, -4])
def test_lag2poly(self):
for i in range(7):
assert_almost_equal(lag.lag2poly([0]*i + [1]), Llist[i])
def test_poly2lag(self):
for i in range(7):
assert_almost_equal(lag.poly2lag(Llist[i]), [0]*i + [1])
def test_weight(self):
x = np.linspace(0, 10, 11)
tgt = np.exp(-x)
res = lag.lagweight(x)
assert_almost_equal(res, tgt)

View File

@ -0,0 +1,568 @@
"""Tests for legendre module.
"""
from functools import reduce
import numpy as np
import numpy.polynomial.legendre as leg
from numpy.polynomial.polynomial import polyval
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
L0 = np.array([1])
L1 = np.array([0, 1])
L2 = np.array([-1, 0, 3])/2
L3 = np.array([0, -3, 0, 5])/2
L4 = np.array([3, 0, -30, 0, 35])/8
L5 = np.array([0, 15, 0, -70, 0, 63])/8
L6 = np.array([-5, 0, 105, 0, -315, 0, 231])/16
L7 = np.array([0, -35, 0, 315, 0, -693, 0, 429])/16
L8 = np.array([35, 0, -1260, 0, 6930, 0, -12012, 0, 6435])/128
L9 = np.array([0, 315, 0, -4620, 0, 18018, 0, -25740, 0, 12155])/128
Llist = [L0, L1, L2, L3, L4, L5, L6, L7, L8, L9]
def trim(x):
return leg.legtrim(x, tol=1e-6)
class TestConstants:
def test_legdomain(self):
assert_equal(leg.legdomain, [-1, 1])
def test_legzero(self):
assert_equal(leg.legzero, [0])
def test_legone(self):
assert_equal(leg.legone, [1])
def test_legx(self):
assert_equal(leg.legx, [0, 1])
class TestArithmetic:
x = np.linspace(-1, 1, 100)
def test_legadd(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] += 1
res = leg.legadd([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_legsub(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] -= 1
res = leg.legsub([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_legmulx(self):
assert_equal(leg.legmulx([0]), [0])
assert_equal(leg.legmulx([1]), [0, 1])
for i in range(1, 5):
tmp = 2*i + 1
ser = [0]*i + [1]
tgt = [0]*(i - 1) + [i/tmp, 0, (i + 1)/tmp]
assert_equal(leg.legmulx(ser), tgt)
def test_legmul(self):
# check values of result
for i in range(5):
pol1 = [0]*i + [1]
val1 = leg.legval(self.x, pol1)
for j in range(5):
msg = f"At i={i}, j={j}"
pol2 = [0]*j + [1]
val2 = leg.legval(self.x, pol2)
pol3 = leg.legmul(pol1, pol2)
val3 = leg.legval(self.x, pol3)
assert_(len(pol3) == i + j + 1, msg)
assert_almost_equal(val3, val1*val2, err_msg=msg)
def test_legdiv(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
ci = [0]*i + [1]
cj = [0]*j + [1]
tgt = leg.legadd(ci, cj)
quo, rem = leg.legdiv(tgt, ci)
res = leg.legadd(leg.legmul(quo, ci), rem)
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_legpow(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
c = np.arange(i + 1)
tgt = reduce(leg.legmul, [c]*j, np.array([1]))
res = leg.legpow(c, j)
assert_equal(trim(res), trim(tgt), err_msg=msg)
class TestEvaluation:
# coefficients of 1 + 2*x + 3*x**2
c1d = np.array([2., 2., 2.])
c2d = np.einsum('i,j->ij', c1d, c1d)
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
y = polyval(x, [1., 2., 3.])
def test_legval(self):
#check empty input
assert_equal(leg.legval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [polyval(x, c) for c in Llist]
for i in range(10):
msg = f"At i={i}"
tgt = y[i]
res = leg.legval(x, [0]*i + [1])
assert_almost_equal(res, tgt, err_msg=msg)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(leg.legval(x, [1]).shape, dims)
assert_equal(leg.legval(x, [1, 0]).shape, dims)
assert_equal(leg.legval(x, [1, 0, 0]).shape, dims)
def test_legval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, leg.legval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = leg.legval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = leg.legval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
def test_legval3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, leg.legval3d, x1, x2, x3[:2], self.c3d)
#test values
tgt = y1*y2*y3
res = leg.legval3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = leg.legval3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3))
def test_leggrid2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j->ij', y1, y2)
res = leg.leggrid2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = leg.leggrid2d(z, z, self.c2d)
assert_(res.shape == (2, 3)*2)
def test_leggrid3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
res = leg.leggrid3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = leg.leggrid3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3)*3)
class TestIntegral:
def test_legint(self):
# check exceptions
assert_raises(TypeError, leg.legint, [0], .5)
assert_raises(ValueError, leg.legint, [0], -1)
assert_raises(ValueError, leg.legint, [0], 1, [0, 0])
assert_raises(ValueError, leg.legint, [0], lbnd=[0])
assert_raises(ValueError, leg.legint, [0], scl=[0])
assert_raises(TypeError, leg.legint, [0], axis=.5)
# test integration of zero polynomial
for i in range(2, 5):
k = [0]*(i - 2) + [1]
res = leg.legint([0], m=i, k=k)
assert_almost_equal(res, [0, 1])
# check single integration with integration constant
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [1/scl]
legpol = leg.poly2leg(pol)
legint = leg.legint(legpol, m=1, k=[i])
res = leg.leg2poly(legint)
assert_almost_equal(trim(res), trim(tgt))
# check single integration with integration constant and lbnd
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
legpol = leg.poly2leg(pol)
legint = leg.legint(legpol, m=1, k=[i], lbnd=-1)
assert_almost_equal(leg.legval(-1, legint), i)
# check single integration with integration constant and scaling
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [2/scl]
legpol = leg.poly2leg(pol)
legint = leg.legint(legpol, m=1, k=[i], scl=2)
res = leg.leg2poly(legint)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with default k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = leg.legint(tgt, m=1)
res = leg.legint(pol, m=j)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with defined k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = leg.legint(tgt, m=1, k=[k])
res = leg.legint(pol, m=j, k=list(range(j)))
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with lbnd
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = leg.legint(tgt, m=1, k=[k], lbnd=-1)
res = leg.legint(pol, m=j, k=list(range(j)), lbnd=-1)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with scaling
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = leg.legint(tgt, m=1, k=[k], scl=2)
res = leg.legint(pol, m=j, k=list(range(j)), scl=2)
assert_almost_equal(trim(res), trim(tgt))
def test_legint_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([leg.legint(c) for c in c2d.T]).T
res = leg.legint(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([leg.legint(c) for c in c2d])
res = leg.legint(c2d, axis=1)
assert_almost_equal(res, tgt)
tgt = np.vstack([leg.legint(c, k=3) for c in c2d])
res = leg.legint(c2d, k=3, axis=1)
assert_almost_equal(res, tgt)
def test_legint_zerointord(self):
assert_equal(leg.legint((1, 2, 3), 0), (1, 2, 3))
class TestDerivative:
def test_legder(self):
# check exceptions
assert_raises(TypeError, leg.legder, [0], .5)
assert_raises(ValueError, leg.legder, [0], -1)
# check that zeroth derivative does nothing
for i in range(5):
tgt = [0]*i + [1]
res = leg.legder(tgt, m=0)
assert_equal(trim(res), trim(tgt))
# check that derivation is the inverse of integration
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = leg.legder(leg.legint(tgt, m=j), m=j)
assert_almost_equal(trim(res), trim(tgt))
# check derivation with scaling
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = leg.legder(leg.legint(tgt, m=j, scl=2), m=j, scl=.5)
assert_almost_equal(trim(res), trim(tgt))
def test_legder_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([leg.legder(c) for c in c2d.T]).T
res = leg.legder(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([leg.legder(c) for c in c2d])
res = leg.legder(c2d, axis=1)
assert_almost_equal(res, tgt)
def test_legder_orderhigherthancoeff(self):
c = (1, 2, 3, 4)
assert_equal(leg.legder(c, 4), [0])
class TestVander:
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
def test_legvander(self):
# check for 1d x
x = np.arange(3)
v = leg.legvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], leg.legval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = leg.legvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], leg.legval(x, coef))
def test_legvander2d(self):
# also tests polyval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = leg.legvander2d(x1, x2, [1, 2])
tgt = leg.legval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = leg.legvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
def test_legvander3d(self):
# also tests polyval3d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3, 4))
van = leg.legvander3d(x1, x2, x3, [1, 2, 3])
tgt = leg.legval3d(x1, x2, x3, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = leg.legvander3d([x1], [x2], [x3], [1, 2, 3])
assert_(van.shape == (1, 5, 24))
def test_legvander_negdeg(self):
assert_raises(ValueError, leg.legvander, (1, 2, 3), -1)
class TestFitting:
def test_legfit(self):
def f(x):
return x*(x - 1)*(x - 2)
def f2(x):
return x**4 + x**2 + 1
# Test exceptions
assert_raises(ValueError, leg.legfit, [1], [1], -1)
assert_raises(TypeError, leg.legfit, [[1]], [1], 0)
assert_raises(TypeError, leg.legfit, [], [1], 0)
assert_raises(TypeError, leg.legfit, [1], [[[1]]], 0)
assert_raises(TypeError, leg.legfit, [1, 2], [1], 0)
assert_raises(TypeError, leg.legfit, [1], [1, 2], 0)
assert_raises(TypeError, leg.legfit, [1], [1], 0, w=[[1]])
assert_raises(TypeError, leg.legfit, [1], [1], 0, w=[1, 1])
assert_raises(ValueError, leg.legfit, [1], [1], [-1,])
assert_raises(ValueError, leg.legfit, [1], [1], [2, -1, 6])
assert_raises(TypeError, leg.legfit, [1], [1], [])
# Test fit
x = np.linspace(0, 2)
y = f(x)
#
coef3 = leg.legfit(x, y, 3)
assert_equal(len(coef3), 4)
assert_almost_equal(leg.legval(x, coef3), y)
coef3 = leg.legfit(x, y, [0, 1, 2, 3])
assert_equal(len(coef3), 4)
assert_almost_equal(leg.legval(x, coef3), y)
#
coef4 = leg.legfit(x, y, 4)
assert_equal(len(coef4), 5)
assert_almost_equal(leg.legval(x, coef4), y)
coef4 = leg.legfit(x, y, [0, 1, 2, 3, 4])
assert_equal(len(coef4), 5)
assert_almost_equal(leg.legval(x, coef4), y)
# check things still work if deg is not in strict increasing
coef4 = leg.legfit(x, y, [2, 3, 4, 1, 0])
assert_equal(len(coef4), 5)
assert_almost_equal(leg.legval(x, coef4), y)
#
coef2d = leg.legfit(x, np.array([y, y]).T, 3)
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
coef2d = leg.legfit(x, np.array([y, y]).T, [0, 1, 2, 3])
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
# test weighting
w = np.zeros_like(x)
yw = y.copy()
w[1::2] = 1
y[0::2] = 0
wcoef3 = leg.legfit(x, yw, 3, w=w)
assert_almost_equal(wcoef3, coef3)
wcoef3 = leg.legfit(x, yw, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef3, coef3)
#
wcoef2d = leg.legfit(x, np.array([yw, yw]).T, 3, w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
wcoef2d = leg.legfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
# test scaling with complex values x points whose square
# is zero when summed.
x = [1, 1j, -1, -1j]
assert_almost_equal(leg.legfit(x, x, 1), [0, 1])
assert_almost_equal(leg.legfit(x, x, [0, 1]), [0, 1])
# test fitting only even Legendre polynomials
x = np.linspace(-1, 1)
y = f2(x)
coef1 = leg.legfit(x, y, 4)
assert_almost_equal(leg.legval(x, coef1), y)
coef2 = leg.legfit(x, y, [0, 2, 4])
assert_almost_equal(leg.legval(x, coef2), y)
assert_almost_equal(coef1, coef2)
class TestCompanion:
def test_raises(self):
assert_raises(ValueError, leg.legcompanion, [])
assert_raises(ValueError, leg.legcompanion, [1])
def test_dimensions(self):
for i in range(1, 5):
coef = [0]*i + [1]
assert_(leg.legcompanion(coef).shape == (i, i))
def test_linear_root(self):
assert_(leg.legcompanion([1, 2])[0, 0] == -.5)
class TestGauss:
def test_100(self):
x, w = leg.leggauss(100)
# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.
v = leg.legvander(x, 99)
vv = np.dot(v.T * w, v)
vd = 1/np.sqrt(vv.diagonal())
vv = vd[:, None] * vv * vd
assert_almost_equal(vv, np.eye(100))
# check that the integral of 1 is correct
tgt = 2.0
assert_almost_equal(w.sum(), tgt)
class TestMisc:
def test_legfromroots(self):
res = leg.legfromroots([])
assert_almost_equal(trim(res), [1])
for i in range(1, 5):
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
pol = leg.legfromroots(roots)
res = leg.legval(roots, pol)
tgt = 0
assert_(len(pol) == i + 1)
assert_almost_equal(leg.leg2poly(pol)[-1], 1)
assert_almost_equal(res, tgt)
def test_legroots(self):
assert_almost_equal(leg.legroots([1]), [])
assert_almost_equal(leg.legroots([1, 2]), [-.5])
for i in range(2, 5):
tgt = np.linspace(-1, 1, i)
res = leg.legroots(leg.legfromroots(tgt))
assert_almost_equal(trim(res), trim(tgt))
def test_legtrim(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, leg.legtrim, coef, -1)
# Test results
assert_equal(leg.legtrim(coef), coef[:-1])
assert_equal(leg.legtrim(coef, 1), coef[:-3])
assert_equal(leg.legtrim(coef, 2), [0])
def test_legline(self):
assert_equal(leg.legline(3, 4), [3, 4])
def test_legline_zeroscl(self):
assert_equal(leg.legline(3, 0), [3])
def test_leg2poly(self):
for i in range(10):
assert_almost_equal(leg.leg2poly([0]*i + [1]), Llist[i])
def test_poly2leg(self):
for i in range(10):
assert_almost_equal(leg.poly2leg(Llist[i]), [0]*i + [1])
def test_weight(self):
x = np.linspace(-1, 1, 11)
tgt = 1.
res = leg.legweight(x)
assert_almost_equal(res, tgt)

View File

@ -0,0 +1,647 @@
"""Tests for polynomial module.
"""
from functools import reduce
from fractions import Fraction
import numpy as np
import numpy.polynomial.polynomial as poly
import numpy.polynomial.polyutils as pu
import pickle
from copy import deepcopy
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
assert_array_equal, assert_raises_regex, assert_warns)
def trim(x):
return poly.polytrim(x, tol=1e-6)
T0 = [1]
T1 = [0, 1]
T2 = [-1, 0, 2]
T3 = [0, -3, 0, 4]
T4 = [1, 0, -8, 0, 8]
T5 = [0, 5, 0, -20, 0, 16]
T6 = [-1, 0, 18, 0, -48, 0, 32]
T7 = [0, -7, 0, 56, 0, -112, 0, 64]
T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
class TestConstants:
def test_polydomain(self):
assert_equal(poly.polydomain, [-1, 1])
def test_polyzero(self):
assert_equal(poly.polyzero, [0])
def test_polyone(self):
assert_equal(poly.polyone, [1])
def test_polyx(self):
assert_equal(poly.polyx, [0, 1])
def test_copy(self):
x = poly.Polynomial([1, 2, 3])
y = deepcopy(x)
assert_equal(x, y)
def test_pickle(self):
x = poly.Polynomial([1, 2, 3])
y = pickle.loads(pickle.dumps(x))
assert_equal(x, y)
class TestArithmetic:
def test_polyadd(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] += 1
res = poly.polyadd([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_polysub(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(max(i, j) + 1)
tgt[i] += 1
tgt[j] -= 1
res = poly.polysub([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_polymulx(self):
assert_equal(poly.polymulx([0]), [0])
assert_equal(poly.polymulx([1]), [0, 1])
for i in range(1, 5):
ser = [0]*i + [1]
tgt = [0]*(i + 1) + [1]
assert_equal(poly.polymulx(ser), tgt)
def test_polymul(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
tgt = np.zeros(i + j + 1)
tgt[i + j] += 1
res = poly.polymul([0]*i + [1], [0]*j + [1])
assert_equal(trim(res), trim(tgt), err_msg=msg)
def test_polydiv(self):
# check zero division
assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])
# check scalar division
quo, rem = poly.polydiv([2], [2])
assert_equal((quo, rem), (1, 0))
quo, rem = poly.polydiv([2, 2], [2])
assert_equal((quo, rem), ((1, 1), 0))
# check rest.
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
ci = [0]*i + [1, 2]
cj = [0]*j + [1, 2]
tgt = poly.polyadd(ci, cj)
quo, rem = poly.polydiv(tgt, ci)
res = poly.polyadd(poly.polymul(quo, ci), rem)
assert_equal(res, tgt, err_msg=msg)
def test_polypow(self):
for i in range(5):
for j in range(5):
msg = f"At i={i}, j={j}"
c = np.arange(i + 1)
tgt = reduce(poly.polymul, [c]*j, np.array([1]))
res = poly.polypow(c, j)
assert_equal(trim(res), trim(tgt), err_msg=msg)
class TestFraction:
def test_Fraction(self):
# assert we can use Polynomials with coefficients of object dtype
f = Fraction(2, 3)
one = Fraction(1, 1)
zero = Fraction(0, 1)
p = poly.Polynomial([f, f], domain=[zero, one], window=[zero, one])
x = 2 * p + p ** 2
assert_equal(x.coef, np.array([Fraction(16, 9), Fraction(20, 9),
Fraction(4, 9)], dtype=object))
assert_equal(p.domain, [zero, one])
assert_equal(p.coef.dtype, np.dtypes.ObjectDType())
assert_(isinstance(p(f), Fraction))
assert_equal(p(f), Fraction(10, 9))
p_deriv = poly.Polynomial([Fraction(2, 3)], domain=[zero, one],
window=[zero, one])
assert_equal(p.deriv(), p_deriv)
class TestEvaluation:
# coefficients of 1 + 2*x + 3*x**2
c1d = np.array([1., 2., 3.])
c2d = np.einsum('i,j->ij', c1d, c1d)
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
y = poly.polyval(x, [1., 2., 3.])
def test_polyval(self):
#check empty input
assert_equal(poly.polyval([], [1]).size, 0)
#check normal input)
x = np.linspace(-1, 1)
y = [x**i for i in range(5)]
for i in range(5):
tgt = y[i]
res = poly.polyval(x, [0]*i + [1])
assert_almost_equal(res, tgt)
tgt = x*(x**2 - 1)
res = poly.polyval(x, [0, -1, 0, 1])
assert_almost_equal(res, tgt)
#check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(poly.polyval(x, [1]).shape, dims)
assert_equal(poly.polyval(x, [1, 0]).shape, dims)
assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
#check masked arrays are processed correctly
mask = [False, True, False]
mx = np.ma.array([1, 2, 3], mask=mask)
res = np.polyval([7, 5, 3], mx)
assert_array_equal(res.mask, mask)
#check subtypes of ndarray are preserved
class C(np.ndarray):
pass
cx = np.array([1, 2, 3]).view(C)
assert_equal(type(np.polyval([2, 3, 4], cx)), C)
def test_polyvalfromroots(self):
# check exception for broadcasting x values over root array with
# too few dimensions
assert_raises(ValueError, poly.polyvalfromroots,
[1], [1], tensor=False)
# check empty input
assert_equal(poly.polyvalfromroots([], [1]).size, 0)
assert_(poly.polyvalfromroots([], [1]).shape == (0,))
# check empty input + multidimensional roots
assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))
# check scalar input
assert_equal(poly.polyvalfromroots(1, 1), 0)
assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))
# check normal input)
x = np.linspace(-1, 1)
y = [x**i for i in range(5)]
for i in range(1, 5):
tgt = y[i]
res = poly.polyvalfromroots(x, [0]*i)
assert_almost_equal(res, tgt)
tgt = x*(x - 1)*(x + 1)
res = poly.polyvalfromroots(x, [-1, 0, 1])
assert_almost_equal(res, tgt)
# check that shape is preserved
for i in range(3):
dims = [2]*i
x = np.zeros(dims)
assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)
# check compatibility with factorization
ptest = [15, 2, -16, -2, 1]
r = poly.polyroots(ptest)
x = np.linspace(-1, 1)
assert_almost_equal(poly.polyval(x, ptest),
poly.polyvalfromroots(x, r))
# check multidimensional arrays of roots and values
# check tensor=False
rshape = (3, 5)
x = np.arange(-3, 2)
r = np.random.randint(-5, 5, size=rshape)
res = poly.polyvalfromroots(x, r, tensor=False)
tgt = np.empty(r.shape[1:])
for ii in range(tgt.size):
tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
assert_equal(res, tgt)
# check tensor=True
x = np.vstack([x, 2*x])
res = poly.polyvalfromroots(x, r, tensor=True)
tgt = np.empty(r.shape[1:] + x.shape)
for ii in range(r.shape[1]):
for jj in range(x.shape[0]):
tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
assert_equal(res, tgt)
def test_polyval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises_regex(ValueError, 'incompatible',
poly.polyval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = poly.polyval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = poly.polyval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
def test_polyval3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises_regex(ValueError, 'incompatible',
poly.polyval3d, x1, x2, x3[:2], self.c3d)
#test values
tgt = y1*y2*y3
res = poly.polyval3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = poly.polyval3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3))
def test_polygrid2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j->ij', y1, y2)
res = poly.polygrid2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = poly.polygrid2d(z, z, self.c2d)
assert_(res.shape == (2, 3)*2)
def test_polygrid3d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test values
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
res = poly.polygrid3d(x1, x2, x3, self.c3d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = poly.polygrid3d(z, z, z, self.c3d)
assert_(res.shape == (2, 3)*3)
class TestIntegral:
def test_polyint(self):
# check exceptions
assert_raises(TypeError, poly.polyint, [0], .5)
assert_raises(ValueError, poly.polyint, [0], -1)
assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
assert_raises(ValueError, poly.polyint, [0], scl=[0])
assert_raises(TypeError, poly.polyint, [0], axis=.5)
assert_raises(TypeError, poly.polyint, [1, 1], 1.)
# test integration of zero polynomial
for i in range(2, 5):
k = [0]*(i - 2) + [1]
res = poly.polyint([0], m=i, k=k)
assert_almost_equal(res, [0, 1])
# check single integration with integration constant
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [1/scl]
res = poly.polyint(pol, m=1, k=[i])
assert_almost_equal(trim(res), trim(tgt))
# check single integration with integration constant and lbnd
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
assert_almost_equal(poly.polyval(-1, res), i)
# check single integration with integration constant and scaling
for i in range(5):
scl = i + 1
pol = [0]*i + [1]
tgt = [i] + [0]*i + [2/scl]
res = poly.polyint(pol, m=1, k=[i], scl=2)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with default k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = poly.polyint(tgt, m=1)
res = poly.polyint(pol, m=j)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with defined k
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = poly.polyint(tgt, m=1, k=[k])
res = poly.polyint(pol, m=j, k=list(range(j)))
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with lbnd
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
assert_almost_equal(trim(res), trim(tgt))
# check multiple integrations with scaling
for i in range(5):
for j in range(2, 5):
pol = [0]*i + [1]
tgt = pol[:]
for k in range(j):
tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
assert_almost_equal(trim(res), trim(tgt))
def test_polyint_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
res = poly.polyint(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([poly.polyint(c) for c in c2d])
res = poly.polyint(c2d, axis=1)
assert_almost_equal(res, tgt)
tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
res = poly.polyint(c2d, k=3, axis=1)
assert_almost_equal(res, tgt)
class TestDerivative:
def test_polyder(self):
# check exceptions
assert_raises(TypeError, poly.polyder, [0], .5)
assert_raises(ValueError, poly.polyder, [0], -1)
# check that zeroth derivative does nothing
for i in range(5):
tgt = [0]*i + [1]
res = poly.polyder(tgt, m=0)
assert_equal(trim(res), trim(tgt))
# check that derivation is the inverse of integration
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = poly.polyder(poly.polyint(tgt, m=j), m=j)
assert_almost_equal(trim(res), trim(tgt))
# check derivation with scaling
for i in range(5):
for j in range(2, 5):
tgt = [0]*i + [1]
res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
assert_almost_equal(trim(res), trim(tgt))
def test_polyder_axis(self):
# check that axis keyword works
c2d = np.random.random((3, 4))
tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
res = poly.polyder(c2d, axis=0)
assert_almost_equal(res, tgt)
tgt = np.vstack([poly.polyder(c) for c in c2d])
res = poly.polyder(c2d, axis=1)
assert_almost_equal(res, tgt)
class TestVander:
# some random values in [-1, 1)
x = np.random.random((3, 5))*2 - 1
def test_polyvander(self):
# check for 1d x
x = np.arange(3)
v = poly.polyvander(x, 3)
assert_(v.shape == (3, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], poly.polyval(x, coef))
# check for 2d x
x = np.array([[1, 2], [3, 4], [5, 6]])
v = poly.polyvander(x, 3)
assert_(v.shape == (3, 2, 4))
for i in range(4):
coef = [0]*i + [1]
assert_almost_equal(v[..., i], poly.polyval(x, coef))
def test_polyvander2d(self):
# also tests polyval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = poly.polyvander2d(x1, x2, [1, 2])
tgt = poly.polyval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = poly.polyvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
def test_polyvander3d(self):
# also tests polyval3d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3, 4))
van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
tgt = poly.polyval3d(x1, x2, x3, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
assert_(van.shape == (1, 5, 24))
def test_polyvandernegdeg(self):
x = np.arange(3)
assert_raises(ValueError, poly.polyvander, x, -1)
class TestCompanion:
def test_raises(self):
assert_raises(ValueError, poly.polycompanion, [])
assert_raises(ValueError, poly.polycompanion, [1])
def test_dimensions(self):
for i in range(1, 5):
coef = [0]*i + [1]
assert_(poly.polycompanion(coef).shape == (i, i))
def test_linear_root(self):
assert_(poly.polycompanion([1, 2])[0, 0] == -.5)
class TestMisc:
def test_polyfromroots(self):
res = poly.polyfromroots([])
assert_almost_equal(trim(res), [1])
for i in range(1, 5):
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
tgt = Tlist[i]
res = poly.polyfromroots(roots)*2**(i-1)
assert_almost_equal(trim(res), trim(tgt))
def test_polyroots(self):
assert_almost_equal(poly.polyroots([1]), [])
assert_almost_equal(poly.polyroots([1, 2]), [-.5])
for i in range(2, 5):
tgt = np.linspace(-1, 1, i)
res = poly.polyroots(poly.polyfromroots(tgt))
assert_almost_equal(trim(res), trim(tgt))
def test_polyfit(self):
def f(x):
return x*(x - 1)*(x - 2)
def f2(x):
return x**4 + x**2 + 1
# Test exceptions
assert_raises(ValueError, poly.polyfit, [1], [1], -1)
assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
assert_raises(TypeError, poly.polyfit, [], [1], 0)
assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
assert_raises(TypeError, poly.polyfit, [1], [1], [])
# Test fit
x = np.linspace(0, 2)
y = f(x)
#
coef3 = poly.polyfit(x, y, 3)
assert_equal(len(coef3), 4)
assert_almost_equal(poly.polyval(x, coef3), y)
coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
assert_equal(len(coef3), 4)
assert_almost_equal(poly.polyval(x, coef3), y)
#
coef4 = poly.polyfit(x, y, 4)
assert_equal(len(coef4), 5)
assert_almost_equal(poly.polyval(x, coef4), y)
coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
assert_equal(len(coef4), 5)
assert_almost_equal(poly.polyval(x, coef4), y)
#
coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
# test weighting
w = np.zeros_like(x)
yw = y.copy()
w[1::2] = 1
yw[0::2] = 0
wcoef3 = poly.polyfit(x, yw, 3, w=w)
assert_almost_equal(wcoef3, coef3)
wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef3, coef3)
#
wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
# test scaling with complex values x points whose square
# is zero when summed.
x = [1, 1j, -1, -1j]
assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
# test fitting only even Polyendre polynomials
x = np.linspace(-1, 1)
y = f2(x)
coef1 = poly.polyfit(x, y, 4)
assert_almost_equal(poly.polyval(x, coef1), y)
coef2 = poly.polyfit(x, y, [0, 2, 4])
assert_almost_equal(poly.polyval(x, coef2), y)
assert_almost_equal(coef1, coef2)
def test_polytrim(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, poly.polytrim, coef, -1)
# Test results
assert_equal(poly.polytrim(coef), coef[:-1])
assert_equal(poly.polytrim(coef, 1), coef[:-3])
assert_equal(poly.polytrim(coef, 2), [0])
def test_polyline(self):
assert_equal(poly.polyline(3, 4), [3, 4])
def test_polyline_zero(self):
assert_equal(poly.polyline(3, 0), [3])
def test_fit_degenerate_domain(self):
p = poly.Polynomial.fit([1], [2], deg=0)
assert_equal(p.coef, [2.])
p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=0)
assert_almost_equal(p.coef, [2.05])
with assert_warns(pu.RankWarning):
p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=1)
def test_result_type(self):
w = np.array([-1, 1], dtype=np.float32)
p = np.polynomial.Polynomial(w, domain=w, window=w)
v = p(2)
assert_equal(v.dtype, np.float32)
arr = np.polydiv(1, np.float32(1))
assert_equal(arr[0].dtype, np.float64)

View File

@ -0,0 +1,125 @@
"""Tests for polyutils module.
"""
import numpy as np
import numpy.polynomial.polyutils as pu
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
class TestMisc:
def test_trimseq(self):
tgt = [1]
for num_trailing_zeros in range(5):
res = pu.trimseq([1] + [0] * num_trailing_zeros)
assert_equal(res, tgt)
def test_trimseq_empty_input(self):
for empty_seq in [[], np.array([], dtype=np.int32)]:
assert_equal(pu.trimseq(empty_seq), empty_seq)
def test_as_series(self):
# check exceptions
assert_raises(ValueError, pu.as_series, [[]])
assert_raises(ValueError, pu.as_series, [[[1, 2]]])
assert_raises(ValueError, pu.as_series, [[1], ['a']])
# check common types
types = ['i', 'd', 'O']
for i in range(len(types)):
for j in range(i):
ci = np.ones(1, types[i])
cj = np.ones(1, types[j])
[resi, resj] = pu.as_series([ci, cj])
assert_(resi.dtype.char == resj.dtype.char)
assert_(resj.dtype.char == types[i])
def test_trimcoef(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, pu.trimcoef, coef, -1)
# Test results
assert_equal(pu.trimcoef(coef), coef[:-1])
assert_equal(pu.trimcoef(coef, 1), coef[:-3])
assert_equal(pu.trimcoef(coef, 2), [0])
def test_vander_nd_exception(self):
# n_dims != len(points)
assert_raises(ValueError, pu._vander_nd, (), (1, 2, 3), [90])
# n_dims != len(degrees)
assert_raises(ValueError, pu._vander_nd, (), (), [90.65])
# n_dims == 0
assert_raises(ValueError, pu._vander_nd, (), (), [])
def test_div_zerodiv(self):
# c2[-1] == 0
assert_raises(ZeroDivisionError, pu._div, pu._div, (1, 2, 3), [0])
def test_pow_too_large(self):
# power > maxpower
assert_raises(ValueError, pu._pow, (), [1, 2, 3], 5, 4)
class TestDomain:
def test_getdomain(self):
# test for real values
x = [1, 10, 3, -1]
tgt = [-1, 10]
res = pu.getdomain(x)
assert_almost_equal(res, tgt)
# test for complex values
x = [1 + 1j, 1 - 1j, 0, 2]
tgt = [-1j, 2 + 1j]
res = pu.getdomain(x)
assert_almost_equal(res, tgt)
def test_mapdomain(self):
# test for real values
dom1 = [0, 4]
dom2 = [1, 3]
tgt = dom2
res = pu.mapdomain(dom1, dom1, dom2)
assert_almost_equal(res, tgt)
# test for complex values
dom1 = [0 - 1j, 2 + 1j]
dom2 = [-2, 2]
tgt = dom2
x = dom1
res = pu.mapdomain(x, dom1, dom2)
assert_almost_equal(res, tgt)
# test for multidimensional arrays
dom1 = [0, 4]
dom2 = [1, 3]
tgt = np.array([dom2, dom2])
x = np.array([dom1, dom1])
res = pu.mapdomain(x, dom1, dom2)
assert_almost_equal(res, tgt)
# test that subtypes are preserved.
class MyNDArray(np.ndarray):
pass
dom1 = [0, 4]
dom2 = [1, 3]
x = np.array([dom1, dom1]).view(MyNDArray)
res = pu.mapdomain(x, dom1, dom2)
assert_(isinstance(res, MyNDArray))
def test_mapparms(self):
# test for real values
dom1 = [0, 4]
dom2 = [1, 3]
tgt = [1, .5]
res = pu. mapparms(dom1, dom2)
assert_almost_equal(res, tgt)
# test for complex values
dom1 = [0 - 1j, 2 + 1j]
dom2 = [-2, 2]
tgt = [-1 + 1j, 1 - 1j]
res = pu.mapparms(dom1, dom2)
assert_almost_equal(res, tgt)

View File

@ -0,0 +1,552 @@
from math import nan, inf
import pytest
from numpy._core import array, arange, printoptions
import numpy.polynomial as poly
from numpy.testing import assert_equal, assert_
# For testing polynomial printing with object arrays
from fractions import Fraction
from decimal import Decimal
class TestStrUnicodeSuperSubscripts:
@pytest.fixture(scope='class', autouse=True)
def use_unicode(self):
poly.set_default_printstyle('unicode')
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·x + 3.0·x²"),
([-1, 0, 3, -1], "-1.0 + 0.0·x + 3.0·x² - 1.0·x³"),
(arange(12), ("0.0 + 1.0·x + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + "
"6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + "
"11.0·x¹¹")),
))
def test_polynomial_str(self, inp, tgt):
p = poly.Polynomial(inp)
res = str(p)
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"),
(arange(12), ("0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + "
"5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + "
"9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)")),
))
def test_chebyshev_str(self, inp, tgt):
res = str(poly.Chebyshev(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"),
(arange(12), ("0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + "
"5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + "
"9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)")),
))
def test_legendre_str(self, inp, tgt):
res = str(poly.Legendre(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"),
(arange(12), ("0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + "
"5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + "
"9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)")),
))
def test_hermite_str(self, inp, tgt):
res = str(poly.Hermite(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"),
(arange(12), ("0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + "
"4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + "
"8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n"
"11.0·He₁₁(x)")),
))
def test_hermiteE_str(self, inp, tgt):
res = str(poly.HermiteE(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"),
(arange(12), ("0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + "
"5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + "
"9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)")),
))
def test_laguerre_str(self, inp, tgt):
res = str(poly.Laguerre(inp))
assert_equal(res, tgt)
def test_polynomial_str_domains(self):
res = str(poly.Polynomial([0, 1]))
tgt = '0.0 + 1.0·x'
assert_equal(res, tgt)
res = str(poly.Polynomial([0, 1], domain=[1, 2]))
tgt = '0.0 + 1.0·(-3.0 + 2.0x)'
assert_equal(res, tgt)
class TestStrAscii:
@pytest.fixture(scope='class', autouse=True)
def use_ascii(self):
poly.set_default_printstyle('ascii')
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 x + 3.0 x**2"),
([-1, 0, 3, -1], "-1.0 + 0.0 x + 3.0 x**2 - 1.0 x**3"),
(arange(12), ("0.0 + 1.0 x + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + "
"5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + "
"9.0 x**9 + 10.0 x**10 + 11.0 x**11")),
))
def test_polynomial_str(self, inp, tgt):
res = str(poly.Polynomial(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"),
(arange(12), ("0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + "
"4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + "
"8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n"
"11.0 T_11(x)")),
))
def test_chebyshev_str(self, inp, tgt):
res = str(poly.Chebyshev(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"),
(arange(12), ("0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + "
"4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + "
"8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n"
"11.0 P_11(x)")),
))
def test_legendre_str(self, inp, tgt):
res = str(poly.Legendre(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"),
(arange(12), ("0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + "
"4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + "
"8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n"
"11.0 H_11(x)")),
))
def test_hermite_str(self, inp, tgt):
res = str(poly.Hermite(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"),
(arange(12), ("0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + "
"4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + "
"7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n"
"10.0 He_10(x) + 11.0 He_11(x)")),
))
def test_hermiteE_str(self, inp, tgt):
res = str(poly.HermiteE(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"),
(arange(12), ("0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + "
"4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + "
"8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n"
"11.0 L_11(x)")),
))
def test_laguerre_str(self, inp, tgt):
res = str(poly.Laguerre(inp))
assert_equal(res, tgt)
def test_polynomial_str_domains(self):
res = str(poly.Polynomial([0, 1]))
tgt = '0.0 + 1.0 x'
assert_equal(res, tgt)
res = str(poly.Polynomial([0, 1], domain=[1, 2]))
tgt = '0.0 + 1.0 (-3.0 + 2.0x)'
assert_equal(res, tgt)
class TestLinebreaking:
@pytest.fixture(scope='class', autouse=True)
def use_ascii(self):
poly.set_default_printstyle('ascii')
def test_single_line_one_less(self):
# With 'ascii' style, len(str(p)) is default linewidth - 1 (i.e. 74)
p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 123])
assert_equal(len(str(p)), 74)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.0 x**3 + 123.0 x**4'
))
def test_num_chars_is_linewidth(self):
# len(str(p)) == default linewidth == 75
p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 1234])
assert_equal(len(str(p)), 75)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.0 x**3 +\n1234.0 x**4'
))
def test_first_linebreak_multiline_one_less_than_linewidth(self):
# Multiline str where len(first_line) + len(next_term) == lw - 1 == 74
p = poly.Polynomial(
[12345678, 12345678, 12345678, 12345678, 1, 12345678]
)
assert_equal(len(str(p).split('\n')[0]), 74)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.0 x**3 + 1.0 x**4 +\n12345678.0 x**5'
))
def test_first_linebreak_multiline_on_linewidth(self):
# First line is one character longer than previous test
p = poly.Polynomial(
[12345678, 12345678, 12345678, 12345678.12, 1, 12345678]
)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.12 x**3 +\n1.0 x**4 + 12345678.0 x**5'
))
@pytest.mark.parametrize(('lw', 'tgt'), (
(75, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
'500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
'900.0 x**9')),
(45, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 +\n40000.0 x**4 + '
'500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 +\n'
'900.0 x**9')),
(132, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
'500000.0 x**5 + 600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
'900.0 x**9')),
))
def test_linewidth_printoption(self, lw, tgt):
p = poly.Polynomial(
[0, 10, 200, 3000, 40000, 500000, 600000, 70000, 8000, 900]
)
with printoptions(linewidth=lw):
assert_equal(str(p), tgt)
for line in str(p).split('\n'):
assert_(len(line) < lw)
def test_set_default_printoptions():
p = poly.Polynomial([1, 2, 3])
c = poly.Chebyshev([1, 2, 3])
poly.set_default_printstyle('ascii')
assert_equal(str(p), "1.0 + 2.0 x + 3.0 x**2")
assert_equal(str(c), "1.0 + 2.0 T_1(x) + 3.0 T_2(x)")
poly.set_default_printstyle('unicode')
assert_equal(str(p), "1.0 + 2.0·x + 3.0·x²")
assert_equal(str(c), "1.0 + 2.0·T₁(x) + 3.0·T₂(x)")
with pytest.raises(ValueError):
poly.set_default_printstyle('invalid_input')
def test_complex_coefficients():
"""Test both numpy and built-in complex."""
coefs = [0+1j, 1+1j, -2+2j, 3+0j]
# numpy complex
p1 = poly.Polynomial(coefs)
# Python complex
p2 = poly.Polynomial(array(coefs, dtype=object))
poly.set_default_printstyle('unicode')
assert_equal(str(p1), "1j + (1+1j)·x - (2-2j)·x² + (3+0j)·x³")
assert_equal(str(p2), "1j + (1+1j)·x + (-2+2j)·x² + (3+0j)·x³")
poly.set_default_printstyle('ascii')
assert_equal(str(p1), "1j + (1+1j) x - (2-2j) x**2 + (3+0j) x**3")
assert_equal(str(p2), "1j + (1+1j) x + (-2+2j) x**2 + (3+0j) x**3")
@pytest.mark.parametrize(('coefs', 'tgt'), (
(array([Fraction(1, 2), Fraction(3, 4)], dtype=object), (
"1/2 + 3/4·x"
)),
(array([1, 2, Fraction(5, 7)], dtype=object), (
"1 + 2·x + 5/7·x²"
)),
(array([Decimal('1.00'), Decimal('2.2'), 3], dtype=object), (
"1.00 + 2.2·x + 3·x²"
)),
))
def test_numeric_object_coefficients(coefs, tgt):
p = poly.Polynomial(coefs)
poly.set_default_printstyle('unicode')
assert_equal(str(p), tgt)
@pytest.mark.parametrize(('coefs', 'tgt'), (
(array([1, 2, 'f'], dtype=object), '1 + 2·x + f·x²'),
(array([1, 2, [3, 4]], dtype=object), '1 + 2·x + [3, 4]·x²'),
))
def test_nonnumeric_object_coefficients(coefs, tgt):
"""
Test coef fallback for object arrays of non-numeric coefficients.
"""
p = poly.Polynomial(coefs)
poly.set_default_printstyle('unicode')
assert_equal(str(p), tgt)
class TestFormat:
def test_format_unicode(self):
poly.set_default_printstyle('ascii')
p = poly.Polynomial([1, 2, 0, -1])
assert_equal(format(p, 'unicode'), "1.0 + 2.0·x + 0.0·x² - 1.0·x³")
def test_format_ascii(self):
poly.set_default_printstyle('unicode')
p = poly.Polynomial([1, 2, 0, -1])
assert_equal(
format(p, 'ascii'), "1.0 + 2.0 x + 0.0 x**2 - 1.0 x**3"
)
def test_empty_formatstr(self):
poly.set_default_printstyle('ascii')
p = poly.Polynomial([1, 2, 3])
assert_equal(format(p), "1.0 + 2.0 x + 3.0 x**2")
assert_equal(f"{p}", "1.0 + 2.0 x + 3.0 x**2")
def test_bad_formatstr(self):
p = poly.Polynomial([1, 2, 0, -1])
with pytest.raises(ValueError):
format(p, '.2f')
@pytest.mark.parametrize(('poly', 'tgt'), (
(poly.Polynomial, '1.0 + 2.0·z + 3.0·z²'),
(poly.Chebyshev, '1.0 + 2.0·T₁(z) + 3.0·T₂(z)'),
(poly.Hermite, '1.0 + 2.0·H₁(z) + 3.0·H₂(z)'),
(poly.HermiteE, '1.0 + 2.0·He₁(z) + 3.0·He₂(z)'),
(poly.Laguerre, '1.0 + 2.0·L₁(z) + 3.0·L₂(z)'),
(poly.Legendre, '1.0 + 2.0·P₁(z) + 3.0·P₂(z)'),
))
def test_symbol(poly, tgt):
p = poly([1, 2, 3], symbol='z')
assert_equal(f"{p:unicode}", tgt)
class TestRepr:
def test_polynomial_repr(self):
res = repr(poly.Polynomial([0, 1]))
tgt = (
"Polynomial([0., 1.], domain=[-1., 1.], window=[-1., 1.], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_chebyshev_repr(self):
res = repr(poly.Chebyshev([0, 1]))
tgt = (
"Chebyshev([0., 1.], domain=[-1., 1.], window=[-1., 1.], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_legendre_repr(self):
res = repr(poly.Legendre([0, 1]))
tgt = (
"Legendre([0., 1.], domain=[-1., 1.], window=[-1., 1.], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_hermite_repr(self):
res = repr(poly.Hermite([0, 1]))
tgt = (
"Hermite([0., 1.], domain=[-1., 1.], window=[-1., 1.], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_hermiteE_repr(self):
res = repr(poly.HermiteE([0, 1]))
tgt = (
"HermiteE([0., 1.], domain=[-1., 1.], window=[-1., 1.], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_laguerre_repr(self):
res = repr(poly.Laguerre([0, 1]))
tgt = (
"Laguerre([0., 1.], domain=[0., 1.], window=[0., 1.], "
"symbol='x')"
)
assert_equal(res, tgt)
class TestLatexRepr:
"""Test the latex repr used by Jupyter"""
@staticmethod
def as_latex(obj):
# right now we ignore the formatting of scalars in our tests, since
# it makes them too verbose. Ideally, the formatting of scalars will
# be fixed such that tests below continue to pass
obj._repr_latex_scalar = lambda x, parens=False: str(x)
try:
return obj._repr_latex_()
finally:
del obj._repr_latex_scalar
def test_simple_polynomial(self):
# default input
p = poly.Polynomial([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$')
# translated input
p = poly.Polynomial([1, 2, 3], domain=[-2, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$')
# scaled input
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$')
# affine input
p = poly.Polynomial([1, 2, 3], domain=[-1, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$')
def test_basis_func(self):
p = poly.Chebyshev([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$')
# affine input - check no surplus parens are added
p = poly.Chebyshev([1, 2, 3], domain=[-1, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$')
def test_multichar_basis_func(self):
p = poly.HermiteE([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$')
def test_symbol_basic(self):
# default input
p = poly.Polynomial([1, 2, 3], symbol='z')
assert_equal(self.as_latex(p),
r'$z \mapsto 1.0 + 2.0\,z + 3.0\,z^{2}$')
# translated input
p = poly.Polynomial([1, 2, 3], domain=[-2, 0], symbol='z')
assert_equal(
self.as_latex(p),
(
r'$z \mapsto 1.0 + 2.0\,\left(1.0 + z\right) + 3.0\,'
r'\left(1.0 + z\right)^{2}$'
),
)
# scaled input
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5], symbol='z')
assert_equal(
self.as_latex(p),
(
r'$z \mapsto 1.0 + 2.0\,\left(2.0z\right) + 3.0\,'
r'\left(2.0z\right)^{2}$'
),
)
# affine input
p = poly.Polynomial([1, 2, 3], domain=[-1, 0], symbol='z')
assert_equal(
self.as_latex(p),
(
r'$z \mapsto 1.0 + 2.0\,\left(1.0 + 2.0z\right) + 3.0\,'
r'\left(1.0 + 2.0z\right)^{2}$'
),
)
def test_numeric_object_coefficients(self):
coefs = array([Fraction(1, 2), Fraction(1)])
p = poly.Polynomial(coefs)
assert_equal(self.as_latex(p), '$x \\mapsto 1/2 + 1\\,x$')
SWITCH_TO_EXP = (
'1.0 + (1.0e-01) x + (1.0e-02) x**2',
'1.2 + (1.2e-01) x + (1.2e-02) x**2',
'1.23 + 0.12 x + (1.23e-02) x**2 + (1.23e-03) x**3',
'1.235 + 0.123 x + (1.235e-02) x**2 + (1.235e-03) x**3',
'1.2346 + 0.1235 x + 0.0123 x**2 + (1.2346e-03) x**3 + (1.2346e-04) x**4',
'1.23457 + 0.12346 x + 0.01235 x**2 + (1.23457e-03) x**3 + '
'(1.23457e-04) x**4',
'1.234568 + 0.123457 x + 0.012346 x**2 + 0.001235 x**3 + '
'(1.234568e-04) x**4 + (1.234568e-05) x**5',
'1.2345679 + 0.1234568 x + 0.0123457 x**2 + 0.0012346 x**3 + '
'(1.2345679e-04) x**4 + (1.2345679e-05) x**5')
class TestPrintOptions:
"""
Test the output is properly configured via printoptions.
The exponential notation is enabled automatically when the values
are too small or too large.
"""
@pytest.fixture(scope='class', autouse=True)
def use_ascii(self):
poly.set_default_printstyle('ascii')
def test_str(self):
p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
assert_equal(str(p), '0.5 + 0.14285714 x + 14285714.28571429 x**2 '
'+ (1.42857143e+08) x**3')
with printoptions(precision=3):
assert_equal(str(p), '0.5 + 0.143 x + 14285714.286 x**2 '
'+ (1.429e+08) x**3')
def test_latex(self):
p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
assert_equal(p._repr_latex_(),
r'$x \mapsto \text{0.5} + \text{0.14285714}\,x + '
r'\text{14285714.28571429}\,x^{2} + '
r'\text{(1.42857143e+08)}\,x^{3}$')
with printoptions(precision=3):
assert_equal(p._repr_latex_(),
r'$x \mapsto \text{0.5} + \text{0.143}\,x + '
r'\text{14285714.286}\,x^{2} + \text{(1.429e+08)}\,x^{3}$')
def test_fixed(self):
p = poly.Polynomial([1/2])
assert_equal(str(p), '0.5')
with printoptions(floatmode='fixed'):
assert_equal(str(p), '0.50000000')
with printoptions(floatmode='fixed', precision=4):
assert_equal(str(p), '0.5000')
def test_switch_to_exp(self):
for i, s in enumerate(SWITCH_TO_EXP):
with printoptions(precision=i):
p = poly.Polynomial([1.23456789*10**-i
for i in range(i//2+3)])
assert str(p).replace('\n', ' ') == s
def test_non_finite(self):
p = poly.Polynomial([nan, inf])
assert str(p) == 'nan + inf x'
assert p._repr_latex_() == r'$x \mapsto \text{nan} + \text{inf}\,x$'
with printoptions(nanstr='NAN', infstr='INF'):
assert str(p) == 'NAN + INF x'
assert p._repr_latex_() == \
r'$x \mapsto \text{NAN} + \text{INF}\,x$'

View File

@ -0,0 +1,216 @@
"""
Tests related to the ``symbol`` attribute of the ABCPolyBase class.
"""
import pytest
import numpy.polynomial as poly
from numpy._core import array
from numpy.testing import assert_equal, assert_raises, assert_
class TestInit:
"""
Test polynomial creation with symbol kwarg.
"""
c = [1, 2, 3]
def test_default_symbol(self):
p = poly.Polynomial(self.c)
assert_equal(p.symbol, 'x')
@pytest.mark.parametrize(('bad_input', 'exception'), (
('', ValueError),
('3', ValueError),
(None, TypeError),
(1, TypeError),
))
def test_symbol_bad_input(self, bad_input, exception):
with pytest.raises(exception):
p = poly.Polynomial(self.c, symbol=bad_input)
@pytest.mark.parametrize('symbol', (
'x',
'x_1',
'A',
'xyz',
'β',
))
def test_valid_symbols(self, symbol):
"""
Values for symbol that should pass input validation.
"""
p = poly.Polynomial(self.c, symbol=symbol)
assert_equal(p.symbol, symbol)
def test_property(self):
"""
'symbol' attribute is read only.
"""
p = poly.Polynomial(self.c, symbol='x')
with pytest.raises(AttributeError):
p.symbol = 'z'
def test_change_symbol(self):
p = poly.Polynomial(self.c, symbol='y')
# Create new polynomial from p with different symbol
pt = poly.Polynomial(p.coef, symbol='t')
assert_equal(pt.symbol, 't')
class TestUnaryOperators:
p = poly.Polynomial([1, 2, 3], symbol='z')
def test_neg(self):
n = -self.p
assert_equal(n.symbol, 'z')
def test_scalarmul(self):
out = self.p * 10
assert_equal(out.symbol, 'z')
def test_rscalarmul(self):
out = 10 * self.p
assert_equal(out.symbol, 'z')
def test_pow(self):
out = self.p ** 3
assert_equal(out.symbol, 'z')
@pytest.mark.parametrize(
'rhs',
(
poly.Polynomial([4, 5, 6], symbol='z'),
array([4, 5, 6]),
),
)
class TestBinaryOperatorsSameSymbol:
"""
Ensure symbol is preserved for numeric operations on polynomials with
the same symbol
"""
p = poly.Polynomial([1, 2, 3], symbol='z')
def test_add(self, rhs):
out = self.p + rhs
assert_equal(out.symbol, 'z')
def test_sub(self, rhs):
out = self.p - rhs
assert_equal(out.symbol, 'z')
def test_polymul(self, rhs):
out = self.p * rhs
assert_equal(out.symbol, 'z')
def test_divmod(self, rhs):
for out in divmod(self.p, rhs):
assert_equal(out.symbol, 'z')
def test_radd(self, rhs):
out = rhs + self.p
assert_equal(out.symbol, 'z')
def test_rsub(self, rhs):
out = rhs - self.p
assert_equal(out.symbol, 'z')
def test_rmul(self, rhs):
out = rhs * self.p
assert_equal(out.symbol, 'z')
def test_rdivmod(self, rhs):
for out in divmod(rhs, self.p):
assert_equal(out.symbol, 'z')
class TestBinaryOperatorsDifferentSymbol:
p = poly.Polynomial([1, 2, 3], symbol='x')
other = poly.Polynomial([4, 5, 6], symbol='y')
ops = (p.__add__, p.__sub__, p.__mul__, p.__floordiv__, p.__mod__)
@pytest.mark.parametrize('f', ops)
def test_binops_fails(self, f):
assert_raises(ValueError, f, self.other)
class TestEquality:
p = poly.Polynomial([1, 2, 3], symbol='x')
def test_eq(self):
other = poly.Polynomial([1, 2, 3], symbol='x')
assert_(self.p == other)
def test_neq(self):
other = poly.Polynomial([1, 2, 3], symbol='y')
assert_(not self.p == other)
class TestExtraMethods:
"""
Test other methods for manipulating/creating polynomial objects.
"""
p = poly.Polynomial([1, 2, 3, 0], symbol='z')
def test_copy(self):
other = self.p.copy()
assert_equal(other.symbol, 'z')
def test_trim(self):
other = self.p.trim()
assert_equal(other.symbol, 'z')
def test_truncate(self):
other = self.p.truncate(2)
assert_equal(other.symbol, 'z')
@pytest.mark.parametrize('kwarg', (
{'domain': [-10, 10]},
{'window': [-10, 10]},
{'kind': poly.Chebyshev},
))
def test_convert(self, kwarg):
other = self.p.convert(**kwarg)
assert_equal(other.symbol, 'z')
def test_integ(self):
other = self.p.integ()
assert_equal(other.symbol, 'z')
def test_deriv(self):
other = self.p.deriv()
assert_equal(other.symbol, 'z')
def test_composition():
p = poly.Polynomial([3, 2, 1], symbol="t")
q = poly.Polynomial([5, 1, 0, -1], symbol="λ_1")
r = p(q)
assert r.symbol == "λ_1"
#
# Class methods that result in new polynomial class instances
#
def test_fit():
x, y = (range(10),)*2
p = poly.Polynomial.fit(x, y, deg=1, symbol='z')
assert_equal(p.symbol, 'z')
def test_froomroots():
roots = [-2, 2]
p = poly.Polynomial.fromroots(roots, symbol='z')
assert_equal(p.symbol, 'z')
def test_identity():
p = poly.Polynomial.identity(domain=[-1, 1], window=[5, 20], symbol='z')
assert_equal(p.symbol, 'z')
def test_basis():
p = poly.Polynomial.basis(3, symbol='z')
assert_equal(p.symbol, 'z')