Updated script that can be controled by Nodejs web app
This commit is contained in:
@ -0,0 +1,453 @@
|
||||
import collections.abc
|
||||
|
||||
import numpy as np
|
||||
from numpy import matrix, asmatrix, bmat
|
||||
from numpy.testing import (
|
||||
assert_, assert_equal, assert_almost_equal, assert_array_equal,
|
||||
assert_array_almost_equal, assert_raises
|
||||
)
|
||||
from numpy.linalg import matrix_power
|
||||
|
||||
class TestCtor:
|
||||
def test_basic(self):
|
||||
A = np.array([[1, 2], [3, 4]])
|
||||
mA = matrix(A)
|
||||
assert_(np.all(mA.A == A))
|
||||
|
||||
B = bmat("A,A;A,A")
|
||||
C = bmat([[A, A], [A, A]])
|
||||
D = np.array([[1, 2, 1, 2],
|
||||
[3, 4, 3, 4],
|
||||
[1, 2, 1, 2],
|
||||
[3, 4, 3, 4]])
|
||||
assert_(np.all(B.A == D))
|
||||
assert_(np.all(C.A == D))
|
||||
|
||||
E = np.array([[5, 6], [7, 8]])
|
||||
AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
|
||||
assert_(np.all(bmat([A, E]) == AEresult))
|
||||
|
||||
vec = np.arange(5)
|
||||
mvec = matrix(vec)
|
||||
assert_(mvec.shape == (1, 5))
|
||||
|
||||
def test_exceptions(self):
|
||||
# Check for ValueError when called with invalid string data.
|
||||
assert_raises(ValueError, matrix, "invalid")
|
||||
|
||||
def test_bmat_nondefault_str(self):
|
||||
A = np.array([[1, 2], [3, 4]])
|
||||
B = np.array([[5, 6], [7, 8]])
|
||||
Aresult = np.array([[1, 2, 1, 2],
|
||||
[3, 4, 3, 4],
|
||||
[1, 2, 1, 2],
|
||||
[3, 4, 3, 4]])
|
||||
mixresult = np.array([[1, 2, 5, 6],
|
||||
[3, 4, 7, 8],
|
||||
[5, 6, 1, 2],
|
||||
[7, 8, 3, 4]])
|
||||
assert_(np.all(bmat("A,A;A,A") == Aresult))
|
||||
assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
|
||||
assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
|
||||
assert_(
|
||||
np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
|
||||
b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
|
||||
assert_(np.all(b2 == mixresult))
|
||||
|
||||
|
||||
class TestProperties:
|
||||
def test_sum(self):
|
||||
"""Test whether matrix.sum(axis=1) preserves orientation.
|
||||
Fails in NumPy <= 0.9.6.2127.
|
||||
"""
|
||||
M = matrix([[1, 2, 0, 0],
|
||||
[3, 4, 0, 0],
|
||||
[1, 2, 1, 2],
|
||||
[3, 4, 3, 4]])
|
||||
sum0 = matrix([8, 12, 4, 6])
|
||||
sum1 = matrix([3, 7, 6, 14]).T
|
||||
sumall = 30
|
||||
assert_array_equal(sum0, M.sum(axis=0))
|
||||
assert_array_equal(sum1, M.sum(axis=1))
|
||||
assert_equal(sumall, M.sum())
|
||||
|
||||
assert_array_equal(sum0, np.sum(M, axis=0))
|
||||
assert_array_equal(sum1, np.sum(M, axis=1))
|
||||
assert_equal(sumall, np.sum(M))
|
||||
|
||||
def test_prod(self):
|
||||
x = matrix([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(x.prod(), 720)
|
||||
assert_equal(x.prod(0), matrix([[4, 10, 18]]))
|
||||
assert_equal(x.prod(1), matrix([[6], [120]]))
|
||||
|
||||
assert_equal(np.prod(x), 720)
|
||||
assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]]))
|
||||
assert_equal(np.prod(x, axis=1), matrix([[6], [120]]))
|
||||
|
||||
y = matrix([0, 1, 3])
|
||||
assert_(y.prod() == 0)
|
||||
|
||||
def test_max(self):
|
||||
x = matrix([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(x.max(), 6)
|
||||
assert_equal(x.max(0), matrix([[4, 5, 6]]))
|
||||
assert_equal(x.max(1), matrix([[3], [6]]))
|
||||
|
||||
assert_equal(np.max(x), 6)
|
||||
assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]]))
|
||||
assert_equal(np.max(x, axis=1), matrix([[3], [6]]))
|
||||
|
||||
def test_min(self):
|
||||
x = matrix([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(x.min(), 1)
|
||||
assert_equal(x.min(0), matrix([[1, 2, 3]]))
|
||||
assert_equal(x.min(1), matrix([[1], [4]]))
|
||||
|
||||
assert_equal(np.min(x), 1)
|
||||
assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]]))
|
||||
assert_equal(np.min(x, axis=1), matrix([[1], [4]]))
|
||||
|
||||
def test_ptp(self):
|
||||
x = np.arange(4).reshape((2, 2))
|
||||
mx = x.view(np.matrix)
|
||||
assert_(mx.ptp() == 3)
|
||||
assert_(np.all(mx.ptp(0) == np.array([2, 2])))
|
||||
assert_(np.all(mx.ptp(1) == np.array([1, 1])))
|
||||
|
||||
def test_var(self):
|
||||
x = np.arange(9).reshape((3, 3))
|
||||
mx = x.view(np.matrix)
|
||||
assert_equal(x.var(ddof=0), mx.var(ddof=0))
|
||||
assert_equal(x.var(ddof=1), mx.var(ddof=1))
|
||||
|
||||
def test_basic(self):
|
||||
import numpy.linalg as linalg
|
||||
|
||||
A = np.array([[1., 2.],
|
||||
[3., 4.]])
|
||||
mA = matrix(A)
|
||||
assert_(np.allclose(linalg.inv(A), mA.I))
|
||||
assert_(np.all(np.array(np.transpose(A) == mA.T)))
|
||||
assert_(np.all(np.array(np.transpose(A) == mA.H)))
|
||||
assert_(np.all(A == mA.A))
|
||||
|
||||
B = A + 2j*A
|
||||
mB = matrix(B)
|
||||
assert_(np.allclose(linalg.inv(B), mB.I))
|
||||
assert_(np.all(np.array(np.transpose(B) == mB.T)))
|
||||
assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
|
||||
|
||||
def test_pinv(self):
|
||||
x = matrix(np.arange(6).reshape(2, 3))
|
||||
xpinv = matrix([[-0.77777778, 0.27777778],
|
||||
[-0.11111111, 0.11111111],
|
||||
[ 0.55555556, -0.05555556]])
|
||||
assert_almost_equal(x.I, xpinv)
|
||||
|
||||
def test_comparisons(self):
|
||||
A = np.arange(100).reshape(10, 10)
|
||||
mA = matrix(A)
|
||||
mB = matrix(A) + 0.1
|
||||
assert_(np.all(mB == A+0.1))
|
||||
assert_(np.all(mB == matrix(A+0.1)))
|
||||
assert_(not np.any(mB == matrix(A-0.1)))
|
||||
assert_(np.all(mA < mB))
|
||||
assert_(np.all(mA <= mB))
|
||||
assert_(np.all(mA <= mA))
|
||||
assert_(not np.any(mA < mA))
|
||||
|
||||
assert_(not np.any(mB < mA))
|
||||
assert_(np.all(mB >= mA))
|
||||
assert_(np.all(mB >= mB))
|
||||
assert_(not np.any(mB > mB))
|
||||
|
||||
assert_(np.all(mA == mA))
|
||||
assert_(not np.any(mA == mB))
|
||||
assert_(np.all(mB != mA))
|
||||
|
||||
assert_(not np.all(abs(mA) > 0))
|
||||
assert_(np.all(abs(mB > 0)))
|
||||
|
||||
def test_asmatrix(self):
|
||||
A = np.arange(100).reshape(10, 10)
|
||||
mA = asmatrix(A)
|
||||
A[0, 0] = -10
|
||||
assert_(A[0, 0] == mA[0, 0])
|
||||
|
||||
def test_noaxis(self):
|
||||
A = matrix([[1, 0], [0, 1]])
|
||||
assert_(A.sum() == matrix(2))
|
||||
assert_(A.mean() == matrix(0.5))
|
||||
|
||||
def test_repr(self):
|
||||
A = matrix([[1, 0], [0, 1]])
|
||||
assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])")
|
||||
|
||||
def test_make_bool_matrix_from_str(self):
|
||||
A = matrix('True; True; False')
|
||||
B = matrix([[True], [True], [False]])
|
||||
assert_array_equal(A, B)
|
||||
|
||||
class TestCasting:
|
||||
def test_basic(self):
|
||||
A = np.arange(100).reshape(10, 10)
|
||||
mA = matrix(A)
|
||||
|
||||
mB = mA.copy()
|
||||
O = np.ones((10, 10), np.float64) * 0.1
|
||||
mB = mB + O
|
||||
assert_(mB.dtype.type == np.float64)
|
||||
assert_(np.all(mA != mB))
|
||||
assert_(np.all(mB == mA+0.1))
|
||||
|
||||
mC = mA.copy()
|
||||
O = np.ones((10, 10), np.complex128)
|
||||
mC = mC * O
|
||||
assert_(mC.dtype.type == np.complex128)
|
||||
assert_(np.all(mA != mB))
|
||||
|
||||
|
||||
class TestAlgebra:
|
||||
def test_basic(self):
|
||||
import numpy.linalg as linalg
|
||||
|
||||
A = np.array([[1., 2.], [3., 4.]])
|
||||
mA = matrix(A)
|
||||
|
||||
B = np.identity(2)
|
||||
for i in range(6):
|
||||
assert_(np.allclose((mA ** i).A, B))
|
||||
B = np.dot(B, A)
|
||||
|
||||
Ainv = linalg.inv(A)
|
||||
B = np.identity(2)
|
||||
for i in range(6):
|
||||
assert_(np.allclose((mA ** -i).A, B))
|
||||
B = np.dot(B, Ainv)
|
||||
|
||||
assert_(np.allclose((mA * mA).A, np.dot(A, A)))
|
||||
assert_(np.allclose((mA + mA).A, (A + A)))
|
||||
assert_(np.allclose((3*mA).A, (3*A)))
|
||||
|
||||
mA2 = matrix(A)
|
||||
mA2 *= 3
|
||||
assert_(np.allclose(mA2.A, 3*A))
|
||||
|
||||
def test_pow(self):
|
||||
"""Test raising a matrix to an integer power works as expected."""
|
||||
m = matrix("1. 2.; 3. 4.")
|
||||
m2 = m.copy()
|
||||
m2 **= 2
|
||||
mi = m.copy()
|
||||
mi **= -1
|
||||
m4 = m2.copy()
|
||||
m4 **= 2
|
||||
assert_array_almost_equal(m2, m**2)
|
||||
assert_array_almost_equal(m4, np.dot(m2, m2))
|
||||
assert_array_almost_equal(np.dot(mi, m), np.eye(2))
|
||||
|
||||
def test_scalar_type_pow(self):
|
||||
m = matrix([[1, 2], [3, 4]])
|
||||
for scalar_t in [np.int8, np.uint8]:
|
||||
two = scalar_t(2)
|
||||
assert_array_almost_equal(m ** 2, m ** two)
|
||||
|
||||
def test_notimplemented(self):
|
||||
'''Check that 'not implemented' operations produce a failure.'''
|
||||
A = matrix([[1., 2.],
|
||||
[3., 4.]])
|
||||
|
||||
# __rpow__
|
||||
with assert_raises(TypeError):
|
||||
1.0**A
|
||||
|
||||
# __mul__ with something not a list, ndarray, tuple, or scalar
|
||||
with assert_raises(TypeError):
|
||||
A*object()
|
||||
|
||||
|
||||
class TestMatrixReturn:
|
||||
def test_instance_methods(self):
|
||||
a = matrix([1.0], dtype='f8')
|
||||
methodargs = {
|
||||
'astype': ('intc',),
|
||||
'clip': (0.0, 1.0),
|
||||
'compress': ([1],),
|
||||
'repeat': (1,),
|
||||
'reshape': (1,),
|
||||
'swapaxes': (0, 0),
|
||||
'dot': np.array([1.0]),
|
||||
}
|
||||
excluded_methods = [
|
||||
'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
|
||||
'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
|
||||
'searchsorted', 'setflags', 'setfield', 'sort',
|
||||
'partition', 'argpartition', 'newbyteorder', 'to_device',
|
||||
'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any',
|
||||
'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
|
||||
'prod', 'std', 'ctypes', 'itemset', 'bitwise_count',
|
||||
]
|
||||
for attrib in dir(a):
|
||||
if attrib.startswith('_') or attrib in excluded_methods:
|
||||
continue
|
||||
f = getattr(a, attrib)
|
||||
if isinstance(f, collections.abc.Callable):
|
||||
# reset contents of a
|
||||
a.astype('f8')
|
||||
a.fill(1.0)
|
||||
if attrib in methodargs:
|
||||
args = methodargs[attrib]
|
||||
else:
|
||||
args = ()
|
||||
b = f(*args)
|
||||
assert_(type(b) is matrix, "%s" % attrib)
|
||||
assert_(type(a.real) is matrix)
|
||||
assert_(type(a.imag) is matrix)
|
||||
c, d = matrix([0.0]).nonzero()
|
||||
assert_(type(c) is np.ndarray)
|
||||
assert_(type(d) is np.ndarray)
|
||||
|
||||
|
||||
class TestIndexing:
|
||||
def test_basic(self):
|
||||
x = asmatrix(np.zeros((3, 2), float))
|
||||
y = np.zeros((3, 1), float)
|
||||
y[:, 0] = [0.8, 0.2, 0.3]
|
||||
x[:, 1] = y > 0.5
|
||||
assert_equal(x, [[0, 1], [0, 0], [0, 0]])
|
||||
|
||||
|
||||
class TestNewScalarIndexing:
|
||||
a = matrix([[1, 2], [3, 4]])
|
||||
|
||||
def test_dimesions(self):
|
||||
a = self.a
|
||||
x = a[0]
|
||||
assert_equal(x.ndim, 2)
|
||||
|
||||
def test_array_from_matrix_list(self):
|
||||
a = self.a
|
||||
x = np.array([a, a])
|
||||
assert_equal(x.shape, [2, 2, 2])
|
||||
|
||||
def test_array_to_list(self):
|
||||
a = self.a
|
||||
assert_equal(a.tolist(), [[1, 2], [3, 4]])
|
||||
|
||||
def test_fancy_indexing(self):
|
||||
a = self.a
|
||||
x = a[1, [0, 1, 0]]
|
||||
assert_(isinstance(x, matrix))
|
||||
assert_equal(x, matrix([[3, 4, 3]]))
|
||||
x = a[[1, 0]]
|
||||
assert_(isinstance(x, matrix))
|
||||
assert_equal(x, matrix([[3, 4], [1, 2]]))
|
||||
x = a[[[1], [0]], [[1, 0], [0, 1]]]
|
||||
assert_(isinstance(x, matrix))
|
||||
assert_equal(x, matrix([[4, 3], [1, 2]]))
|
||||
|
||||
def test_matrix_element(self):
|
||||
x = matrix([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(x[0][0], matrix([[1, 2, 3]]))
|
||||
assert_equal(x[0][0].shape, (1, 3))
|
||||
assert_equal(x[0].shape, (1, 3))
|
||||
assert_equal(x[:, 0].shape, (2, 1))
|
||||
|
||||
x = matrix(0)
|
||||
assert_equal(x[0, 0], 0)
|
||||
assert_equal(x[0], 0)
|
||||
assert_equal(x[:, 0].shape, x.shape)
|
||||
|
||||
def test_scalar_indexing(self):
|
||||
x = asmatrix(np.zeros((3, 2), float))
|
||||
assert_equal(x[0, 0], x[0][0])
|
||||
|
||||
def test_row_column_indexing(self):
|
||||
x = asmatrix(np.eye(2))
|
||||
assert_array_equal(x[0,:], [[1, 0]])
|
||||
assert_array_equal(x[1,:], [[0, 1]])
|
||||
assert_array_equal(x[:, 0], [[1], [0]])
|
||||
assert_array_equal(x[:, 1], [[0], [1]])
|
||||
|
||||
def test_boolean_indexing(self):
|
||||
A = np.arange(6)
|
||||
A.shape = (3, 2)
|
||||
x = asmatrix(A)
|
||||
assert_array_equal(x[:, np.array([True, False])], x[:, 0])
|
||||
assert_array_equal(x[np.array([True, False, False]),:], x[0,:])
|
||||
|
||||
def test_list_indexing(self):
|
||||
A = np.arange(6)
|
||||
A.shape = (3, 2)
|
||||
x = asmatrix(A)
|
||||
assert_array_equal(x[:, [1, 0]], x[:, ::-1])
|
||||
assert_array_equal(x[[2, 1, 0],:], x[::-1,:])
|
||||
|
||||
|
||||
class TestPower:
|
||||
def test_returntype(self):
|
||||
a = np.array([[0, 1], [0, 0]])
|
||||
assert_(type(matrix_power(a, 2)) is np.ndarray)
|
||||
a = asmatrix(a)
|
||||
assert_(type(matrix_power(a, 2)) is matrix)
|
||||
|
||||
def test_list(self):
|
||||
assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]])
|
||||
|
||||
|
||||
class TestShape:
|
||||
|
||||
a = np.array([[1], [2]])
|
||||
m = matrix([[1], [2]])
|
||||
|
||||
def test_shape(self):
|
||||
assert_equal(self.a.shape, (2, 1))
|
||||
assert_equal(self.m.shape, (2, 1))
|
||||
|
||||
def test_numpy_ravel(self):
|
||||
assert_equal(np.ravel(self.a).shape, (2,))
|
||||
assert_equal(np.ravel(self.m).shape, (2,))
|
||||
|
||||
def test_member_ravel(self):
|
||||
assert_equal(self.a.ravel().shape, (2,))
|
||||
assert_equal(self.m.ravel().shape, (1, 2))
|
||||
|
||||
def test_member_flatten(self):
|
||||
assert_equal(self.a.flatten().shape, (2,))
|
||||
assert_equal(self.m.flatten().shape, (1, 2))
|
||||
|
||||
def test_numpy_ravel_order(self):
|
||||
x = np.array([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
|
||||
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
|
||||
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
|
||||
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
|
||||
x = matrix([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
|
||||
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
|
||||
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
|
||||
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
|
||||
|
||||
def test_matrix_ravel_order(self):
|
||||
x = matrix([[1, 2, 3], [4, 5, 6]])
|
||||
assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]])
|
||||
assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]])
|
||||
assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]])
|
||||
assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]])
|
||||
|
||||
def test_array_memory_sharing(self):
|
||||
assert_(np.may_share_memory(self.a, self.a.ravel()))
|
||||
assert_(not np.may_share_memory(self.a, self.a.flatten()))
|
||||
|
||||
def test_matrix_memory_sharing(self):
|
||||
assert_(np.may_share_memory(self.m, self.m.ravel()))
|
||||
assert_(not np.may_share_memory(self.m, self.m.flatten()))
|
||||
|
||||
def test_expand_dims_matrix(self):
|
||||
# matrices are always 2d - so expand_dims only makes sense when the
|
||||
# type is changed away from matrix.
|
||||
a = np.arange(10).reshape((2, 5)).view(np.matrix)
|
||||
expanded = np.expand_dims(a, axis=1)
|
||||
assert_equal(expanded.ndim, 3)
|
||||
assert_(not isinstance(expanded, np.matrix))
|
@ -0,0 +1,354 @@
|
||||
"""Tests of interaction of matrix with other parts of numpy.
|
||||
|
||||
Note that tests with MaskedArray and linalg are done in separate files.
|
||||
"""
|
||||
import pytest
|
||||
|
||||
import textwrap
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import (assert_, assert_equal, assert_raises,
|
||||
assert_raises_regex, assert_array_equal,
|
||||
assert_almost_equal, assert_array_almost_equal)
|
||||
|
||||
|
||||
def test_fancy_indexing():
|
||||
# The matrix class messes with the shape. While this is always
|
||||
# weird (getitem is not used, it does not have setitem nor knows
|
||||
# about fancy indexing), this tests gh-3110
|
||||
# 2018-04-29: moved here from core.tests.test_index.
|
||||
m = np.matrix([[1, 2], [3, 4]])
|
||||
|
||||
assert_(isinstance(m[[0, 1, 0], :], np.matrix))
|
||||
|
||||
# gh-3110. Note the transpose currently because matrices do *not*
|
||||
# support dimension fixing for fancy indexing correctly.
|
||||
x = np.asmatrix(np.arange(50).reshape(5, 10))
|
||||
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
|
||||
|
||||
|
||||
def test_polynomial_mapdomain():
|
||||
# test that polynomial preserved matrix subtype.
|
||||
# 2018-04-29: moved here from polynomial.tests.polyutils.
|
||||
dom1 = [0, 4]
|
||||
dom2 = [1, 3]
|
||||
x = np.matrix([dom1, dom1])
|
||||
res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
|
||||
|
||||
def test_sort_matrix_none():
|
||||
# 2018-04-29: moved here from core.tests.test_multiarray
|
||||
a = np.matrix([[2, 1, 0]])
|
||||
actual = np.sort(a, axis=None)
|
||||
expected = np.matrix([[0, 1, 2]])
|
||||
assert_equal(actual, expected)
|
||||
assert_(type(expected) is np.matrix)
|
||||
|
||||
|
||||
def test_partition_matrix_none():
|
||||
# gh-4301
|
||||
# 2018-04-29: moved here from core.tests.test_multiarray
|
||||
a = np.matrix([[2, 1, 0]])
|
||||
actual = np.partition(a, 1, axis=None)
|
||||
expected = np.matrix([[0, 1, 2]])
|
||||
assert_equal(actual, expected)
|
||||
assert_(type(expected) is np.matrix)
|
||||
|
||||
|
||||
def test_dot_scalar_and_matrix_of_objects():
|
||||
# Ticket #2469
|
||||
# 2018-04-29: moved here from core.tests.test_multiarray
|
||||
arr = np.matrix([1, 2], dtype=object)
|
||||
desired = np.matrix([[3, 6]], dtype=object)
|
||||
assert_equal(np.dot(arr, 3), desired)
|
||||
assert_equal(np.dot(3, arr), desired)
|
||||
|
||||
|
||||
def test_inner_scalar_and_matrix():
|
||||
# 2018-04-29: moved here from core.tests.test_multiarray
|
||||
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
||||
sca = np.array(3, dtype=dt)[()]
|
||||
arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
|
||||
desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
|
||||
assert_equal(np.inner(arr, sca), desired)
|
||||
assert_equal(np.inner(sca, arr), desired)
|
||||
|
||||
|
||||
def test_inner_scalar_and_matrix_of_objects():
|
||||
# Ticket #4482
|
||||
# 2018-04-29: moved here from core.tests.test_multiarray
|
||||
arr = np.matrix([1, 2], dtype=object)
|
||||
desired = np.matrix([[3, 6]], dtype=object)
|
||||
assert_equal(np.inner(arr, 3), desired)
|
||||
assert_equal(np.inner(3, arr), desired)
|
||||
|
||||
|
||||
def test_iter_allocate_output_subtype():
|
||||
# Make sure that the subtype with priority wins
|
||||
# 2018-04-29: moved here from core.tests.test_nditer, given the
|
||||
# matrix specific shape test.
|
||||
|
||||
# matrix vs ndarray
|
||||
a = np.matrix([[1, 2], [3, 4]])
|
||||
b = np.arange(4).reshape(2, 2).T
|
||||
i = np.nditer([a, b, None], [],
|
||||
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
||||
assert_(type(i.operands[2]) is np.matrix)
|
||||
assert_(type(i.operands[2]) is not np.ndarray)
|
||||
assert_equal(i.operands[2].shape, (2, 2))
|
||||
|
||||
# matrix always wants things to be 2D
|
||||
b = np.arange(4).reshape(1, 2, 2)
|
||||
assert_raises(RuntimeError, np.nditer, [a, b, None], [],
|
||||
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
||||
# but if subtypes are disabled, the result can still work
|
||||
i = np.nditer([a, b, None], [],
|
||||
[['readonly'], ['readonly'],
|
||||
['writeonly', 'allocate', 'no_subtype']])
|
||||
assert_(type(i.operands[2]) is np.ndarray)
|
||||
assert_(type(i.operands[2]) is not np.matrix)
|
||||
assert_equal(i.operands[2].shape, (1, 2, 2))
|
||||
|
||||
|
||||
def like_function():
|
||||
# 2018-04-29: moved here from core.tests.test_numeric
|
||||
a = np.matrix([[1, 2], [3, 4]])
|
||||
for like_function in np.zeros_like, np.ones_like, np.empty_like:
|
||||
b = like_function(a)
|
||||
assert_(type(b) is np.matrix)
|
||||
|
||||
c = like_function(a, subok=False)
|
||||
assert_(type(c) is not np.matrix)
|
||||
|
||||
|
||||
def test_array_astype():
|
||||
# 2018-04-29: copied here from core.tests.test_api
|
||||
# subok=True passes through a matrix
|
||||
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
|
||||
b = a.astype('f4', subok=True, copy=False)
|
||||
assert_(a is b)
|
||||
|
||||
# subok=True is default, and creates a subtype on a cast
|
||||
b = a.astype('i4', copy=False)
|
||||
assert_equal(a, b)
|
||||
assert_equal(type(b), np.matrix)
|
||||
|
||||
# subok=False never returns a matrix
|
||||
b = a.astype('f4', subok=False, copy=False)
|
||||
assert_equal(a, b)
|
||||
assert_(not (a is b))
|
||||
assert_(type(b) is not np.matrix)
|
||||
|
||||
|
||||
def test_stack():
|
||||
# 2018-04-29: copied here from core.tests.test_shape_base
|
||||
# check np.matrix cannot be stacked
|
||||
m = np.matrix([[1, 2], [3, 4]])
|
||||
assert_raises_regex(ValueError, 'shape too large to be a matrix',
|
||||
np.stack, [m, m])
|
||||
|
||||
|
||||
def test_object_scalar_multiply():
|
||||
# Tickets #2469 and #4482
|
||||
# 2018-04-29: moved here from core.tests.test_ufunc
|
||||
arr = np.matrix([1, 2], dtype=object)
|
||||
desired = np.matrix([[3, 6]], dtype=object)
|
||||
assert_equal(np.multiply(arr, 3), desired)
|
||||
assert_equal(np.multiply(3, arr), desired)
|
||||
|
||||
|
||||
def test_nanfunctions_matrices():
|
||||
# Check that it works and that type and
|
||||
# shape are preserved
|
||||
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
||||
mat = np.matrix(np.eye(3))
|
||||
for f in [np.nanmin, np.nanmax]:
|
||||
res = f(mat, axis=0)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (1, 3))
|
||||
res = f(mat, axis=1)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (3, 1))
|
||||
res = f(mat)
|
||||
assert_(np.isscalar(res))
|
||||
# check that rows of nan are dealt with for subclasses (#4628)
|
||||
mat[1] = np.nan
|
||||
for f in [np.nanmin, np.nanmax]:
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter('always')
|
||||
res = f(mat, axis=0)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(not np.any(np.isnan(res)))
|
||||
assert_(len(w) == 0)
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter('always')
|
||||
res = f(mat, axis=1)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
|
||||
and not np.isnan(res[2, 0]))
|
||||
assert_(len(w) == 1, 'no warning raised')
|
||||
assert_(issubclass(w[0].category, RuntimeWarning))
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter('always')
|
||||
res = f(mat)
|
||||
assert_(np.isscalar(res))
|
||||
assert_(res != np.nan)
|
||||
assert_(len(w) == 0)
|
||||
|
||||
|
||||
def test_nanfunctions_matrices_general():
|
||||
# Check that it works and that type and
|
||||
# shape are preserved
|
||||
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
||||
mat = np.matrix(np.eye(3))
|
||||
for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
|
||||
np.nanmean, np.nanvar, np.nanstd):
|
||||
res = f(mat, axis=0)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (1, 3))
|
||||
res = f(mat, axis=1)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (3, 1))
|
||||
res = f(mat)
|
||||
assert_(np.isscalar(res))
|
||||
|
||||
for f in np.nancumsum, np.nancumprod:
|
||||
res = f(mat, axis=0)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (3, 3))
|
||||
res = f(mat, axis=1)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (3, 3))
|
||||
res = f(mat)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
assert_(res.shape == (1, 3*3))
|
||||
|
||||
|
||||
def test_average_matrix():
|
||||
# 2018-04-29: moved here from core.tests.test_function_base.
|
||||
y = np.matrix(np.random.rand(5, 5))
|
||||
assert_array_equal(y.mean(0), np.average(y, 0))
|
||||
|
||||
a = np.matrix([[1, 2], [3, 4]])
|
||||
w = np.matrix([[1, 2], [3, 4]])
|
||||
|
||||
r = np.average(a, axis=0, weights=w)
|
||||
assert_equal(type(r), np.matrix)
|
||||
assert_equal(r, [[2.5, 10.0/3]])
|
||||
|
||||
|
||||
def test_dot_matrix():
|
||||
# Test to make sure matrices give the same answer as ndarrays
|
||||
# 2018-04-29: moved here from core.tests.test_function_base.
|
||||
x = np.linspace(0, 5)
|
||||
y = np.linspace(-5, 0)
|
||||
mx = np.matrix(x)
|
||||
my = np.matrix(y)
|
||||
r = np.dot(x, y)
|
||||
mr = np.dot(mx, my.T)
|
||||
assert_almost_equal(mr, r)
|
||||
|
||||
|
||||
def test_ediff1d_matrix():
|
||||
# 2018-04-29: moved here from core.tests.test_arraysetops.
|
||||
assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
|
||||
assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
|
||||
|
||||
|
||||
def test_apply_along_axis_matrix():
|
||||
# this test is particularly malicious because matrix
|
||||
# refuses to become 1d
|
||||
# 2018-04-29: moved here from core.tests.test_shape_base.
|
||||
def double(row):
|
||||
return row * 2
|
||||
|
||||
m = np.matrix([[0, 1], [2, 3]])
|
||||
expected = np.matrix([[0, 2], [4, 6]])
|
||||
|
||||
result = np.apply_along_axis(double, 0, m)
|
||||
assert_(isinstance(result, np.matrix))
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
result = np.apply_along_axis(double, 1, m)
|
||||
assert_(isinstance(result, np.matrix))
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_kron_matrix():
|
||||
# 2018-04-29: moved here from core.tests.test_shape_base.
|
||||
a = np.ones([2, 2])
|
||||
m = np.asmatrix(a)
|
||||
assert_equal(type(np.kron(a, a)), np.ndarray)
|
||||
assert_equal(type(np.kron(m, m)), np.matrix)
|
||||
assert_equal(type(np.kron(a, m)), np.matrix)
|
||||
assert_equal(type(np.kron(m, a)), np.matrix)
|
||||
|
||||
|
||||
class TestConcatenatorMatrix:
|
||||
# 2018-04-29: moved here from core.tests.test_index_tricks.
|
||||
def test_matrix(self):
|
||||
a = [1, 2]
|
||||
b = [3, 4]
|
||||
|
||||
ab_r = np.r_['r', a, b]
|
||||
ab_c = np.r_['c', a, b]
|
||||
|
||||
assert_equal(type(ab_r), np.matrix)
|
||||
assert_equal(type(ab_c), np.matrix)
|
||||
|
||||
assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
|
||||
assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
|
||||
|
||||
assert_raises(ValueError, lambda: np.r_['rc', a, b])
|
||||
|
||||
def test_matrix_scalar(self):
|
||||
r = np.r_['r', [1, 2], 3]
|
||||
assert_equal(type(r), np.matrix)
|
||||
assert_equal(np.array(r), [[1, 2, 3]])
|
||||
|
||||
def test_matrix_builder(self):
|
||||
a = np.array([1])
|
||||
b = np.array([2])
|
||||
c = np.array([3])
|
||||
d = np.array([4])
|
||||
actual = np.r_['a, b; c, d']
|
||||
expected = np.bmat([[a, b], [c, d]])
|
||||
|
||||
assert_equal(actual, expected)
|
||||
assert_equal(type(actual), type(expected))
|
||||
|
||||
|
||||
def test_array_equal_error_message_matrix():
|
||||
# 2018-04-29: moved here from testing.tests.test_utils.
|
||||
with pytest.raises(AssertionError) as exc_info:
|
||||
assert_equal(np.array([1, 2]), np.matrix([1, 2]))
|
||||
msg = str(exc_info.value)
|
||||
msg_reference = textwrap.dedent("""\
|
||||
|
||||
Arrays are not equal
|
||||
|
||||
(shapes (2,), (1, 2) mismatch)
|
||||
ACTUAL: array([1, 2])
|
||||
DESIRED: matrix([[1, 2]])""")
|
||||
assert_equal(msg, msg_reference)
|
||||
|
||||
|
||||
def test_array_almost_equal_matrix():
|
||||
# Matrix slicing keeps things 2-D, while array does not necessarily.
|
||||
# See gh-8452.
|
||||
# 2018-04-29: moved here from testing.tests.test_utils.
|
||||
m1 = np.matrix([[1., 2.]])
|
||||
m2 = np.matrix([[1., np.nan]])
|
||||
m3 = np.matrix([[1., -np.inf]])
|
||||
m4 = np.matrix([[np.nan, np.inf]])
|
||||
m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
|
||||
for assert_func in assert_array_almost_equal, assert_almost_equal:
|
||||
for m in m1, m2, m3, m4, m5:
|
||||
assert_func(m, m)
|
||||
a = np.array(m)
|
||||
assert_func(a, m)
|
||||
assert_func(m, a)
|
@ -0,0 +1,232 @@
|
||||
import pickle
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_warns
|
||||
from numpy.ma.testutils import (assert_, assert_equal, assert_raises,
|
||||
assert_array_equal)
|
||||
from numpy.ma.core import (masked_array, masked_values, masked, allequal,
|
||||
MaskType, getmask, MaskedArray, nomask,
|
||||
log, add, hypot, divide)
|
||||
from numpy.ma.extras import mr_
|
||||
|
||||
|
||||
class MMatrix(MaskedArray, np.matrix,):
|
||||
|
||||
def __new__(cls, data, mask=nomask):
|
||||
mat = np.matrix(data)
|
||||
_data = MaskedArray.__new__(cls, data=mat, mask=mask)
|
||||
return _data
|
||||
|
||||
def __array_finalize__(self, obj):
|
||||
np.matrix.__array_finalize__(self, obj)
|
||||
MaskedArray.__array_finalize__(self, obj)
|
||||
return
|
||||
|
||||
@property
|
||||
def _series(self):
|
||||
_view = self.view(MaskedArray)
|
||||
_view._sharedmask = False
|
||||
return _view
|
||||
|
||||
|
||||
class TestMaskedMatrix:
|
||||
def test_matrix_indexing(self):
|
||||
# Tests conversions and indexing
|
||||
x1 = np.matrix([[1, 2, 3], [4, 3, 2]])
|
||||
x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]])
|
||||
x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]])
|
||||
x4 = masked_array(x1)
|
||||
# test conversion to strings
|
||||
str(x2) # raises?
|
||||
repr(x2) # raises?
|
||||
# tests of indexing
|
||||
assert_(type(x2[1, 0]) is type(x1[1, 0]))
|
||||
assert_(x1[1, 0] == x2[1, 0])
|
||||
assert_(x2[1, 1] is masked)
|
||||
assert_equal(x1[0, 2], x2[0, 2])
|
||||
assert_equal(x1[0, 1:], x2[0, 1:])
|
||||
assert_equal(x1[:, 2], x2[:, 2])
|
||||
assert_equal(x1[:], x2[:])
|
||||
assert_equal(x1[1:], x3[1:])
|
||||
x1[0, 2] = 9
|
||||
x2[0, 2] = 9
|
||||
assert_equal(x1, x2)
|
||||
x1[0, 1:] = 99
|
||||
x2[0, 1:] = 99
|
||||
assert_equal(x1, x2)
|
||||
x2[0, 1] = masked
|
||||
assert_equal(x1, x2)
|
||||
x2[0, 1:] = masked
|
||||
assert_equal(x1, x2)
|
||||
x2[0, :] = x1[0, :]
|
||||
x2[0, 1] = masked
|
||||
assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]])))
|
||||
x3[1, :] = masked_array([1, 2, 3], [1, 1, 0])
|
||||
assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0])))
|
||||
assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0])))
|
||||
x4[1, :] = masked_array([1, 2, 3], [1, 1, 0])
|
||||
assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0])))
|
||||
assert_(allequal(x4[1], masked_array([1, 2, 3])))
|
||||
x1 = np.matrix(np.arange(5) * 1.0)
|
||||
x2 = masked_values(x1, 3.0)
|
||||
assert_equal(x1, x2)
|
||||
assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType),
|
||||
x2.mask))
|
||||
assert_equal(3.0, x2.fill_value)
|
||||
|
||||
def test_pickling_subbaseclass(self):
|
||||
# Test pickling w/ a subclass of ndarray
|
||||
a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2)
|
||||
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
|
||||
a_pickled = pickle.loads(pickle.dumps(a, protocol=proto))
|
||||
assert_equal(a_pickled._mask, a._mask)
|
||||
assert_equal(a_pickled, a)
|
||||
assert_(isinstance(a_pickled._data, np.matrix))
|
||||
|
||||
def test_count_mean_with_matrix(self):
|
||||
m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2)))
|
||||
|
||||
assert_equal(m.count(axis=0).shape, (1, 2))
|
||||
assert_equal(m.count(axis=1).shape, (2, 1))
|
||||
|
||||
# Make sure broadcasting inside mean and var work
|
||||
assert_equal(m.mean(axis=0), [[2., 3.]])
|
||||
assert_equal(m.mean(axis=1), [[1.5], [3.5]])
|
||||
|
||||
def test_flat(self):
|
||||
# Test that flat can return items even for matrices [#4585, #4615]
|
||||
# test simple access
|
||||
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
|
||||
assert_equal(test.flat[1], 2)
|
||||
assert_equal(test.flat[2], masked)
|
||||
assert_(np.all(test.flat[0:2] == test[0, 0:2]))
|
||||
# Test flat on masked_matrices
|
||||
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
|
||||
test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
|
||||
control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0])
|
||||
assert_equal(test, control)
|
||||
# Test setting
|
||||
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
|
||||
testflat = test.flat
|
||||
testflat[:] = testflat[[2, 1, 0]]
|
||||
assert_equal(test, control)
|
||||
testflat[0] = 9
|
||||
# test that matrices keep the correct shape (#4615)
|
||||
a = masked_array(np.matrix(np.eye(2)), mask=0)
|
||||
b = a.flat
|
||||
b01 = b[:2]
|
||||
assert_equal(b01.data, np.array([[1., 0.]]))
|
||||
assert_equal(b01.mask, np.array([[False, False]]))
|
||||
|
||||
def test_allany_onmatrices(self):
|
||||
x = np.array([[0.13, 0.26, 0.90],
|
||||
[0.28, 0.33, 0.63],
|
||||
[0.31, 0.87, 0.70]])
|
||||
X = np.matrix(x)
|
||||
m = np.array([[True, False, False],
|
||||
[False, False, False],
|
||||
[True, True, False]], dtype=np.bool)
|
||||
mX = masked_array(X, mask=m)
|
||||
mXbig = (mX > 0.5)
|
||||
mXsmall = (mX < 0.5)
|
||||
|
||||
assert_(not mXbig.all())
|
||||
assert_(mXbig.any())
|
||||
assert_equal(mXbig.all(0), np.matrix([False, False, True]))
|
||||
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
|
||||
assert_equal(mXbig.any(0), np.matrix([False, False, True]))
|
||||
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
|
||||
|
||||
assert_(not mXsmall.all())
|
||||
assert_(mXsmall.any())
|
||||
assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
|
||||
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
|
||||
assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
|
||||
assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T)
|
||||
|
||||
def test_compressed(self):
|
||||
a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
|
||||
b = a.compressed()
|
||||
assert_equal(b, a)
|
||||
assert_(isinstance(b, np.matrix))
|
||||
a[0, 0] = masked
|
||||
b = a.compressed()
|
||||
assert_equal(b, [[2, 3, 4]])
|
||||
|
||||
def test_ravel(self):
|
||||
a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]])
|
||||
aravel = a.ravel()
|
||||
assert_equal(aravel.shape, (1, 5))
|
||||
assert_equal(aravel._mask.shape, a.shape)
|
||||
|
||||
def test_view(self):
|
||||
# Test view w/ flexible dtype
|
||||
iterator = list(zip(np.arange(10), np.random.rand(10)))
|
||||
data = np.array(iterator)
|
||||
a = masked_array(iterator, dtype=[('a', float), ('b', float)])
|
||||
a.mask[0] = (1, 0)
|
||||
test = a.view((float, 2), np.matrix)
|
||||
assert_equal(test, data)
|
||||
assert_(isinstance(test, np.matrix))
|
||||
assert_(not isinstance(test, MaskedArray))
|
||||
|
||||
|
||||
class TestSubclassing:
|
||||
# Test suite for masked subclasses of ndarray.
|
||||
|
||||
def setup_method(self):
|
||||
x = np.arange(5, dtype='float')
|
||||
mx = MMatrix(x, mask=[0, 1, 0, 0, 0])
|
||||
self.data = (x, mx)
|
||||
|
||||
def test_maskedarray_subclassing(self):
|
||||
# Tests subclassing MaskedArray
|
||||
(x, mx) = self.data
|
||||
assert_(isinstance(mx._data, np.matrix))
|
||||
|
||||
def test_masked_unary_operations(self):
|
||||
# Tests masked_unary_operation
|
||||
(x, mx) = self.data
|
||||
with np.errstate(divide='ignore'):
|
||||
assert_(isinstance(log(mx), MMatrix))
|
||||
assert_equal(log(x), np.log(x))
|
||||
|
||||
def test_masked_binary_operations(self):
|
||||
# Tests masked_binary_operation
|
||||
(x, mx) = self.data
|
||||
# Result should be a MMatrix
|
||||
assert_(isinstance(add(mx, mx), MMatrix))
|
||||
assert_(isinstance(add(mx, x), MMatrix))
|
||||
# Result should work
|
||||
assert_equal(add(mx, x), mx+x)
|
||||
assert_(isinstance(add(mx, mx)._data, np.matrix))
|
||||
with assert_warns(DeprecationWarning):
|
||||
assert_(isinstance(add.outer(mx, mx), MMatrix))
|
||||
assert_(isinstance(hypot(mx, mx), MMatrix))
|
||||
assert_(isinstance(hypot(mx, x), MMatrix))
|
||||
|
||||
def test_masked_binary_operations2(self):
|
||||
# Tests domained_masked_binary_operation
|
||||
(x, mx) = self.data
|
||||
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
|
||||
assert_(isinstance(divide(mx, mx), MMatrix))
|
||||
assert_(isinstance(divide(mx, x), MMatrix))
|
||||
assert_equal(divide(mx, mx), divide(xmx, xmx))
|
||||
|
||||
class TestConcatenator:
|
||||
# Tests for mr_, the equivalent of r_ for masked arrays.
|
||||
|
||||
def test_matrix_builder(self):
|
||||
assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4'])
|
||||
|
||||
def test_matrix(self):
|
||||
# Test consistency with unmasked version. If we ever deprecate
|
||||
# matrix, this test should either still pass, or both actual and
|
||||
# expected should fail to be build.
|
||||
actual = mr_['r', 1, 2, 3]
|
||||
expected = np.ma.array(np.r_['r', 1, 2, 3])
|
||||
assert_array_equal(actual, expected)
|
||||
|
||||
# outer type is masked array, inner type is matrix
|
||||
assert_equal(type(actual), type(expected))
|
||||
assert_equal(type(actual.data), type(expected.data))
|
@ -0,0 +1,93 @@
|
||||
""" Test functions for linalg module using the matrix class."""
|
||||
import numpy as np
|
||||
|
||||
from numpy.linalg.tests.test_linalg import (
|
||||
LinalgCase, apply_tag, TestQR as _TestQR, LinalgTestCase,
|
||||
_TestNorm2D, _TestNormDoubleBase, _TestNormSingleBase, _TestNormInt64Base,
|
||||
SolveCases, InvCases, EigvalsCases, EigCases, SVDCases, CondCases,
|
||||
PinvCases, DetCases, LstsqCases)
|
||||
|
||||
|
||||
CASES = []
|
||||
|
||||
# square test cases
|
||||
CASES += apply_tag('square', [
|
||||
LinalgCase("0x0_matrix",
|
||||
np.empty((0, 0), dtype=np.double).view(np.matrix),
|
||||
np.empty((0, 1), dtype=np.double).view(np.matrix),
|
||||
tags={'size-0'}),
|
||||
LinalgCase("matrix_b_only",
|
||||
np.array([[1., 2.], [3., 4.]]),
|
||||
np.matrix([2., 1.]).T),
|
||||
LinalgCase("matrix_a_and_b",
|
||||
np.matrix([[1., 2.], [3., 4.]]),
|
||||
np.matrix([2., 1.]).T),
|
||||
])
|
||||
|
||||
# hermitian test-cases
|
||||
CASES += apply_tag('hermitian', [
|
||||
LinalgCase("hmatrix_a_and_b",
|
||||
np.matrix([[1., 2.], [2., 1.]]),
|
||||
None),
|
||||
])
|
||||
# No need to make generalized or strided cases for matrices.
|
||||
|
||||
|
||||
class MatrixTestCase(LinalgTestCase):
|
||||
TEST_CASES = CASES
|
||||
|
||||
|
||||
class TestSolveMatrix(SolveCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestInvMatrix(InvCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestEigvalsMatrix(EigvalsCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestEigMatrix(EigCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestSVDMatrix(SVDCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestCondMatrix(CondCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestPinvMatrix(PinvCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestDetMatrix(DetCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class TestLstsqMatrix(LstsqCases, MatrixTestCase):
|
||||
pass
|
||||
|
||||
|
||||
class _TestNorm2DMatrix(_TestNorm2D):
|
||||
array = np.matrix
|
||||
|
||||
|
||||
class TestNormDoubleMatrix(_TestNorm2DMatrix, _TestNormDoubleBase):
|
||||
pass
|
||||
|
||||
|
||||
class TestNormSingleMatrix(_TestNorm2DMatrix, _TestNormSingleBase):
|
||||
pass
|
||||
|
||||
|
||||
class TestNormInt64Matrix(_TestNorm2DMatrix, _TestNormInt64Base):
|
||||
pass
|
||||
|
||||
|
||||
class TestQRMatrix(_TestQR):
|
||||
array = np.matrix
|
@ -0,0 +1,16 @@
|
||||
import numpy as np
|
||||
from numpy.testing import assert_, assert_equal, assert_array_equal
|
||||
|
||||
class TestView:
|
||||
def test_type(self):
|
||||
x = np.array([1, 2, 3])
|
||||
assert_(isinstance(x.view(np.matrix), np.matrix))
|
||||
|
||||
def test_keywords(self):
|
||||
x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
|
||||
# We must be specific about the endianness here:
|
||||
y = x.view(dtype='<i2', type=np.matrix)
|
||||
assert_array_equal(y, [[513]])
|
||||
|
||||
assert_(isinstance(y, np.matrix))
|
||||
assert_equal(y.dtype, np.dtype('<i2'))
|
@ -0,0 +1,17 @@
|
||||
import numpy as np
|
||||
from numpy.testing import assert_equal
|
||||
|
||||
class TestDot:
|
||||
def test_matscalar(self):
|
||||
b1 = np.matrix(np.ones((3, 3), dtype=complex))
|
||||
assert_equal(b1*1.0, b1)
|
||||
|
||||
|
||||
def test_diagonal():
|
||||
b1 = np.matrix([[1,2],[3,4]])
|
||||
diag_b1 = np.matrix([[1, 4]])
|
||||
array_b1 = np.array([1, 4])
|
||||
|
||||
assert_equal(b1.diagonal(), diag_b1)
|
||||
assert_equal(np.diagonal(b1), array_b1)
|
||||
assert_equal(np.diag(b1), array_b1)
|
@ -0,0 +1,31 @@
|
||||
import numpy as np
|
||||
from numpy.testing import assert_, assert_equal, assert_raises
|
||||
|
||||
|
||||
class TestRegression:
|
||||
def test_kron_matrix(self):
|
||||
# Ticket #71
|
||||
x = np.matrix('[1 0; 1 0]')
|
||||
assert_equal(type(np.kron(x, x)), type(x))
|
||||
|
||||
def test_matrix_properties(self):
|
||||
# Ticket #125
|
||||
a = np.matrix([1.0], dtype=float)
|
||||
assert_(type(a.real) is np.matrix)
|
||||
assert_(type(a.imag) is np.matrix)
|
||||
c, d = np.matrix([0.0]).nonzero()
|
||||
assert_(type(c) is np.ndarray)
|
||||
assert_(type(d) is np.ndarray)
|
||||
|
||||
def test_matrix_multiply_by_1d_vector(self):
|
||||
# Ticket #473
|
||||
def mul():
|
||||
np.asmatrix(np.eye(2))*np.ones(2)
|
||||
|
||||
assert_raises(ValueError, mul)
|
||||
|
||||
def test_matrix_std_argmax(self):
|
||||
# Ticket #83
|
||||
x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
|
||||
assert_equal(x.std().shape, ())
|
||||
assert_equal(x.argmax().shape, ())
|
Reference in New Issue
Block a user