Updated script that can be controled by Nodejs web app
This commit is contained in:
422
lib/python3.13/site-packages/numpy/lib/_twodim_base_impl.pyi
Normal file
422
lib/python3.13/site-packages/numpy/lib/_twodim_base_impl.pyi
Normal file
@@ -0,0 +1,422 @@
|
||||
import builtins
|
||||
from collections.abc import Callable, Sequence
|
||||
from typing import (
|
||||
Any,
|
||||
TypeAlias,
|
||||
overload,
|
||||
TypeVar,
|
||||
Literal as L,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from numpy import (
|
||||
generic,
|
||||
number,
|
||||
timedelta64,
|
||||
datetime64,
|
||||
int_,
|
||||
intp,
|
||||
float64,
|
||||
complex128,
|
||||
signedinteger,
|
||||
floating,
|
||||
complexfloating,
|
||||
object_,
|
||||
_OrderCF,
|
||||
)
|
||||
|
||||
from numpy._typing import (
|
||||
DTypeLike,
|
||||
_DTypeLike,
|
||||
ArrayLike,
|
||||
_ArrayLike,
|
||||
NDArray,
|
||||
_SupportsArray,
|
||||
_SupportsArrayFunc,
|
||||
_ArrayLikeInt_co,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
_ArrayLikeObject_co,
|
||||
)
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
|
||||
# The returned arrays dtype must be compatible with `np.equal`
|
||||
_MaskFunc = Callable[
|
||||
[NDArray[int_], _T],
|
||||
NDArray[number[Any] | np.bool | timedelta64 | datetime64 | object_],
|
||||
]
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
@overload
|
||||
def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def fliplr(m: ArrayLike) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def flipud(m: ArrayLike) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def eye(
|
||||
N: int,
|
||||
M: None | int = ...,
|
||||
k: int = ...,
|
||||
dtype: None = ...,
|
||||
order: _OrderCF = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
like: None | _SupportsArrayFunc = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def eye(
|
||||
N: int,
|
||||
M: None | int = ...,
|
||||
k: int = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
order: _OrderCF = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
like: None | _SupportsArrayFunc = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def eye(
|
||||
N: int,
|
||||
M: None | int = ...,
|
||||
k: int = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
order: _OrderCF = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
like: None | _SupportsArrayFunc = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def tri(
|
||||
N: int,
|
||||
M: None | int = ...,
|
||||
k: int = ...,
|
||||
dtype: None = ...,
|
||||
*,
|
||||
like: None | _SupportsArrayFunc = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def tri(
|
||||
N: int,
|
||||
M: None | int = ...,
|
||||
k: int = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
*,
|
||||
like: None | _SupportsArrayFunc = ...
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def tri(
|
||||
N: int,
|
||||
M: None | int = ...,
|
||||
k: int = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
*,
|
||||
like: None | _SupportsArrayFunc = ...
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def vander( # type: ignore[misc]
|
||||
x: _ArrayLikeInt_co,
|
||||
N: None | int = ...,
|
||||
increasing: bool = ...,
|
||||
) -> NDArray[signedinteger[Any]]: ...
|
||||
@overload
|
||||
def vander( # type: ignore[misc]
|
||||
x: _ArrayLikeFloat_co,
|
||||
N: None | int = ...,
|
||||
increasing: bool = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def vander(
|
||||
x: _ArrayLikeComplex_co,
|
||||
N: None | int = ...,
|
||||
increasing: bool = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def vander(
|
||||
x: _ArrayLikeObject_co,
|
||||
N: None | int = ...,
|
||||
increasing: bool = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
|
||||
_Int_co: TypeAlias = np.integer[Any] | np.bool
|
||||
_Float_co: TypeAlias = np.floating[Any] | _Int_co
|
||||
_Number_co: TypeAlias = np.number[Any] | np.bool
|
||||
|
||||
_ArrayLike1D: TypeAlias = _SupportsArray[np.dtype[_SCT]] | Sequence[_SCT]
|
||||
_ArrayLike2D: TypeAlias = (
|
||||
_SupportsArray[np.dtype[_SCT]]
|
||||
| Sequence[_ArrayLike1D[_SCT]]
|
||||
)
|
||||
|
||||
_ArrayLike1DInt_co = (
|
||||
_SupportsArray[np.dtype[_Int_co]]
|
||||
| Sequence[int | _Int_co]
|
||||
)
|
||||
_ArrayLike1DFloat_co = (
|
||||
_SupportsArray[np.dtype[_Float_co]]
|
||||
| Sequence[float | int | _Float_co]
|
||||
)
|
||||
_ArrayLike2DFloat_co = (
|
||||
_SupportsArray[np.dtype[_Float_co]]
|
||||
| Sequence[_ArrayLike1DFloat_co]
|
||||
)
|
||||
_ArrayLike1DNumber_co = (
|
||||
_SupportsArray[np.dtype[_Number_co]]
|
||||
| Sequence[int | float | complex | _Number_co]
|
||||
)
|
||||
|
||||
_SCT_complex = TypeVar("_SCT_complex", bound=np.complexfloating[Any, Any])
|
||||
_SCT_inexact = TypeVar("_SCT_inexact", bound=np.inexact[Any])
|
||||
_SCT_number_co = TypeVar("_SCT_number_co", bound=_Number_co)
|
||||
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1D[_SCT_complex],
|
||||
y: _ArrayLike1D[_SCT_complex | _Float_co],
|
||||
bins: int | Sequence[int] = ...,
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_complex],
|
||||
NDArray[_SCT_complex],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1D[_SCT_complex | _Float_co],
|
||||
y: _ArrayLike1D[_SCT_complex],
|
||||
bins: int | Sequence[int] = ...,
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_complex],
|
||||
NDArray[_SCT_complex],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1D[_SCT_inexact],
|
||||
y: _ArrayLike1D[_SCT_inexact | _Int_co],
|
||||
bins: int | Sequence[int] = ...,
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_inexact],
|
||||
NDArray[_SCT_inexact],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1D[_SCT_inexact | _Int_co],
|
||||
y: _ArrayLike1D[_SCT_inexact],
|
||||
bins: int | Sequence[int] = ...,
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_inexact],
|
||||
NDArray[_SCT_inexact],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DInt_co | Sequence[float | int],
|
||||
y: _ArrayLike1DInt_co | Sequence[float | int],
|
||||
bins: int | Sequence[int] = ...,
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[float64],
|
||||
NDArray[float64],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: Sequence[complex | float | int],
|
||||
y: Sequence[complex | float | int],
|
||||
bins: int | Sequence[int] = ...,
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[complex128 | float64],
|
||||
NDArray[complex128 | float64],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DNumber_co,
|
||||
y: _ArrayLike1DNumber_co,
|
||||
bins: _ArrayLike1D[_SCT_number_co] | Sequence[_ArrayLike1D[_SCT_number_co]],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_number_co],
|
||||
NDArray[_SCT_number_co],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1D[_SCT_inexact],
|
||||
y: _ArrayLike1D[_SCT_inexact],
|
||||
bins: Sequence[_ArrayLike1D[_SCT_number_co] | int],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_number_co | _SCT_inexact],
|
||||
NDArray[_SCT_number_co | _SCT_inexact],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DInt_co | Sequence[float | int],
|
||||
y: _ArrayLike1DInt_co | Sequence[float | int],
|
||||
bins: Sequence[_ArrayLike1D[_SCT_number_co] | int],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_number_co | float64],
|
||||
NDArray[_SCT_number_co | float64],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: Sequence[complex | float | int],
|
||||
y: Sequence[complex | float | int],
|
||||
bins: Sequence[_ArrayLike1D[_SCT_number_co] | int],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[_SCT_number_co | complex128 | float64],
|
||||
NDArray[_SCT_number_co | complex128 | float64] ,
|
||||
]: ...
|
||||
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DNumber_co,
|
||||
y: _ArrayLike1DNumber_co,
|
||||
bins: Sequence[Sequence[bool]],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[np.bool],
|
||||
NDArray[np.bool],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DNumber_co,
|
||||
y: _ArrayLike1DNumber_co,
|
||||
bins: Sequence[Sequence[int | bool]],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[np.int_ | np.bool],
|
||||
NDArray[np.int_ | np.bool],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DNumber_co,
|
||||
y: _ArrayLike1DNumber_co,
|
||||
bins: Sequence[Sequence[float | int | bool]],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[np.float64 | np.int_ | np.bool],
|
||||
NDArray[np.float64 | np.int_ | np.bool],
|
||||
]: ...
|
||||
@overload
|
||||
def histogram2d(
|
||||
x: _ArrayLike1DNumber_co,
|
||||
y: _ArrayLike1DNumber_co,
|
||||
bins: Sequence[Sequence[complex | float | int | bool]],
|
||||
range: None | _ArrayLike2DFloat_co = ...,
|
||||
density: None | bool = ...,
|
||||
weights: None | _ArrayLike1DFloat_co = ...,
|
||||
) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[np.complex128 | np.float64 | np.int_ | np.bool],
|
||||
NDArray[np.complex128 | np.float64 | np.int_ | np.bool],
|
||||
]: ...
|
||||
|
||||
# NOTE: we're assuming/demanding here the `mask_func` returns
|
||||
# an ndarray of shape `(n, n)`; otherwise there is the possibility
|
||||
# of the output tuple having more or less than 2 elements
|
||||
@overload
|
||||
def mask_indices(
|
||||
n: int,
|
||||
mask_func: _MaskFunc[int],
|
||||
k: int = ...,
|
||||
) -> tuple[NDArray[intp], NDArray[intp]]: ...
|
||||
@overload
|
||||
def mask_indices(
|
||||
n: int,
|
||||
mask_func: _MaskFunc[_T],
|
||||
k: _T,
|
||||
) -> tuple[NDArray[intp], NDArray[intp]]: ...
|
||||
|
||||
def tril_indices(
|
||||
n: int,
|
||||
k: int = ...,
|
||||
m: None | int = ...,
|
||||
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
||||
|
||||
def tril_indices_from(
|
||||
arr: NDArray[Any],
|
||||
k: int = ...,
|
||||
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
||||
|
||||
def triu_indices(
|
||||
n: int,
|
||||
k: int = ...,
|
||||
m: None | int = ...,
|
||||
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
||||
|
||||
def triu_indices_from(
|
||||
arr: NDArray[Any],
|
||||
k: int = ...,
|
||||
) -> tuple[NDArray[int_], NDArray[int_]]: ...
|
Reference in New Issue
Block a user