Updated script that can be controled by Nodejs web app
This commit is contained in:
@@ -0,0 +1,80 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, TypeVar, overload, SupportsIndex
|
||||
|
||||
from numpy import generic
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
ArrayLike,
|
||||
_ShapeLike,
|
||||
_Shape,
|
||||
_ArrayLike
|
||||
)
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
class DummyArray:
|
||||
__array_interface__: dict[str, Any]
|
||||
base: None | NDArray[Any]
|
||||
def __init__(
|
||||
self,
|
||||
interface: dict[str, Any],
|
||||
base: None | NDArray[Any] = ...,
|
||||
) -> None: ...
|
||||
|
||||
@overload
|
||||
def as_strided(
|
||||
x: _ArrayLike[_SCT],
|
||||
shape: None | Iterable[int] = ...,
|
||||
strides: None | Iterable[int] = ...,
|
||||
subok: bool = ...,
|
||||
writeable: bool = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def as_strided(
|
||||
x: ArrayLike,
|
||||
shape: None | Iterable[int] = ...,
|
||||
strides: None | Iterable[int] = ...,
|
||||
subok: bool = ...,
|
||||
writeable: bool = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def sliding_window_view(
|
||||
x: _ArrayLike[_SCT],
|
||||
window_shape: int | Iterable[int],
|
||||
axis: None | SupportsIndex = ...,
|
||||
*,
|
||||
subok: bool = ...,
|
||||
writeable: bool = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def sliding_window_view(
|
||||
x: ArrayLike,
|
||||
window_shape: int | Iterable[int],
|
||||
axis: None | SupportsIndex = ...,
|
||||
*,
|
||||
subok: bool = ...,
|
||||
writeable: bool = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def broadcast_to(
|
||||
array: _ArrayLike[_SCT],
|
||||
shape: int | Iterable[int],
|
||||
subok: bool = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def broadcast_to(
|
||||
array: ArrayLike,
|
||||
shape: int | Iterable[int],
|
||||
subok: bool = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def broadcast_shapes(*args: _ShapeLike) -> _Shape: ...
|
||||
|
||||
def broadcast_arrays(
|
||||
*args: ArrayLike,
|
||||
subok: bool = ...,
|
||||
) -> tuple[NDArray[Any], ...]: ...
|
Reference in New Issue
Block a user