Updated script that can be controled by Nodejs web app
This commit is contained in:
215
lib/python3.13/site-packages/numpy/fft/__init__.py
Normal file
215
lib/python3.13/site-packages/numpy/fft/__init__.py
Normal file
@ -0,0 +1,215 @@
|
||||
"""
|
||||
Discrete Fourier Transform (:mod:`numpy.fft`)
|
||||
=============================================
|
||||
|
||||
.. currentmodule:: numpy.fft
|
||||
|
||||
The SciPy module `scipy.fft` is a more comprehensive superset
|
||||
of ``numpy.fft``, which includes only a basic set of routines.
|
||||
|
||||
Standard FFTs
|
||||
-------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fft Discrete Fourier transform.
|
||||
ifft Inverse discrete Fourier transform.
|
||||
fft2 Discrete Fourier transform in two dimensions.
|
||||
ifft2 Inverse discrete Fourier transform in two dimensions.
|
||||
fftn Discrete Fourier transform in N-dimensions.
|
||||
ifftn Inverse discrete Fourier transform in N dimensions.
|
||||
|
||||
Real FFTs
|
||||
---------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
rfft Real discrete Fourier transform.
|
||||
irfft Inverse real discrete Fourier transform.
|
||||
rfft2 Real discrete Fourier transform in two dimensions.
|
||||
irfft2 Inverse real discrete Fourier transform in two dimensions.
|
||||
rfftn Real discrete Fourier transform in N dimensions.
|
||||
irfftn Inverse real discrete Fourier transform in N dimensions.
|
||||
|
||||
Hermitian FFTs
|
||||
--------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
hfft Hermitian discrete Fourier transform.
|
||||
ihfft Inverse Hermitian discrete Fourier transform.
|
||||
|
||||
Helper routines
|
||||
---------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fftfreq Discrete Fourier Transform sample frequencies.
|
||||
rfftfreq DFT sample frequencies (for usage with rfft, irfft).
|
||||
fftshift Shift zero-frequency component to center of spectrum.
|
||||
ifftshift Inverse of fftshift.
|
||||
|
||||
|
||||
Background information
|
||||
----------------------
|
||||
|
||||
Fourier analysis is fundamentally a method for expressing a function as a
|
||||
sum of periodic components, and for recovering the function from those
|
||||
components. When both the function and its Fourier transform are
|
||||
replaced with discretized counterparts, it is called the discrete Fourier
|
||||
transform (DFT). The DFT has become a mainstay of numerical computing in
|
||||
part because of a very fast algorithm for computing it, called the Fast
|
||||
Fourier Transform (FFT), which was known to Gauss (1805) and was brought
|
||||
to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_
|
||||
provide an accessible introduction to Fourier analysis and its
|
||||
applications.
|
||||
|
||||
Because the discrete Fourier transform separates its input into
|
||||
components that contribute at discrete frequencies, it has a great number
|
||||
of applications in digital signal processing, e.g., for filtering, and in
|
||||
this context the discretized input to the transform is customarily
|
||||
referred to as a *signal*, which exists in the *time domain*. The output
|
||||
is called a *spectrum* or *transform* and exists in the *frequency
|
||||
domain*.
|
||||
|
||||
Implementation details
|
||||
----------------------
|
||||
|
||||
There are many ways to define the DFT, varying in the sign of the
|
||||
exponent, normalization, etc. In this implementation, the DFT is defined
|
||||
as
|
||||
|
||||
.. math::
|
||||
A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\}
|
||||
\\qquad k = 0,\\ldots,n-1.
|
||||
|
||||
The DFT is in general defined for complex inputs and outputs, and a
|
||||
single-frequency component at linear frequency :math:`f` is
|
||||
represented by a complex exponential
|
||||
:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t`
|
||||
is the sampling interval.
|
||||
|
||||
The values in the result follow so-called "standard" order: If ``A =
|
||||
fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of
|
||||
the signal), which is always purely real for real inputs. Then ``A[1:n/2]``
|
||||
contains the positive-frequency terms, and ``A[n/2+1:]`` contains the
|
||||
negative-frequency terms, in order of decreasingly negative frequency.
|
||||
For an even number of input points, ``A[n/2]`` represents both positive and
|
||||
negative Nyquist frequency, and is also purely real for real input. For
|
||||
an odd number of input points, ``A[(n-1)/2]`` contains the largest positive
|
||||
frequency, while ``A[(n+1)/2]`` contains the largest negative frequency.
|
||||
The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies
|
||||
of corresponding elements in the output. The routine
|
||||
``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the
|
||||
zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes
|
||||
that shift.
|
||||
|
||||
When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)``
|
||||
is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum.
|
||||
The phase spectrum is obtained by ``np.angle(A)``.
|
||||
|
||||
The inverse DFT is defined as
|
||||
|
||||
.. math::
|
||||
a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\}
|
||||
\\qquad m = 0,\\ldots,n-1.
|
||||
|
||||
It differs from the forward transform by the sign of the exponential
|
||||
argument and the default normalization by :math:`1/n`.
|
||||
|
||||
Type Promotion
|
||||
--------------
|
||||
|
||||
`numpy.fft` promotes ``float32`` and ``complex64`` arrays to ``float64`` and
|
||||
``complex128`` arrays respectively. For an FFT implementation that does not
|
||||
promote input arrays, see `scipy.fftpack`.
|
||||
|
||||
Normalization
|
||||
-------------
|
||||
|
||||
The argument ``norm`` indicates which direction of the pair of direct/inverse
|
||||
transforms is scaled and with what normalization factor.
|
||||
The default normalization (``"backward"``) has the direct (forward) transforms
|
||||
unscaled and the inverse (backward) transforms scaled by :math:`1/n`. It is
|
||||
possible to obtain unitary transforms by setting the keyword argument ``norm``
|
||||
to ``"ortho"`` so that both direct and inverse transforms are scaled by
|
||||
:math:`1/\\sqrt{n}`. Finally, setting the keyword argument ``norm`` to
|
||||
``"forward"`` has the direct transforms scaled by :math:`1/n` and the inverse
|
||||
transforms unscaled (i.e. exactly opposite to the default ``"backward"``).
|
||||
`None` is an alias of the default option ``"backward"`` for backward
|
||||
compatibility.
|
||||
|
||||
Real and Hermitian transforms
|
||||
-----------------------------
|
||||
|
||||
When the input is purely real, its transform is Hermitian, i.e., the
|
||||
component at frequency :math:`f_k` is the complex conjugate of the
|
||||
component at frequency :math:`-f_k`, which means that for real
|
||||
inputs there is no information in the negative frequency components that
|
||||
is not already available from the positive frequency components.
|
||||
The family of `rfft` functions is
|
||||
designed to operate on real inputs, and exploits this symmetry by
|
||||
computing only the positive frequency components, up to and including the
|
||||
Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex
|
||||
output points. The inverses of this family assumes the same symmetry of
|
||||
its input, and for an output of ``n`` points uses ``n/2+1`` input points.
|
||||
|
||||
Correspondingly, when the spectrum is purely real, the signal is
|
||||
Hermitian. The `hfft` family of functions exploits this symmetry by
|
||||
using ``n/2+1`` complex points in the input (time) domain for ``n`` real
|
||||
points in the frequency domain.
|
||||
|
||||
In higher dimensions, FFTs are used, e.g., for image analysis and
|
||||
filtering. The computational efficiency of the FFT means that it can
|
||||
also be a faster way to compute large convolutions, using the property
|
||||
that a convolution in the time domain is equivalent to a point-by-point
|
||||
multiplication in the frequency domain.
|
||||
|
||||
Higher dimensions
|
||||
-----------------
|
||||
|
||||
In two dimensions, the DFT is defined as
|
||||
|
||||
.. math::
|
||||
A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1}
|
||||
a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\}
|
||||
\\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1,
|
||||
|
||||
which extends in the obvious way to higher dimensions, and the inverses
|
||||
in higher dimensions also extend in the same way.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
|
||||
machine calculation of complex Fourier series," *Math. Comput.*
|
||||
19: 297-301.
|
||||
|
||||
.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
|
||||
2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
|
||||
12-13. Cambridge Univ. Press, Cambridge, UK.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
For examples, see the various functions.
|
||||
|
||||
"""
|
||||
|
||||
from . import _pocketfft, _helper
|
||||
# TODO: `numpy.fft.helper`` was deprecated in NumPy 2.0. It should
|
||||
# be deleted once downstream libraries move to `numpy.fft`.
|
||||
from . import helper
|
||||
from ._pocketfft import *
|
||||
from ._helper import *
|
||||
|
||||
__all__ = _pocketfft.__all__.copy()
|
||||
__all__ += _helper.__all__
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
28
lib/python3.13/site-packages/numpy/fft/__init__.pyi
Normal file
28
lib/python3.13/site-packages/numpy/fft/__init__.pyi
Normal file
@ -0,0 +1,28 @@
|
||||
from numpy._pytesttester import PytestTester
|
||||
|
||||
from numpy.fft._pocketfft import (
|
||||
fft as fft,
|
||||
ifft as ifft,
|
||||
rfft as rfft,
|
||||
irfft as irfft,
|
||||
hfft as hfft,
|
||||
ihfft as ihfft,
|
||||
rfftn as rfftn,
|
||||
irfftn as irfftn,
|
||||
rfft2 as rfft2,
|
||||
irfft2 as irfft2,
|
||||
fft2 as fft2,
|
||||
ifft2 as ifft2,
|
||||
fftn as fftn,
|
||||
ifftn as ifftn,
|
||||
)
|
||||
|
||||
from numpy.fft._helper import (
|
||||
fftshift as fftshift,
|
||||
ifftshift as ifftshift,
|
||||
fftfreq as fftfreq,
|
||||
rfftfreq as rfftfreq,
|
||||
)
|
||||
|
||||
__all__: list[str]
|
||||
test: PytestTester
|
235
lib/python3.13/site-packages/numpy/fft/_helper.py
Normal file
235
lib/python3.13/site-packages/numpy/fft/_helper.py
Normal file
@ -0,0 +1,235 @@
|
||||
"""
|
||||
Discrete Fourier Transforms - _helper.py
|
||||
|
||||
"""
|
||||
from numpy._core import integer, empty, arange, asarray, roll
|
||||
from numpy._core.overrides import array_function_dispatch, set_module
|
||||
|
||||
# Created by Pearu Peterson, September 2002
|
||||
|
||||
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
|
||||
|
||||
integer_types = (int, integer)
|
||||
|
||||
|
||||
def _fftshift_dispatcher(x, axes=None):
|
||||
return (x,)
|
||||
|
||||
|
||||
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
|
||||
def fftshift(x, axes=None):
|
||||
"""
|
||||
Shift the zero-frequency component to the center of the spectrum.
|
||||
|
||||
This function swaps half-spaces for all axes listed (defaults to all).
|
||||
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to shift. Default is None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
ifftshift : The inverse of `fftshift`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> freqs = np.fft.fftfreq(10, 0.1)
|
||||
>>> freqs
|
||||
array([ 0., 1., 2., ..., -3., -2., -1.])
|
||||
>>> np.fft.fftshift(freqs)
|
||||
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
||||
|
||||
Shift the zero-frequency component only along the second axis:
|
||||
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.fftshift(freqs, axes=(1,))
|
||||
array([[ 2., 0., 1.],
|
||||
[-4., 3., 4.],
|
||||
[-1., -3., -2.]])
|
||||
|
||||
"""
|
||||
x = asarray(x)
|
||||
if axes is None:
|
||||
axes = tuple(range(x.ndim))
|
||||
shift = [dim // 2 for dim in x.shape]
|
||||
elif isinstance(axes, integer_types):
|
||||
shift = x.shape[axes] // 2
|
||||
else:
|
||||
shift = [x.shape[ax] // 2 for ax in axes]
|
||||
|
||||
return roll(x, shift, axes)
|
||||
|
||||
|
||||
@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft')
|
||||
def ifftshift(x, axes=None):
|
||||
"""
|
||||
The inverse of `fftshift`. Although identical for even-length `x`, the
|
||||
functions differ by one sample for odd-length `x`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to calculate. Defaults to None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
fftshift : Shift zero-frequency component to the center of the spectrum.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
|
||||
"""
|
||||
x = asarray(x)
|
||||
if axes is None:
|
||||
axes = tuple(range(x.ndim))
|
||||
shift = [-(dim // 2) for dim in x.shape]
|
||||
elif isinstance(axes, integer_types):
|
||||
shift = -(x.shape[axes] // 2)
|
||||
else:
|
||||
shift = [-(x.shape[ax] // 2) for ax in axes]
|
||||
|
||||
return roll(x, shift, axes)
|
||||
|
||||
|
||||
@set_module('numpy.fft')
|
||||
def fftfreq(n, d=1.0, device=None):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies.
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
device : str, optional
|
||||
The device on which to place the created array. Default: ``None``.
|
||||
For Array-API interoperability only, so must be ``"cpu"`` if passed.
|
||||
|
||||
.. versionadded:: 2.0.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length `n` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
||||
>>> fourier = np.fft.fft(signal)
|
||||
>>> n = signal.size
|
||||
>>> timestep = 0.1
|
||||
>>> freq = np.fft.fftfreq(n, d=timestep)
|
||||
>>> freq
|
||||
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0 / (n * d)
|
||||
results = empty(n, int, device=device)
|
||||
N = (n-1)//2 + 1
|
||||
p1 = arange(0, N, dtype=int, device=device)
|
||||
results[:N] = p1
|
||||
p2 = arange(-(n//2), 0, dtype=int, device=device)
|
||||
results[N:] = p2
|
||||
return results * val
|
||||
|
||||
|
||||
@set_module('numpy.fft')
|
||||
def rfftfreq(n, d=1.0, device=None):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies
|
||||
(for usage with rfft, irfft).
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
|
||||
|
||||
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
|
||||
the Nyquist frequency component is considered to be positive.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
device : str, optional
|
||||
The device on which to place the created array. Default: ``None``.
|
||||
For Array-API interoperability only, so must be ``"cpu"`` if passed.
|
||||
|
||||
.. versionadded:: 2.0.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length ``n//2 + 1`` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
|
||||
>>> fourier = np.fft.rfft(signal)
|
||||
>>> n = signal.size
|
||||
>>> sample_rate = 100
|
||||
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., ..., -30., -20., -10.])
|
||||
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., 30., 40., 50.])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0/(n*d)
|
||||
N = n//2 + 1
|
||||
results = arange(0, N, dtype=int, device=device)
|
||||
return results * val
|
51
lib/python3.13/site-packages/numpy/fft/_helper.pyi
Normal file
51
lib/python3.13/site-packages/numpy/fft/_helper.pyi
Normal file
@ -0,0 +1,51 @@
|
||||
from typing import Any, TypeVar, overload, Literal as L
|
||||
|
||||
from numpy import generic, integer, floating, complexfloating
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
ArrayLike,
|
||||
_ShapeLike,
|
||||
_ArrayLike,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
)
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
@overload
|
||||
def fftshift(x: _ArrayLike[_SCT], axes: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def fftshift(x: ArrayLike, axes: None | _ShapeLike = ...) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def ifftshift(x: _ArrayLike[_SCT], axes: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def ifftshift(x: ArrayLike, axes: None | _ShapeLike = ...) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def fftfreq(
|
||||
n: int | integer[Any],
|
||||
d: _ArrayLikeFloat_co = ...,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def fftfreq(
|
||||
n: int | integer[Any],
|
||||
d: _ArrayLikeComplex_co = ...,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
|
||||
@overload
|
||||
def rfftfreq(
|
||||
n: int | integer[Any],
|
||||
d: _ArrayLikeFloat_co = ...,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def rfftfreq(
|
||||
n: int | integer[Any],
|
||||
d: _ArrayLikeComplex_co = ...,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
1715
lib/python3.13/site-packages/numpy/fft/_pocketfft.py
Normal file
1715
lib/python3.13/site-packages/numpy/fft/_pocketfft.py
Normal file
File diff suppressed because it is too large
Load Diff
122
lib/python3.13/site-packages/numpy/fft/_pocketfft.pyi
Normal file
122
lib/python3.13/site-packages/numpy/fft/_pocketfft.pyi
Normal file
@ -0,0 +1,122 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import Literal as L
|
||||
|
||||
from numpy import complex128, float64
|
||||
from numpy._typing import ArrayLike, NDArray, _ArrayLikeNumber_co
|
||||
|
||||
_NormKind = L[None, "backward", "ortho", "forward"]
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
def fft(
|
||||
a: ArrayLike,
|
||||
n: None | int = ...,
|
||||
axis: int = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def ifft(
|
||||
a: ArrayLike,
|
||||
n: None | int = ...,
|
||||
axis: int = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def rfft(
|
||||
a: ArrayLike,
|
||||
n: None | int = ...,
|
||||
axis: int = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def irfft(
|
||||
a: ArrayLike,
|
||||
n: None | int = ...,
|
||||
axis: int = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
|
||||
# Input array must be compatible with `np.conjugate`
|
||||
def hfft(
|
||||
a: _ArrayLikeNumber_co,
|
||||
n: None | int = ...,
|
||||
axis: int = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
|
||||
def ihfft(
|
||||
a: ArrayLike,
|
||||
n: None | int = ...,
|
||||
axis: int = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def fftn(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def ifftn(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def rfftn(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def irfftn(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
|
||||
def fft2(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def ifft2(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def rfft2(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[complex128] = ...,
|
||||
) -> NDArray[complex128]: ...
|
||||
|
||||
def irfft2(
|
||||
a: ArrayLike,
|
||||
s: None | Sequence[int] = ...,
|
||||
axes: None | Sequence[int] = ...,
|
||||
norm: _NormKind = ...,
|
||||
out: None | NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
BIN
lib/python3.13/site-packages/numpy/fft/_pocketfft_umath.cpython-313-darwin.so
Executable file
BIN
lib/python3.13/site-packages/numpy/fft/_pocketfft_umath.cpython-313-darwin.so
Executable file
Binary file not shown.
16
lib/python3.13/site-packages/numpy/fft/helper.py
Normal file
16
lib/python3.13/site-packages/numpy/fft/helper.py
Normal file
@ -0,0 +1,16 @@
|
||||
def __getattr__(attr_name):
|
||||
import warnings
|
||||
from numpy.fft import _helper
|
||||
ret = getattr(_helper, attr_name, None)
|
||||
if ret is None:
|
||||
raise AttributeError(
|
||||
f"module 'numpy.fft.helper' has no attribute {attr_name}")
|
||||
warnings.warn(
|
||||
"The numpy.fft.helper has been made private and renamed to "
|
||||
"numpy.fft._helper. All four functions exported by it (i.e. fftshift, "
|
||||
"ifftshift, fftfreq, rfftfreq) are available from numpy.fft. "
|
||||
f"Please use numpy.fft.{attr_name} instead.",
|
||||
DeprecationWarning,
|
||||
stacklevel=3
|
||||
)
|
||||
return ret
|
167
lib/python3.13/site-packages/numpy/fft/tests/test_helper.py
Normal file
167
lib/python3.13/site-packages/numpy/fft/tests/test_helper.py
Normal file
@ -0,0 +1,167 @@
|
||||
"""Test functions for fftpack.helper module
|
||||
|
||||
Copied from fftpack.helper by Pearu Peterson, October 2005
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
from numpy.testing import assert_array_almost_equal
|
||||
from numpy import fft, pi
|
||||
|
||||
|
||||
class TestFFTShift:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
|
||||
def test_inverse(self):
|
||||
for n in [1, 4, 9, 100, 211]:
|
||||
x = np.random.random((n,))
|
||||
assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
|
||||
|
||||
def test_axes_keyword(self):
|
||||
freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
|
||||
shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0),
|
||||
fft.fftshift(freqs, axes=(0,)))
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
|
||||
fft.ifftshift(shifted, axes=(0,)))
|
||||
|
||||
assert_array_almost_equal(fft.fftshift(freqs), shifted)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted), freqs)
|
||||
|
||||
def test_uneven_dims(self):
|
||||
""" Test 2D input, which has uneven dimension sizes """
|
||||
freqs = [
|
||||
[0, 1],
|
||||
[2, 3],
|
||||
[4, 5]
|
||||
]
|
||||
|
||||
# shift in dimension 0
|
||||
shift_dim0 = [
|
||||
[4, 5],
|
||||
[0, 1],
|
||||
[2, 3]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs)
|
||||
|
||||
# shift in dimension 1
|
||||
shift_dim1 = [
|
||||
[1, 0],
|
||||
[3, 2],
|
||||
[5, 4]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs)
|
||||
|
||||
# shift in both dimensions
|
||||
shift_dim_both = [
|
||||
[5, 4],
|
||||
[1, 0],
|
||||
[3, 2]
|
||||
]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs)
|
||||
|
||||
# axes=None (default) shift in all dimensions
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs)
|
||||
assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both)
|
||||
assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs)
|
||||
|
||||
def test_equal_to_original(self):
|
||||
""" Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
|
||||
from numpy._core import asarray, concatenate, arange, take
|
||||
|
||||
def original_fftshift(x, axes=None):
|
||||
""" How fftshift was implemented in v1.14"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, int):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = (n + 1) // 2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
def original_ifftshift(x, axes=None):
|
||||
""" How ifftshift was implemented in v1.14 """
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, int):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = n - (n + 1) // 2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
# create possible 2d array combinations and try all possible keywords
|
||||
# compare output to original functions
|
||||
for i in range(16):
|
||||
for j in range(16):
|
||||
for axes_keyword in [0, 1, None, (0,), (0, 1)]:
|
||||
inp = np.random.rand(i, j)
|
||||
|
||||
assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
|
||||
original_fftshift(inp, axes_keyword))
|
||||
|
||||
assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
|
||||
original_ifftshift(inp, axes_keyword))
|
||||
|
||||
|
||||
class TestFFTFreq:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(9*fft.fftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(10*fft.fftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestRFFTFreq:
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(9*fft.rfftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, 5]
|
||||
assert_array_almost_equal(10*fft.rfftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestIRFFTN:
|
||||
|
||||
def test_not_last_axis_success(self):
|
||||
ar, ai = np.random.random((2, 16, 8, 32))
|
||||
a = ar + 1j*ai
|
||||
|
||||
axes = (-2,)
|
||||
|
||||
# Should not raise error
|
||||
fft.irfftn(a, axes=axes)
|
589
lib/python3.13/site-packages/numpy/fft/tests/test_pocketfft.py
Normal file
589
lib/python3.13/site-packages/numpy/fft/tests/test_pocketfft.py
Normal file
@ -0,0 +1,589 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy.random import random
|
||||
from numpy.testing import (
|
||||
assert_array_equal, assert_raises, assert_allclose, IS_WASM
|
||||
)
|
||||
import threading
|
||||
import queue
|
||||
|
||||
|
||||
def fft1(x):
|
||||
L = len(x)
|
||||
phase = -2j * np.pi * (np.arange(L) / L)
|
||||
phase = np.arange(L).reshape(-1, 1) * phase
|
||||
return np.sum(x*np.exp(phase), axis=1)
|
||||
|
||||
|
||||
class TestFFTShift:
|
||||
|
||||
def test_fft_n(self):
|
||||
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
|
||||
|
||||
|
||||
class TestFFT1D:
|
||||
|
||||
def test_identity(self):
|
||||
maxlen = 512
|
||||
x = random(maxlen) + 1j*random(maxlen)
|
||||
xr = random(maxlen)
|
||||
for i in range(1, maxlen):
|
||||
assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
|
||||
atol=1e-12)
|
||||
assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
|
||||
xr[0:i], atol=1e-12)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
|
||||
def test_identity_long_short(self, dtype):
|
||||
# Test with explicitly given number of points, both for n
|
||||
# smaller and for n larger than the input size.
|
||||
maxlen = 16
|
||||
atol = 5 * np.spacing(np.array(1., dtype=dtype))
|
||||
x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
|
||||
xx = np.concatenate([x, np.zeros_like(x)])
|
||||
xr = random(maxlen).astype(dtype)
|
||||
xxr = np.concatenate([xr, np.zeros_like(xr)])
|
||||
for i in range(1, maxlen*2):
|
||||
check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i)
|
||||
assert check_c.real.dtype == dtype
|
||||
assert_allclose(check_c, xx[0:i], atol=atol, rtol=0)
|
||||
check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i)
|
||||
assert check_r.dtype == dtype
|
||||
assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0)
|
||||
|
||||
@pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble])
|
||||
def test_identity_long_short_reversed(self, dtype):
|
||||
# Also test explicitly given number of points in reversed order.
|
||||
maxlen = 16
|
||||
atol = 5 * np.spacing(np.array(1., dtype=dtype))
|
||||
x = random(maxlen).astype(dtype) + 1j*random(maxlen).astype(dtype)
|
||||
xx = np.concatenate([x, np.zeros_like(x)])
|
||||
for i in range(1, maxlen*2):
|
||||
check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i)
|
||||
assert check_via_c.dtype == x.dtype
|
||||
assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0)
|
||||
# For irfft, we can neither recover the imaginary part of
|
||||
# the first element, nor the imaginary part of the last
|
||||
# element if npts is even. So, set to 0 for the comparison.
|
||||
y = x.copy()
|
||||
n = i // 2 + 1
|
||||
y.imag[0] = 0
|
||||
if i % 2 == 0:
|
||||
y.imag[n-1:] = 0
|
||||
yy = np.concatenate([y, np.zeros_like(y)])
|
||||
check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i)
|
||||
assert check_via_r.dtype == x.dtype
|
||||
assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0)
|
||||
|
||||
def test_fft(self):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
|
||||
assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(fft1(x) / np.sqrt(30),
|
||||
np.fft.fft(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(fft1(x) / 30.,
|
||||
np.fft.fft(x, norm="forward"), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("axis", (0, 1))
|
||||
@pytest.mark.parametrize("dtype", (complex, float))
|
||||
@pytest.mark.parametrize("transpose", (True, False))
|
||||
def test_fft_out_argument(self, dtype, transpose, axis):
|
||||
def zeros_like(x):
|
||||
if transpose:
|
||||
return np.zeros_like(x.T).T
|
||||
else:
|
||||
return np.zeros_like(x)
|
||||
|
||||
# tests below only test the out parameter
|
||||
if dtype is complex:
|
||||
y = random((10, 20)) + 1j*random((10, 20))
|
||||
fft, ifft = np.fft.fft, np.fft.ifft
|
||||
else:
|
||||
y = random((10, 20))
|
||||
fft, ifft = np.fft.rfft, np.fft.irfft
|
||||
|
||||
expected = fft(y, axis=axis)
|
||||
out = zeros_like(expected)
|
||||
result = fft(y, out=out, axis=axis)
|
||||
assert result is out
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
expected2 = ifft(expected, axis=axis)
|
||||
out2 = out if dtype is complex else zeros_like(expected2)
|
||||
result2 = ifft(out, out=out2, axis=axis)
|
||||
assert result2 is out2
|
||||
assert_array_equal(result2, expected2)
|
||||
|
||||
@pytest.mark.parametrize("axis", [0, 1])
|
||||
def test_fft_inplace_out(self, axis):
|
||||
# Test some weirder in-place combinations
|
||||
y = random((20, 20)) + 1j*random((20, 20))
|
||||
# Fully in-place.
|
||||
y1 = y.copy()
|
||||
expected1 = np.fft.fft(y1, axis=axis)
|
||||
result1 = np.fft.fft(y1, axis=axis, out=y1)
|
||||
assert result1 is y1
|
||||
assert_array_equal(result1, expected1)
|
||||
# In-place of part of the array; rest should be unchanged.
|
||||
y2 = y.copy()
|
||||
out2 = y2[:10] if axis == 0 else y2[:, :10]
|
||||
expected2 = np.fft.fft(y2, n=10, axis=axis)
|
||||
result2 = np.fft.fft(y2, n=10, axis=axis, out=out2)
|
||||
assert result2 is out2
|
||||
assert_array_equal(result2, expected2)
|
||||
if axis == 0:
|
||||
assert_array_equal(y2[10:], y[10:])
|
||||
else:
|
||||
assert_array_equal(y2[:, 10:], y[:, 10:])
|
||||
# In-place of another part of the array.
|
||||
y3 = y.copy()
|
||||
y3_sel = y3[5:] if axis == 0 else y3[:, 5:]
|
||||
out3 = y3[5:15] if axis == 0 else y3[:, 5:15]
|
||||
expected3 = np.fft.fft(y3_sel, n=10, axis=axis)
|
||||
result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3)
|
||||
assert result3 is out3
|
||||
assert_array_equal(result3, expected3)
|
||||
if axis == 0:
|
||||
assert_array_equal(y3[:5], y[:5])
|
||||
assert_array_equal(y3[15:], y[15:])
|
||||
else:
|
||||
assert_array_equal(y3[:, :5], y[:, :5])
|
||||
assert_array_equal(y3[:, 15:], y[:, 15:])
|
||||
# In-place with n > nin; rest should be unchanged.
|
||||
y4 = y.copy()
|
||||
y4_sel = y4[:10] if axis == 0 else y4[:, :10]
|
||||
out4 = y4[:15] if axis == 0 else y4[:, :15]
|
||||
expected4 = np.fft.fft(y4_sel, n=15, axis=axis)
|
||||
result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4)
|
||||
assert result4 is out4
|
||||
assert_array_equal(result4, expected4)
|
||||
if axis == 0:
|
||||
assert_array_equal(y4[15:], y[15:])
|
||||
else:
|
||||
assert_array_equal(y4[:, 15:], y[:, 15:])
|
||||
# Overwrite in a transpose.
|
||||
y5 = y.copy()
|
||||
out5 = y5.T
|
||||
result5 = np.fft.fft(y5, axis=axis, out=out5)
|
||||
assert result5 is out5
|
||||
assert_array_equal(result5, expected1)
|
||||
# Reverse strides.
|
||||
y6 = y.copy()
|
||||
out6 = y6[::-1] if axis == 0 else y6[:, ::-1]
|
||||
result6 = np.fft.fft(y6, axis=axis, out=out6)
|
||||
assert result6 is out6
|
||||
assert_array_equal(result6, expected1)
|
||||
|
||||
def test_fft_bad_out(self):
|
||||
x = np.arange(30.)
|
||||
with pytest.raises(TypeError, match="must be of ArrayType"):
|
||||
np.fft.fft(x, out="")
|
||||
with pytest.raises(ValueError, match="has wrong shape"):
|
||||
np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1))
|
||||
with pytest.raises(TypeError, match="Cannot cast"):
|
||||
np.fft.fft(x, out=np.zeros_like(x, dtype=float))
|
||||
|
||||
@pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
|
||||
def test_ifft(self, norm):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_allclose(
|
||||
x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
|
||||
atol=1e-6)
|
||||
# Ensure we get the correct error message
|
||||
with pytest.raises(ValueError,
|
||||
match='Invalid number of FFT data points'):
|
||||
np.fft.ifft([], norm=norm)
|
||||
|
||||
def test_fft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
|
||||
np.fft.fft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.fft2(x),
|
||||
np.fft.fft2(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.fft2(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.fft2(x) / (30. * 20.),
|
||||
np.fft.fft2(x, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_ifft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
|
||||
np.fft.ifft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.ifft2(x),
|
||||
np.fft.ifft2(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
|
||||
np.fft.ifft2(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.ifft2(x) * (30. * 20.),
|
||||
np.fft.ifft2(x, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_fftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_allclose(
|
||||
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.fftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.fftn(x),
|
||||
np.fft.fftn(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.fftn(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
|
||||
np.fft.fftn(x, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_ifftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_allclose(
|
||||
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.ifftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.ifftn(x),
|
||||
np.fft.ifftn(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
|
||||
np.fft.ifftn(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
|
||||
np.fft.ifftn(x, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_rfft(self):
|
||||
x = random(30)
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'backward', 'ortho', 'forward']:
|
||||
assert_allclose(
|
||||
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
|
||||
np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
|
||||
assert_allclose(
|
||||
np.fft.rfft(x, n=n),
|
||||
np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
|
||||
assert_allclose(
|
||||
np.fft.rfft(x, n=n) / np.sqrt(n),
|
||||
np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(
|
||||
np.fft.rfft(x, n=n) / n,
|
||||
np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_rfft_even(self):
|
||||
x = np.arange(8)
|
||||
n = 4
|
||||
y = np.fft.rfft(x, n)
|
||||
assert_allclose(y, np.fft.fft(x[:n])[:n//2 + 1], rtol=1e-14)
|
||||
|
||||
def test_rfft_odd(self):
|
||||
x = np.array([1, 0, 2, 3, -3])
|
||||
y = np.fft.rfft(x)
|
||||
assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14)
|
||||
|
||||
def test_irfft(self):
|
||||
x = random(30)
|
||||
assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
|
||||
norm="backward"), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
|
||||
norm="ortho"), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
|
||||
norm="forward"), atol=1e-6)
|
||||
|
||||
def test_rfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
|
||||
assert_allclose(np.fft.rfft2(x),
|
||||
np.fft.rfft2(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.rfft2(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.rfft2(x) / (30. * 20.),
|
||||
np.fft.rfft2(x, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_irfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
|
||||
norm="backward"), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
|
||||
norm="ortho"), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
|
||||
norm="forward"), atol=1e-6)
|
||||
|
||||
def test_rfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
|
||||
assert_allclose(np.fft.rfftn(x),
|
||||
np.fft.rfftn(x, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.rfftn(x, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
|
||||
np.fft.rfftn(x, norm="forward"), atol=1e-6)
|
||||
# Regression test for gh-27159
|
||||
x = np.ones((2, 3))
|
||||
result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40))
|
||||
assert result.shape == (10, 21)
|
||||
expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40),
|
||||
axis=0, n=20), axis=0, n=10)
|
||||
assert expected.shape == (10, 21)
|
||||
assert_allclose(result, expected, atol=1e-6)
|
||||
|
||||
def test_irfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
|
||||
norm="backward"), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
|
||||
norm="ortho"), atol=1e-6)
|
||||
assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
|
||||
norm="forward"), atol=1e-6)
|
||||
|
||||
def test_hfft(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
|
||||
assert_allclose(np.fft.hfft(x_herm),
|
||||
np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
|
||||
assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
|
||||
np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
|
||||
assert_allclose(np.fft.hfft(x_herm) / 30.,
|
||||
np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
|
||||
|
||||
def test_ihfft(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
|
||||
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
|
||||
norm="backward"), norm="backward"), atol=1e-6)
|
||||
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
|
||||
norm="ortho"), norm="ortho"), atol=1e-6)
|
||||
assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
|
||||
norm="forward"), norm="forward"), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
|
||||
np.fft.rfftn, np.fft.irfftn])
|
||||
def test_axes(self, op):
|
||||
x = random((30, 20, 10))
|
||||
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
|
||||
for a in axes:
|
||||
op_tr = op(np.transpose(x, a))
|
||||
tr_op = np.transpose(op(x, axes=a), a)
|
||||
assert_allclose(op_tr, tr_op, atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
|
||||
np.fft.fft2, np.fft.ifft2])
|
||||
def test_s_negative_1(self, op):
|
||||
x = np.arange(100).reshape(10, 10)
|
||||
# should use the whole input array along the first axis
|
||||
assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5)
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
|
||||
np.fft.rfftn, np.fft.irfftn])
|
||||
def test_s_axes_none(self, op):
|
||||
x = np.arange(100).reshape(10, 10)
|
||||
with pytest.warns(match='`axes` should not be `None` if `s`'):
|
||||
op(x, s=(-1, 5))
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2])
|
||||
def test_s_axes_none_2D(self, op):
|
||||
x = np.arange(100).reshape(10, 10)
|
||||
with pytest.warns(match='`axes` should not be `None` if `s`'):
|
||||
op(x, s=(-1, 5), axes=None)
|
||||
|
||||
@pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
|
||||
np.fft.rfftn, np.fft.irfftn,
|
||||
np.fft.fft2, np.fft.ifft2])
|
||||
def test_s_contains_none(self, op):
|
||||
x = random((30, 20, 10))
|
||||
with pytest.warns(match='array containing `None` values to `s`'):
|
||||
op(x, s=(10, None, 10), axes=(0, 1, 2))
|
||||
|
||||
def test_all_1d_norm_preserving(self):
|
||||
# verify that round-trip transforms are norm-preserving
|
||||
x = random(30)
|
||||
x_norm = np.linalg.norm(x)
|
||||
n = x.size * 2
|
||||
func_pairs = [(np.fft.fft, np.fft.ifft),
|
||||
(np.fft.rfft, np.fft.irfft),
|
||||
# hfft: order so the first function takes x.size samples
|
||||
# (necessary for comparison to x_norm above)
|
||||
(np.fft.ihfft, np.fft.hfft),
|
||||
]
|
||||
for forw, back in func_pairs:
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'backward', 'ortho', 'forward']:
|
||||
tmp = forw(x, n=n, norm=norm)
|
||||
tmp = back(tmp, n=n, norm=norm)
|
||||
assert_allclose(x_norm,
|
||||
np.linalg.norm(tmp), atol=1e-6)
|
||||
|
||||
@pytest.mark.parametrize("axes", [(0, 1), (0, 2), None])
|
||||
@pytest.mark.parametrize("dtype", (complex, float))
|
||||
@pytest.mark.parametrize("transpose", (True, False))
|
||||
def test_fftn_out_argument(self, dtype, transpose, axes):
|
||||
def zeros_like(x):
|
||||
if transpose:
|
||||
return np.zeros_like(x.T).T
|
||||
else:
|
||||
return np.zeros_like(x)
|
||||
|
||||
# tests below only test the out parameter
|
||||
if dtype is complex:
|
||||
x = random((10, 5, 6)) + 1j*random((10, 5, 6))
|
||||
fft, ifft = np.fft.fftn, np.fft.ifftn
|
||||
else:
|
||||
x = random((10, 5, 6))
|
||||
fft, ifft = np.fft.rfftn, np.fft.irfftn
|
||||
|
||||
expected = fft(x, axes=axes)
|
||||
out = zeros_like(expected)
|
||||
result = fft(x, out=out, axes=axes)
|
||||
assert result is out
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
expected2 = ifft(expected, axes=axes)
|
||||
out2 = out if dtype is complex else zeros_like(expected2)
|
||||
result2 = ifft(out, out=out2, axes=axes)
|
||||
assert result2 is out2
|
||||
assert_array_equal(result2, expected2)
|
||||
|
||||
@pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn])
|
||||
def test_fftn_out_and_s_interaction(self, fft):
|
||||
# With s, shape varies, so generally one cannot pass in out.
|
||||
if fft is np.fft.rfftn:
|
||||
x = random((10, 5, 6))
|
||||
else:
|
||||
x = random((10, 5, 6)) + 1j*random((10, 5, 6))
|
||||
with pytest.raises(ValueError, match="has wrong shape"):
|
||||
fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2))
|
||||
# Except on the first axis done (which is the last of axes).
|
||||
s = (10, 5, 5)
|
||||
expected = fft(x, s=s, axes=(0, 1, 2))
|
||||
out = np.zeros_like(expected)
|
||||
result = fft(x, s=s, axes=(0, 1, 2), out=out)
|
||||
assert result is out
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)])
|
||||
def test_irfftn_out_and_s_interaction(self, s):
|
||||
# Since for irfftn, the output is real and thus cannot be used for
|
||||
# intermediate steps, it should always work.
|
||||
x = random((9, 5, 6, 2)) + 1j*random((9, 5, 6, 2))
|
||||
expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2))
|
||||
out = np.zeros_like(expected)
|
||||
result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out)
|
||||
assert result is out
|
||||
assert_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype",
|
||||
[np.float32, np.float64, np.complex64, np.complex128])
|
||||
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
|
||||
@pytest.mark.parametrize(
|
||||
"fft",
|
||||
[np.fft.fft, np.fft.fft2, np.fft.fftn,
|
||||
np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
|
||||
def test_fft_with_order(dtype, order, fft):
|
||||
# Check that FFT/IFFT produces identical results for C, Fortran and
|
||||
# non contiguous arrays
|
||||
rng = np.random.RandomState(42)
|
||||
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
|
||||
# See discussion in pull/14178
|
||||
_tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
|
||||
if order == 'F':
|
||||
Y = np.asfortranarray(X)
|
||||
else:
|
||||
# Make a non contiguous array
|
||||
Y = X[::-1]
|
||||
X = np.ascontiguousarray(X[::-1])
|
||||
|
||||
if fft.__name__.endswith('fft'):
|
||||
for axis in range(3):
|
||||
X_res = fft(X, axis=axis)
|
||||
Y_res = fft(Y, axis=axis)
|
||||
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
|
||||
elif fft.__name__.endswith(('fft2', 'fftn')):
|
||||
axes = [(0, 1), (1, 2), (0, 2)]
|
||||
if fft.__name__.endswith('fftn'):
|
||||
axes.extend([(0,), (1,), (2,), None])
|
||||
for ax in axes:
|
||||
X_res = fft(X, axes=ax)
|
||||
Y_res = fft(Y, axes=ax)
|
||||
assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("order", ["F", "C"])
|
||||
@pytest.mark.parametrize("n", [None, 7, 12])
|
||||
def test_fft_output_order(order, n):
|
||||
rng = np.random.RandomState(42)
|
||||
x = rng.rand(10)
|
||||
x = np.asarray(x, dtype=np.complex64, order=order)
|
||||
res = np.fft.fft(x, n=n)
|
||||
assert res.flags.c_contiguous == x.flags.c_contiguous
|
||||
assert res.flags.f_contiguous == x.flags.f_contiguous
|
||||
|
||||
@pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
|
||||
class TestFFTThreadSafe:
|
||||
threads = 16
|
||||
input_shape = (800, 200)
|
||||
|
||||
def _test_mtsame(self, func, *args):
|
||||
def worker(args, q):
|
||||
q.put(func(*args))
|
||||
|
||||
q = queue.Queue()
|
||||
expected = func(*args)
|
||||
|
||||
# Spin off a bunch of threads to call the same function simultaneously
|
||||
t = [threading.Thread(target=worker, args=(args, q))
|
||||
for i in range(self.threads)]
|
||||
[x.start() for x in t]
|
||||
|
||||
[x.join() for x in t]
|
||||
# Make sure all threads returned the correct value
|
||||
for i in range(self.threads):
|
||||
assert_array_equal(q.get(timeout=5), expected,
|
||||
'Function returned wrong value in multithreaded context')
|
||||
|
||||
def test_fft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.fft, a)
|
||||
|
||||
def test_ifft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.ifft, a)
|
||||
|
||||
def test_rfft(self):
|
||||
a = np.ones(self.input_shape)
|
||||
self._test_mtsame(np.fft.rfft, a)
|
||||
|
||||
def test_irfft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.irfft, a)
|
||||
|
||||
|
||||
def test_irfft_with_n_1_regression():
|
||||
# Regression test for gh-25661
|
||||
x = np.arange(10)
|
||||
np.fft.irfft(x, n=1)
|
||||
np.fft.hfft(x, n=1)
|
||||
np.fft.irfft(np.array([0], complex), n=10)
|
||||
|
||||
|
||||
def test_irfft_with_n_large_regression():
|
||||
# Regression test for gh-25679
|
||||
x = np.arange(5) * (1 + 1j)
|
||||
result = np.fft.hfft(x, n=10)
|
||||
expected = np.array([20., 9.91628173, -11.8819096, 7.1048486,
|
||||
-6.62459848, 4., -3.37540152, -0.16057669,
|
||||
1.8819096, -20.86055364])
|
||||
assert_allclose(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("fft", [
|
||||
np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft
|
||||
])
|
||||
@pytest.mark.parametrize("data", [
|
||||
np.array([False, True, False]),
|
||||
np.arange(10, dtype=np.uint8),
|
||||
np.arange(5, dtype=np.int16),
|
||||
])
|
||||
def test_fft_with_integer_or_bool_input(data, fft):
|
||||
# Regression test for gh-25819
|
||||
result = fft(data)
|
||||
float_data = data.astype(np.result_type(data, 1.))
|
||||
expected = fft(float_data)
|
||||
assert_array_equal(result, expected)
|
Reference in New Issue
Block a user