Updated script that can be controled by Nodejs web app
This commit is contained in:
@@ -0,0 +1,119 @@
|
||||
import numpy as np
|
||||
import os
|
||||
from os import path
|
||||
import sys
|
||||
import pytest
|
||||
from ctypes import c_longlong, c_double, c_float, c_int, cast, pointer, POINTER
|
||||
from numpy.testing import assert_array_max_ulp
|
||||
from numpy.testing._private.utils import _glibc_older_than
|
||||
from numpy._core._multiarray_umath import __cpu_features__
|
||||
|
||||
UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values() if
|
||||
isinstance(obj, np.ufunc)]
|
||||
UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types]
|
||||
|
||||
# Remove functions that do not support `floats`
|
||||
UNARY_OBJECT_UFUNCS.remove(getattr(np, 'invert'))
|
||||
UNARY_OBJECT_UFUNCS.remove(getattr(np, 'bitwise_count'))
|
||||
|
||||
IS_AVX = __cpu_features__.get('AVX512F', False) or \
|
||||
(__cpu_features__.get('FMA3', False) and __cpu_features__.get('AVX2', False))
|
||||
|
||||
IS_AVX512FP16 = __cpu_features__.get('AVX512FP16', False)
|
||||
|
||||
# only run on linux with AVX, also avoid old glibc (numpy/numpy#20448).
|
||||
runtest = (sys.platform.startswith('linux')
|
||||
and IS_AVX and not _glibc_older_than("2.17"))
|
||||
platform_skip = pytest.mark.skipif(not runtest,
|
||||
reason="avoid testing inconsistent platform "
|
||||
"library implementations")
|
||||
|
||||
# convert string to hex function taken from:
|
||||
# https://stackoverflow.com/questions/1592158/convert-hex-to-float #
|
||||
def convert(s, datatype="np.float32"):
|
||||
i = int(s, 16) # convert from hex to a Python int
|
||||
if (datatype == "np.float64"):
|
||||
cp = pointer(c_longlong(i)) # make this into a c long long integer
|
||||
fp = cast(cp, POINTER(c_double)) # cast the int pointer to a double pointer
|
||||
else:
|
||||
cp = pointer(c_int(i)) # make this into a c integer
|
||||
fp = cast(cp, POINTER(c_float)) # cast the int pointer to a float pointer
|
||||
|
||||
return fp.contents.value # dereference the pointer, get the float
|
||||
|
||||
str_to_float = np.vectorize(convert)
|
||||
|
||||
class TestAccuracy:
|
||||
@platform_skip
|
||||
def test_validate_transcendentals(self):
|
||||
with np.errstate(all='ignore'):
|
||||
data_dir = path.join(path.dirname(__file__), 'data')
|
||||
files = os.listdir(data_dir)
|
||||
files = list(filter(lambda f: f.endswith('.csv'), files))
|
||||
for filename in files:
|
||||
filepath = path.join(data_dir, filename)
|
||||
with open(filepath) as fid:
|
||||
file_without_comments = (r for r in fid if not r[0] in ('$', '#'))
|
||||
data = np.genfromtxt(file_without_comments,
|
||||
dtype=('|S39','|S39','|S39',int),
|
||||
names=('type','input','output','ulperr'),
|
||||
delimiter=',',
|
||||
skip_header=1)
|
||||
npname = path.splitext(filename)[0].split('-')[3]
|
||||
npfunc = getattr(np, npname)
|
||||
for datatype in np.unique(data['type']):
|
||||
data_subset = data[data['type'] == datatype]
|
||||
inval = np.array(str_to_float(data_subset['input'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
|
||||
outval = np.array(str_to_float(data_subset['output'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
|
||||
perm = np.random.permutation(len(inval))
|
||||
inval = inval[perm]
|
||||
outval = outval[perm]
|
||||
maxulperr = data_subset['ulperr'].max()
|
||||
assert_array_max_ulp(npfunc(inval), outval, maxulperr)
|
||||
|
||||
@pytest.mark.skipif(IS_AVX512FP16,
|
||||
reason = "SVML FP16 have slightly higher ULP errors")
|
||||
@pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS)
|
||||
def test_validate_fp16_transcendentals(self, ufunc):
|
||||
with np.errstate(all='ignore'):
|
||||
arr = np.arange(65536, dtype=np.int16)
|
||||
datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16)
|
||||
datafp32 = datafp16.astype(np.float32)
|
||||
assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32),
|
||||
maxulp=1, dtype=np.float16)
|
||||
|
||||
@pytest.mark.skipif(not IS_AVX512FP16,
|
||||
reason="lower ULP only apply for SVML FP16")
|
||||
def test_validate_svml_fp16(self):
|
||||
max_ulp_err = {
|
||||
"arccos": 2.54,
|
||||
"arccosh": 2.09,
|
||||
"arcsin": 3.06,
|
||||
"arcsinh": 1.51,
|
||||
"arctan": 2.61,
|
||||
"arctanh": 1.88,
|
||||
"cbrt": 1.57,
|
||||
"cos": 1.43,
|
||||
"cosh": 1.33,
|
||||
"exp2": 1.33,
|
||||
"exp": 1.27,
|
||||
"expm1": 0.53,
|
||||
"log": 1.80,
|
||||
"log10": 1.27,
|
||||
"log1p": 1.88,
|
||||
"log2": 1.80,
|
||||
"sin": 1.88,
|
||||
"sinh": 2.05,
|
||||
"tan": 2.26,
|
||||
"tanh": 3.00,
|
||||
}
|
||||
|
||||
with np.errstate(all='ignore'):
|
||||
arr = np.arange(65536, dtype=np.int16)
|
||||
datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16)
|
||||
datafp32 = datafp16.astype(np.float32)
|
||||
for func in max_ulp_err:
|
||||
ufunc = getattr(np, func)
|
||||
ulp = np.ceil(max_ulp_err[func])
|
||||
assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32),
|
||||
maxulp=ulp, dtype=np.float16)
|
Reference in New Issue
Block a user