Updated script that can be controled by Nodejs web app

This commit is contained in:
mac OS
2024-11-25 12:24:18 +07:00
parent c440eda1f4
commit 8b0ab2bd3a
8662 changed files with 1803808 additions and 34 deletions

View File

@ -0,0 +1,180 @@
"""
Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
Please note that this module is private. All functions and objects
are available in the main ``numpy`` namespace - use that instead.
"""
import os
from numpy.version import version as __version__
# disables OpenBLAS affinity setting of the main thread that limits
# python threads or processes to one core
env_added = []
for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
if envkey not in os.environ:
os.environ[envkey] = '1'
env_added.append(envkey)
try:
from . import multiarray
except ImportError as exc:
import sys
msg = """
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
Importing the numpy C-extensions failed. This error can happen for
many reasons, often due to issues with your setup or how NumPy was
installed.
We have compiled some common reasons and troubleshooting tips at:
https://numpy.org/devdocs/user/troubleshooting-importerror.html
Please note and check the following:
* The Python version is: Python%d.%d from "%s"
* The NumPy version is: "%s"
and make sure that they are the versions you expect.
Please carefully study the documentation linked above for further help.
Original error was: %s
""" % (sys.version_info[0], sys.version_info[1], sys.executable,
__version__, exc)
raise ImportError(msg)
finally:
for envkey in env_added:
del os.environ[envkey]
del envkey
del env_added
del os
from . import umath
# Check that multiarray,umath are pure python modules wrapping
# _multiarray_umath and not either of the old c-extension modules
if not (hasattr(multiarray, '_multiarray_umath') and
hasattr(umath, '_multiarray_umath')):
import sys
path = sys.modules['numpy'].__path__
msg = ("Something is wrong with the numpy installation. "
"While importing we detected an older version of "
"numpy in {}. One method of fixing this is to repeatedly uninstall "
"numpy until none is found, then reinstall this version.")
raise ImportError(msg.format(path))
from . import numerictypes as nt
from .numerictypes import sctypes, sctypeDict
multiarray.set_typeDict(nt.sctypeDict)
from . import numeric
from .numeric import *
from . import fromnumeric
from .fromnumeric import *
from .records import record, recarray
# Note: module name memmap is overwritten by a class with same name
from .memmap import *
from . import function_base
from .function_base import *
from . import _machar
from . import getlimits
from .getlimits import *
from . import shape_base
from .shape_base import *
from . import einsumfunc
from .einsumfunc import *
del nt
from .numeric import absolute as abs
# do this after everything else, to minimize the chance of this misleadingly
# appearing in an import-time traceback
from . import _add_newdocs
from . import _add_newdocs_scalars
# add these for module-freeze analysis (like PyInstaller)
from . import _dtype_ctypes
from . import _internal
from . import _dtype
from . import _methods
acos = numeric.arccos
acosh = numeric.arccosh
asin = numeric.arcsin
asinh = numeric.arcsinh
atan = numeric.arctan
atanh = numeric.arctanh
atan2 = numeric.arctan2
concat = numeric.concatenate
bitwise_left_shift = numeric.left_shift
bitwise_invert = numeric.invert
bitwise_right_shift = numeric.right_shift
permute_dims = numeric.transpose
pow = numeric.power
__all__ = [
"abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2",
"bitwise_invert", "bitwise_left_shift", "bitwise_right_shift", "concat",
"pow", "permute_dims", "memmap", "sctypeDict", "record", "recarray"
]
__all__ += numeric.__all__
__all__ += function_base.__all__
__all__ += getlimits.__all__
__all__ += shape_base.__all__
__all__ += einsumfunc.__all__
def _ufunc_reduce(func):
# Report the `__name__`. pickle will try to find the module. Note that
# pickle supports for this `__name__` to be a `__qualname__`. It may
# make sense to add a `__qualname__` to ufuncs, to allow this more
# explicitly (Numba has ufuncs as attributes).
# See also: https://github.com/dask/distributed/issues/3450
return func.__name__
def _DType_reconstruct(scalar_type):
# This is a work-around to pickle type(np.dtype(np.float64)), etc.
# and it should eventually be replaced with a better solution, e.g. when
# DTypes become HeapTypes.
return type(dtype(scalar_type))
def _DType_reduce(DType):
# As types/classes, most DTypes can simply be pickled by their name:
if not DType._legacy or DType.__module__ == "numpy.dtypes":
return DType.__name__
# However, user defined legacy dtypes (like rational) do not end up in
# `numpy.dtypes` as module and do not have a public class at all.
# For these, we pickle them by reconstructing them from the scalar type:
scalar_type = DType.type
return _DType_reconstruct, (scalar_type,)
def __getattr__(name):
# Deprecated 2022-11-22, NumPy 1.25.
if name == "MachAr":
import warnings
warnings.warn(
"The `np._core.MachAr` is considered private API (NumPy 1.24)",
DeprecationWarning, stacklevel=2,
)
return _machar.MachAr
raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
import copyreg
copyreg.pickle(ufunc, _ufunc_reduce)
copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
# Unclutter namespace (must keep _*_reconstruct for unpickling)
del copyreg, _ufunc_reduce, _DType_reduce
from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester

View File

@ -0,0 +1,2 @@
# NOTE: The `np._core` namespace is deliberately kept empty due to it
# being private

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,389 @@
"""
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
platform-dependent information.
"""
import sys
import os
from numpy._core import dtype
from numpy._core import numerictypes as _numerictypes
from numpy._core.function_base import add_newdoc
##############################################################################
#
# Documentation for concrete scalar classes
#
##############################################################################
def numeric_type_aliases(aliases):
def type_aliases_gen():
for alias, doc in aliases:
try:
alias_type = getattr(_numerictypes, alias)
except AttributeError:
# The set of aliases that actually exist varies between platforms
pass
else:
yield (alias_type, alias, doc)
return list(type_aliases_gen())
possible_aliases = numeric_type_aliases([
('int8', '8-bit signed integer (``-128`` to ``127``)'),
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
('float96', '96-bit extended-precision floating-point number type'),
('float128', '128-bit extended-precision floating-point number type'),
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
])
def _get_platform_and_machine():
try:
system, _, _, _, machine = os.uname()
except AttributeError:
system = sys.platform
if system == 'win32':
machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
or os.environ.get('PROCESSOR_ARCHITECTURE', '')
else:
machine = 'unknown'
return system, machine
_system, _machine = _get_platform_and_machine()
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
# note: `:field: value` is rST syntax which renders as field lists.
o = getattr(_numerictypes, obj)
character_code = dtype(o).char
canonical_name_doc = "" if obj == o.__name__ else \
f":Canonical name: `numpy.{obj}`\n "
if fixed_aliases:
alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
for alias in fixed_aliases)
else:
alias_doc = ''
alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
docstring = f"""
{doc.strip()}
:Character code: ``'{character_code}'``
{canonical_name_doc}{alias_doc}
"""
add_newdoc('numpy._core.numerictypes', obj, docstring)
_bool_docstring = (
"""
Boolean type (True or False), stored as a byte.
.. warning::
The :class:`bool` type is not a subclass of the :class:`int_` type
(the :class:`bool` is not even a number type). This is different
than Python's default implementation of :class:`bool` as a
sub-class of :class:`int`.
"""
)
add_newdoc_for_scalar_type('bool', [], _bool_docstring)
add_newdoc_for_scalar_type('bool_', [], _bool_docstring)
add_newdoc_for_scalar_type('byte', [],
"""
Signed integer type, compatible with C ``char``.
""")
add_newdoc_for_scalar_type('short', [],
"""
Signed integer type, compatible with C ``short``.
""")
add_newdoc_for_scalar_type('intc', [],
"""
Signed integer type, compatible with C ``int``.
""")
# TODO: These docs probably need an if to highlight the default rather than
# the C-types (and be correct).
add_newdoc_for_scalar_type('int_', [],
"""
Default signed integer type, 64bit on 64bit systems and 32bit on 32bit
systems.
""")
add_newdoc_for_scalar_type('longlong', [],
"""
Signed integer type, compatible with C ``long long``.
""")
add_newdoc_for_scalar_type('ubyte', [],
"""
Unsigned integer type, compatible with C ``unsigned char``.
""")
add_newdoc_for_scalar_type('ushort', [],
"""
Unsigned integer type, compatible with C ``unsigned short``.
""")
add_newdoc_for_scalar_type('uintc', [],
"""
Unsigned integer type, compatible with C ``unsigned int``.
""")
add_newdoc_for_scalar_type('uint', [],
"""
Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit
systems.
""")
add_newdoc_for_scalar_type('ulonglong', [],
"""
Signed integer type, compatible with C ``unsigned long long``.
""")
add_newdoc_for_scalar_type('half', [],
"""
Half-precision floating-point number type.
""")
add_newdoc_for_scalar_type('single', [],
"""
Single-precision floating-point number type, compatible with C ``float``.
""")
add_newdoc_for_scalar_type('double', [],
"""
Double-precision floating-point number type, compatible with Python
:class:`float` and C ``double``.
""")
add_newdoc_for_scalar_type('longdouble', [],
"""
Extended-precision floating-point number type, compatible with C
``long double`` but not necessarily with IEEE 754 quadruple-precision.
""")
add_newdoc_for_scalar_type('csingle', [],
"""
Complex number type composed of two single-precision floating-point
numbers.
""")
add_newdoc_for_scalar_type('cdouble', [],
"""
Complex number type composed of two double-precision floating-point
numbers, compatible with Python :class:`complex`.
""")
add_newdoc_for_scalar_type('clongdouble', [],
"""
Complex number type composed of two extended-precision floating-point
numbers.
""")
add_newdoc_for_scalar_type('object_', [],
"""
Any Python object.
""")
add_newdoc_for_scalar_type('str_', [],
r"""
A unicode string.
This type strips trailing null codepoints.
>>> s = np.str_("abc\x00")
>>> s
'abc'
Unlike the builtin :class:`str`, this supports the
:ref:`python:bufferobjects`, exposing its contents as UCS4:
>>> m = memoryview(np.str_("abc"))
>>> m.format
'3w'
>>> m.tobytes()
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
""")
add_newdoc_for_scalar_type('bytes_', [],
r"""
A byte string.
When used in arrays, this type strips trailing null bytes.
""")
add_newdoc_for_scalar_type('void', [],
r"""
np.void(length_or_data, /, dtype=None)
Create a new structured or unstructured void scalar.
Parameters
----------
length_or_data : int, array-like, bytes-like, object
One of multiple meanings (see notes). The length or
bytes data of an unstructured void. Or alternatively,
the data to be stored in the new scalar when `dtype`
is provided.
This can be an array-like, in which case an array may
be returned.
dtype : dtype, optional
If provided the dtype of the new scalar. This dtype must
be "void" dtype (i.e. a structured or unstructured void,
see also :ref:`defining-structured-types`).
.. versionadded:: 1.24
Notes
-----
For historical reasons and because void scalars can represent both
arbitrary byte data and structured dtypes, the void constructor
has three calling conventions:
1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
``\0`` bytes. The 5 can be a Python or NumPy integer.
2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
The dtype itemsize will match the byte string length, here ``"V10"``.
3. When a ``dtype=`` is passed the call is roughly the same as an
array creation. However, a void scalar rather than array is returned.
Please see the examples which show all three different conventions.
Examples
--------
>>> np.void(5)
np.void(b'\x00\x00\x00\x00\x00')
>>> np.void(b'abcd')
np.void(b'\x61\x62\x63\x64')
>>> np.void((3.2, b'eggs'), dtype="d,S5")
np.void((3.2, b'eggs'), dtype=[('f0', '<f8'), ('f1', 'S5')])
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
np.void((3, 3), dtype=[('x', 'i1'), ('y', 'i1')])
""")
add_newdoc_for_scalar_type('datetime64', [],
"""
If created from a 64-bit integer, it represents an offset from
``1970-01-01T00:00:00``.
If created from string, the string can be in ISO 8601 date
or datetime format.
When parsing a string to create a datetime object, if the string contains
a trailing timezone (A 'Z' or a timezone offset), the timezone will be
dropped and a User Warning is given.
Datetime64 objects should be considered to be UTC and therefore have an
offset of +0000.
>>> np.datetime64(10, 'Y')
np.datetime64('1980')
>>> np.datetime64('1980', 'Y')
np.datetime64('1980')
>>> np.datetime64(10, 'D')
np.datetime64('1970-01-11')
See :ref:`arrays.datetime` for more information.
""")
add_newdoc_for_scalar_type('timedelta64', [],
"""
A timedelta stored as a 64-bit integer.
See :ref:`arrays.datetime` for more information.
""")
add_newdoc('numpy._core.numerictypes', "integer", ('is_integer',
"""
integer.is_integer() -> bool
Return ``True`` if the number is finite with integral value.
.. versionadded:: 1.22
Examples
--------
>>> import numpy as np
>>> np.int64(-2).is_integer()
True
>>> np.uint32(5).is_integer()
True
"""))
# TODO: work out how to put this on the base class, np.floating
for float_name in ('half', 'single', 'double', 'longdouble'):
add_newdoc('numpy._core.numerictypes', float_name, ('as_integer_ratio',
"""
{ftype}.as_integer_ratio() -> (int, int)
Return a pair of integers, whose ratio is exactly equal to the original
floating point number, and with a positive denominator.
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
>>> np.{ftype}(10.0).as_integer_ratio()
(10, 1)
>>> np.{ftype}(0.0).as_integer_ratio()
(0, 1)
>>> np.{ftype}(-.25).as_integer_ratio()
(-1, 4)
""".format(ftype=float_name)))
add_newdoc('numpy._core.numerictypes', float_name, ('is_integer',
f"""
{float_name}.is_integer() -> bool
Return ``True`` if the floating point number is finite with integral
value, and ``False`` otherwise.
.. versionadded:: 1.22
Examples
--------
>>> np.{float_name}(-2.0).is_integer()
True
>>> np.{float_name}(3.2).is_integer()
False
"""))
for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
# Add negative examples for signed cases by checking typecode
add_newdoc('numpy._core.numerictypes', int_name, ('bit_count',
f"""
{int_name}.bit_count() -> int
Computes the number of 1-bits in the absolute value of the input.
Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
Examples
--------
>>> np.{int_name}(127).bit_count()
7""" +
(f"""
>>> np.{int_name}(-127).bit_count()
7
""" if dtype(int_name).char.islower() else "")))

View File

@ -0,0 +1,135 @@
"""
Functions in the ``as*array`` family that promote array-likes into arrays.
`require` fits this category despite its name not matching this pattern.
"""
from .overrides import (
array_function_dispatch,
set_array_function_like_doc,
set_module,
)
from .multiarray import array, asanyarray
__all__ = ["require"]
POSSIBLE_FLAGS = {
'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
'A': 'A', 'ALIGNED': 'A',
'W': 'W', 'WRITEABLE': 'W',
'O': 'O', 'OWNDATA': 'O',
'E': 'E', 'ENSUREARRAY': 'E'
}
@set_array_function_like_doc
@set_module('numpy')
def require(a, dtype=None, requirements=None, *, like=None):
"""
Return an ndarray of the provided type that satisfies requirements.
This function is useful to be sure that an array with the correct flags
is returned for passing to compiled code (perhaps through ctypes).
Parameters
----------
a : array_like
The object to be converted to a type-and-requirement-satisfying array.
dtype : data-type
The required data-type. If None preserve the current dtype. If your
application requires the data to be in native byteorder, include
a byteorder specification as a part of the dtype specification.
requirements : str or sequence of str
The requirements list can be any of the following
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
* 'ALIGNED' ('A') - ensure a data-type aligned array
* 'WRITEABLE' ('W') - ensure a writable array
* 'OWNDATA' ('O') - ensure an array that owns its own data
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
${ARRAY_FUNCTION_LIKE}
.. versionadded:: 1.20.0
Returns
-------
out : ndarray
Array with specified requirements and type if given.
See Also
--------
asarray : Convert input to an ndarray.
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
ascontiguousarray : Convert input to a contiguous array.
asfortranarray : Convert input to an ndarray with column-major
memory order.
ndarray.flags : Information about the memory layout of the array.
Notes
-----
The returned array will be guaranteed to have the listed requirements
by making a copy if needed.
Examples
--------
>>> import numpy as np
>>> x = np.arange(6).reshape(2,3)
>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
"""
if like is not None:
return _require_with_like(
like,
a,
dtype=dtype,
requirements=requirements,
)
if not requirements:
return asanyarray(a, dtype=dtype)
requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
if 'E' in requirements:
requirements.remove('E')
subok = False
else:
subok = True
order = 'A'
if requirements >= {'C', 'F'}:
raise ValueError('Cannot specify both "C" and "F" order')
elif 'F' in requirements:
order = 'F'
requirements.remove('F')
elif 'C' in requirements:
order = 'C'
requirements.remove('C')
arr = array(a, dtype=dtype, order=order, copy=None, subok=subok)
for prop in requirements:
if not arr.flags[prop]:
return arr.copy(order)
return arr
_require_with_like = array_function_dispatch()(require)

View File

@ -0,0 +1,41 @@
from collections.abc import Iterable
from typing import Any, TypeVar, overload, Literal
from numpy._typing import NDArray, DTypeLike, _SupportsArrayFunc
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
_Requirements = Literal[
"C", "C_CONTIGUOUS", "CONTIGUOUS",
"F", "F_CONTIGUOUS", "FORTRAN",
"A", "ALIGNED",
"W", "WRITEABLE",
"O", "OWNDATA"
]
_E = Literal["E", "ENSUREARRAY"]
_RequirementsWithE = _Requirements | _E
@overload
def require(
a: _ArrayType,
dtype: None = ...,
requirements: None | _Requirements | Iterable[_Requirements] = ...,
*,
like: _SupportsArrayFunc = ...
) -> _ArrayType: ...
@overload
def require(
a: object,
dtype: DTypeLike = ...,
requirements: _E | Iterable[_RequirementsWithE] = ...,
*,
like: _SupportsArrayFunc = ...
) -> NDArray[Any]: ...
@overload
def require(
a: object,
dtype: DTypeLike = ...,
requirements: None | _Requirements | Iterable[_Requirements] = ...,
*,
like: _SupportsArrayFunc = ...
) -> NDArray[Any]: ...

View File

@ -0,0 +1,374 @@
"""
A place for code to be called from the implementation of np.dtype
String handling is much easier to do correctly in python.
"""
import numpy as np
_kind_to_stem = {
'u': 'uint',
'i': 'int',
'c': 'complex',
'f': 'float',
'b': 'bool',
'V': 'void',
'O': 'object',
'M': 'datetime',
'm': 'timedelta',
'S': 'bytes',
'U': 'str',
}
def _kind_name(dtype):
try:
return _kind_to_stem[dtype.kind]
except KeyError as e:
raise RuntimeError(
"internal dtype error, unknown kind {!r}"
.format(dtype.kind)
) from None
def __str__(dtype):
if dtype.fields is not None:
return _struct_str(dtype, include_align=True)
elif dtype.subdtype:
return _subarray_str(dtype)
elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
return dtype.str
else:
return dtype.name
def __repr__(dtype):
arg_str = _construction_repr(dtype, include_align=False)
if dtype.isalignedstruct:
arg_str = arg_str + ", align=True"
return "dtype({})".format(arg_str)
def _unpack_field(dtype, offset, title=None):
"""
Helper function to normalize the items in dtype.fields.
Call as:
dtype, offset, title = _unpack_field(*dtype.fields[name])
"""
return dtype, offset, title
def _isunsized(dtype):
# PyDataType_ISUNSIZED
return dtype.itemsize == 0
def _construction_repr(dtype, include_align=False, short=False):
"""
Creates a string repr of the dtype, excluding the 'dtype()' part
surrounding the object. This object may be a string, a list, or
a dict depending on the nature of the dtype. This
is the object passed as the first parameter to the dtype
constructor, and if no additional constructor parameters are
given, will reproduce the exact memory layout.
Parameters
----------
short : bool
If true, this creates a shorter repr using 'kind' and 'itemsize',
instead of the longer type name.
include_align : bool
If true, this includes the 'align=True' parameter
inside the struct dtype construction dict when needed. Use this flag
if you want a proper repr string without the 'dtype()' part around it.
If false, this does not preserve the
'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
struct arrays like the regular repr does, because the 'align'
flag is not part of first dtype constructor parameter. This
mode is intended for a full 'repr', where the 'align=True' is
provided as the second parameter.
"""
if dtype.fields is not None:
return _struct_str(dtype, include_align=include_align)
elif dtype.subdtype:
return _subarray_str(dtype)
else:
return _scalar_str(dtype, short=short)
def _scalar_str(dtype, short):
byteorder = _byte_order_str(dtype)
if dtype.type == np.bool:
if short:
return "'?'"
else:
return "'bool'"
elif dtype.type == np.object_:
# The object reference may be different sizes on different
# platforms, so it should never include the itemsize here.
return "'O'"
elif dtype.type == np.bytes_:
if _isunsized(dtype):
return "'S'"
else:
return "'S%d'" % dtype.itemsize
elif dtype.type == np.str_:
if _isunsized(dtype):
return "'%sU'" % byteorder
else:
return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
elif dtype.type == str:
return "'T'"
elif not type(dtype)._legacy:
return f"'{byteorder}{type(dtype).__name__}{dtype.itemsize * 8}'"
# unlike the other types, subclasses of void are preserved - but
# historically the repr does not actually reveal the subclass
elif issubclass(dtype.type, np.void):
if _isunsized(dtype):
return "'V'"
else:
return "'V%d'" % dtype.itemsize
elif dtype.type == np.datetime64:
return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
elif dtype.type == np.timedelta64:
return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
elif np.issubdtype(dtype, np.number):
# Short repr with endianness, like '<f8'
if short or dtype.byteorder not in ('=', '|'):
return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
# Longer repr, like 'float64'
else:
return "'%s%d'" % (_kind_name(dtype), 8*dtype.itemsize)
elif dtype.isbuiltin == 2:
return dtype.type.__name__
else:
raise RuntimeError(
"Internal error: NumPy dtype unrecognized type number")
def _byte_order_str(dtype):
""" Normalize byteorder to '<' or '>' """
# hack to obtain the native and swapped byte order characters
swapped = np.dtype(int).newbyteorder('S')
native = swapped.newbyteorder('S')
byteorder = dtype.byteorder
if byteorder == '=':
return native.byteorder
if byteorder == 'S':
# TODO: this path can never be reached
return swapped.byteorder
elif byteorder == '|':
return ''
else:
return byteorder
def _datetime_metadata_str(dtype):
# TODO: this duplicates the C metastr_to_unicode functionality
unit, count = np.datetime_data(dtype)
if unit == 'generic':
return ''
elif count == 1:
return '[{}]'.format(unit)
else:
return '[{}{}]'.format(count, unit)
def _struct_dict_str(dtype, includealignedflag):
# unpack the fields dictionary into ls
names = dtype.names
fld_dtypes = []
offsets = []
titles = []
for name in names:
fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
fld_dtypes.append(fld_dtype)
offsets.append(offset)
titles.append(title)
# Build up a string to make the dictionary
if np._core.arrayprint._get_legacy_print_mode() <= 121:
colon = ":"
fieldsep = ","
else:
colon = ": "
fieldsep = ", "
# First, the names
ret = "{'names'%s[" % colon
ret += fieldsep.join(repr(name) for name in names)
# Second, the formats
ret += "], 'formats'%s[" % colon
ret += fieldsep.join(
_construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
# Third, the offsets
ret += "], 'offsets'%s[" % colon
ret += fieldsep.join("%d" % offset for offset in offsets)
# Fourth, the titles
if any(title is not None for title in titles):
ret += "], 'titles'%s[" % colon
ret += fieldsep.join(repr(title) for title in titles)
# Fifth, the itemsize
ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
if (includealignedflag and dtype.isalignedstruct):
# Finally, the aligned flag
ret += ", 'aligned'%sTrue}" % colon
else:
ret += "}"
return ret
def _aligned_offset(offset, alignment):
# round up offset:
return - (-offset // alignment) * alignment
def _is_packed(dtype):
"""
Checks whether the structured data type in 'dtype'
has a simple layout, where all the fields are in order,
and follow each other with no alignment padding.
When this returns true, the dtype can be reconstructed
from a list of the field names and dtypes with no additional
dtype parameters.
Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
"""
align = dtype.isalignedstruct
max_alignment = 1
total_offset = 0
for name in dtype.names:
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
if align:
total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
max_alignment = max(max_alignment, fld_dtype.alignment)
if fld_offset != total_offset:
return False
total_offset += fld_dtype.itemsize
if align:
total_offset = _aligned_offset(total_offset, max_alignment)
return total_offset == dtype.itemsize
def _struct_list_str(dtype):
items = []
for name in dtype.names:
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
item = "("
if title is not None:
item += "({!r}, {!r}), ".format(title, name)
else:
item += "{!r}, ".format(name)
# Special case subarray handling here
if fld_dtype.subdtype is not None:
base, shape = fld_dtype.subdtype
item += "{}, {}".format(
_construction_repr(base, short=True),
shape
)
else:
item += _construction_repr(fld_dtype, short=True)
item += ")"
items.append(item)
return "[" + ", ".join(items) + "]"
def _struct_str(dtype, include_align):
# The list str representation can't include the 'align=' flag,
# so if it is requested and the struct has the aligned flag set,
# we must use the dict str instead.
if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
sub = _struct_list_str(dtype)
else:
sub = _struct_dict_str(dtype, include_align)
# If the data type isn't the default, void, show it
if dtype.type != np.void:
return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
else:
return sub
def _subarray_str(dtype):
base, shape = dtype.subdtype
return "({}, {})".format(
_construction_repr(base, short=True),
shape
)
def _name_includes_bit_suffix(dtype):
if dtype.type == np.object_:
# pointer size varies by system, best to omit it
return False
elif dtype.type == np.bool:
# implied
return False
elif dtype.type is None:
return True
elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
# unspecified
return False
else:
return True
def _name_get(dtype):
# provides dtype.name.__get__, documented as returning a "bit name"
if dtype.isbuiltin == 2:
# user dtypes don't promise to do anything special
return dtype.type.__name__
if not type(dtype)._legacy:
name = type(dtype).__name__
elif issubclass(dtype.type, np.void):
# historically, void subclasses preserve their name, eg `record64`
name = dtype.type.__name__
else:
name = _kind_name(dtype)
# append bit counts
if _name_includes_bit_suffix(dtype):
name += "{}".format(dtype.itemsize * 8)
# append metadata to datetimes
if dtype.type in (np.datetime64, np.timedelta64):
name += _datetime_metadata_str(dtype)
return name

View File

@ -0,0 +1,120 @@
"""
Conversion from ctypes to dtype.
In an ideal world, we could achieve this through the PEP3118 buffer protocol,
something like::
def dtype_from_ctypes_type(t):
# needed to ensure that the shape of `t` is within memoryview.format
class DummyStruct(ctypes.Structure):
_fields_ = [('a', t)]
# empty to avoid memory allocation
ctype_0 = (DummyStruct * 0)()
mv = memoryview(ctype_0)
# convert the struct, and slice back out the field
return _dtype_from_pep3118(mv.format)['a']
Unfortunately, this fails because:
* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
* PEP3118 cannot represent unions, but both numpy and ctypes can
* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
"""
# We delay-import ctypes for distributions that do not include it.
# While this module is not used unless the user passes in ctypes
# members, it is eagerly imported from numpy/_core/__init__.py.
import numpy as np
def _from_ctypes_array(t):
return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
def _from_ctypes_structure(t):
for item in t._fields_:
if len(item) > 2:
raise TypeError(
"ctypes bitfields have no dtype equivalent")
if hasattr(t, "_pack_"):
import ctypes
formats = []
offsets = []
names = []
current_offset = 0
for fname, ftyp in t._fields_:
names.append(fname)
formats.append(dtype_from_ctypes_type(ftyp))
# Each type has a default offset, this is platform dependent
# for some types.
effective_pack = min(t._pack_, ctypes.alignment(ftyp))
current_offset = (
(current_offset + effective_pack - 1) // effective_pack
) * effective_pack
offsets.append(current_offset)
current_offset += ctypes.sizeof(ftyp)
return np.dtype(dict(
formats=formats,
offsets=offsets,
names=names,
itemsize=ctypes.sizeof(t)))
else:
fields = []
for fname, ftyp in t._fields_:
fields.append((fname, dtype_from_ctypes_type(ftyp)))
# by default, ctypes structs are aligned
return np.dtype(fields, align=True)
def _from_ctypes_scalar(t):
"""
Return the dtype type with endianness included if it's the case
"""
if getattr(t, '__ctype_be__', None) is t:
return np.dtype('>' + t._type_)
elif getattr(t, '__ctype_le__', None) is t:
return np.dtype('<' + t._type_)
else:
return np.dtype(t._type_)
def _from_ctypes_union(t):
import ctypes
formats = []
offsets = []
names = []
for fname, ftyp in t._fields_:
names.append(fname)
formats.append(dtype_from_ctypes_type(ftyp))
offsets.append(0) # Union fields are offset to 0
return np.dtype(dict(
formats=formats,
offsets=offsets,
names=names,
itemsize=ctypes.sizeof(t)))
def dtype_from_ctypes_type(t):
"""
Construct a dtype object from a ctypes type
"""
import _ctypes
if issubclass(t, _ctypes.Array):
return _from_ctypes_array(t)
elif issubclass(t, _ctypes._Pointer):
raise TypeError("ctypes pointers have no dtype equivalent")
elif issubclass(t, _ctypes.Structure):
return _from_ctypes_structure(t)
elif issubclass(t, _ctypes.Union):
return _from_ctypes_union(t)
elif isinstance(getattr(t, '_type_', None), str):
return _from_ctypes_scalar(t)
else:
raise NotImplementedError(
"Unknown ctypes type {}".format(t.__name__))

View File

@ -0,0 +1,172 @@
"""
Various richly-typed exceptions, that also help us deal with string formatting
in python where it's easier.
By putting the formatting in `__str__`, we also avoid paying the cost for
users who silence the exceptions.
"""
from .._utils import set_module
def _unpack_tuple(tup):
if len(tup) == 1:
return tup[0]
else:
return tup
def _display_as_base(cls):
"""
A decorator that makes an exception class look like its base.
We use this to hide subclasses that are implementation details - the user
should catch the base type, which is what the traceback will show them.
Classes decorated with this decorator are subject to removal without a
deprecation warning.
"""
assert issubclass(cls, Exception)
cls.__name__ = cls.__base__.__name__
return cls
class UFuncTypeError(TypeError):
""" Base class for all ufunc exceptions """
def __init__(self, ufunc):
self.ufunc = ufunc
@_display_as_base
class _UFuncNoLoopError(UFuncTypeError):
""" Thrown when a ufunc loop cannot be found """
def __init__(self, ufunc, dtypes):
super().__init__(ufunc)
self.dtypes = tuple(dtypes)
def __str__(self):
return (
"ufunc {!r} did not contain a loop with signature matching types "
"{!r} -> {!r}"
).format(
self.ufunc.__name__,
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
_unpack_tuple(self.dtypes[self.ufunc.nin:])
)
@_display_as_base
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
""" Thrown when a binary resolution fails """
def __init__(self, ufunc, dtypes):
super().__init__(ufunc, dtypes)
assert len(self.dtypes) == 2
def __str__(self):
return (
"ufunc {!r} cannot use operands with types {!r} and {!r}"
).format(
self.ufunc.__name__, *self.dtypes
)
@_display_as_base
class _UFuncCastingError(UFuncTypeError):
def __init__(self, ufunc, casting, from_, to):
super().__init__(ufunc)
self.casting = casting
self.from_ = from_
self.to = to
@_display_as_base
class _UFuncInputCastingError(_UFuncCastingError):
""" Thrown when a ufunc input cannot be casted """
def __init__(self, ufunc, casting, from_, to, i):
super().__init__(ufunc, casting, from_, to)
self.in_i = i
def __str__(self):
# only show the number if more than one input exists
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
return (
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
"rule {!r}"
).format(
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
)
@_display_as_base
class _UFuncOutputCastingError(_UFuncCastingError):
""" Thrown when a ufunc output cannot be casted """
def __init__(self, ufunc, casting, from_, to, i):
super().__init__(ufunc, casting, from_, to)
self.out_i = i
def __str__(self):
# only show the number if more than one output exists
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
return (
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
"rule {!r}"
).format(
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
)
@_display_as_base
class _ArrayMemoryError(MemoryError):
""" Thrown when an array cannot be allocated"""
def __init__(self, shape, dtype):
self.shape = shape
self.dtype = dtype
@property
def _total_size(self):
num_bytes = self.dtype.itemsize
for dim in self.shape:
num_bytes *= dim
return num_bytes
@staticmethod
def _size_to_string(num_bytes):
""" Convert a number of bytes into a binary size string """
# https://en.wikipedia.org/wiki/Binary_prefix
LOG2_STEP = 10
STEP = 1024
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
unit_val = 1 << (unit_i * LOG2_STEP)
n_units = num_bytes / unit_val
del unit_val
# ensure we pick a unit that is correct after rounding
if round(n_units) == STEP:
unit_i += 1
n_units /= STEP
# deal with sizes so large that we don't have units for them
if unit_i >= len(units):
new_unit_i = len(units) - 1
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
unit_i = new_unit_i
unit_name = units[unit_i]
# format with a sensible number of digits
if unit_i == 0:
# no decimal point on bytes
return '{:.0f} {}'.format(n_units, unit_name)
elif round(n_units) < 1000:
# 3 significant figures, if none are dropped to the left of the .
return '{:#.3g} {}'.format(n_units, unit_name)
else:
# just give all the digits otherwise
return '{:#.0f} {}'.format(n_units, unit_name)
def __str__(self):
size_str = self._size_to_string(self._total_size)
return (
"Unable to allocate {} for an array with shape {} and data type {}"
.format(size_str, self.shape, self.dtype)
)

View File

@ -0,0 +1,963 @@
"""
A place for internal code
Some things are more easily handled Python.
"""
import ast
import math
import re
import sys
import warnings
from ..exceptions import DTypePromotionError
from .multiarray import dtype, array, ndarray, promote_types, StringDType
from numpy import _NoValue
try:
import ctypes
except ImportError:
ctypes = None
IS_PYPY = sys.implementation.name == 'pypy'
if sys.byteorder == 'little':
_nbo = '<'
else:
_nbo = '>'
def _makenames_list(adict, align):
allfields = []
for fname, obj in adict.items():
n = len(obj)
if not isinstance(obj, tuple) or n not in (2, 3):
raise ValueError("entry not a 2- or 3- tuple")
if n > 2 and obj[2] == fname:
continue
num = int(obj[1])
if num < 0:
raise ValueError("invalid offset.")
format = dtype(obj[0], align=align)
if n > 2:
title = obj[2]
else:
title = None
allfields.append((fname, format, num, title))
# sort by offsets
allfields.sort(key=lambda x: x[2])
names = [x[0] for x in allfields]
formats = [x[1] for x in allfields]
offsets = [x[2] for x in allfields]
titles = [x[3] for x in allfields]
return names, formats, offsets, titles
# Called in PyArray_DescrConverter function when
# a dictionary without "names" and "formats"
# fields is used as a data-type descriptor.
def _usefields(adict, align):
try:
names = adict[-1]
except KeyError:
names = None
if names is None:
names, formats, offsets, titles = _makenames_list(adict, align)
else:
formats = []
offsets = []
titles = []
for name in names:
res = adict[name]
formats.append(res[0])
offsets.append(res[1])
if len(res) > 2:
titles.append(res[2])
else:
titles.append(None)
return dtype({"names": names,
"formats": formats,
"offsets": offsets,
"titles": titles}, align)
# construct an array_protocol descriptor list
# from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
# a descriptor that has no fields and then return
# a simple typestring
def _array_descr(descriptor):
fields = descriptor.fields
if fields is None:
subdtype = descriptor.subdtype
if subdtype is None:
if descriptor.metadata is None:
return descriptor.str
else:
new = descriptor.metadata.copy()
if new:
return (descriptor.str, new)
else:
return descriptor.str
else:
return (_array_descr(subdtype[0]), subdtype[1])
names = descriptor.names
ordered_fields = [fields[x] + (x,) for x in names]
result = []
offset = 0
for field in ordered_fields:
if field[1] > offset:
num = field[1] - offset
result.append(('', f'|V{num}'))
offset += num
elif field[1] < offset:
raise ValueError(
"dtype.descr is not defined for types with overlapping or "
"out-of-order fields")
if len(field) > 3:
name = (field[2], field[3])
else:
name = field[2]
if field[0].subdtype:
tup = (name, _array_descr(field[0].subdtype[0]),
field[0].subdtype[1])
else:
tup = (name, _array_descr(field[0]))
offset += field[0].itemsize
result.append(tup)
if descriptor.itemsize > offset:
num = descriptor.itemsize - offset
result.append(('', f'|V{num}'))
return result
# format_re was originally from numarray by J. Todd Miller
format_re = re.compile(r'(?P<order1>[<>|=]?)'
r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
r'(?P<order2>[<>|=]?)'
r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
sep_re = re.compile(r'\s*,\s*')
space_re = re.compile(r'\s+$')
# astr is a string (perhaps comma separated)
_convorder = {'=': _nbo}
def _commastring(astr):
startindex = 0
result = []
islist = False
while startindex < len(astr):
mo = format_re.match(astr, pos=startindex)
try:
(order1, repeats, order2, dtype) = mo.groups()
except (TypeError, AttributeError):
raise ValueError(
f'format number {len(result)+1} of "{astr}" is not recognized'
) from None
startindex = mo.end()
# Separator or ending padding
if startindex < len(astr):
if space_re.match(astr, pos=startindex):
startindex = len(astr)
else:
mo = sep_re.match(astr, pos=startindex)
if not mo:
raise ValueError(
'format number %d of "%s" is not recognized' %
(len(result)+1, astr))
startindex = mo.end()
islist = True
if order2 == '':
order = order1
elif order1 == '':
order = order2
else:
order1 = _convorder.get(order1, order1)
order2 = _convorder.get(order2, order2)
if (order1 != order2):
raise ValueError(
'inconsistent byte-order specification %s and %s' %
(order1, order2))
order = order1
if order in ('|', '=', _nbo):
order = ''
dtype = order + dtype
if repeats == '':
newitem = dtype
else:
if (repeats[0] == "(" and repeats[-1] == ")"
and repeats[1:-1].strip() != ""
and "," not in repeats):
warnings.warn(
'Passing in a parenthesized single number for repeats '
'is deprecated; pass either a single number or indicate '
'a tuple with a comma, like "(2,)".', DeprecationWarning,
stacklevel=2)
newitem = (dtype, ast.literal_eval(repeats))
result.append(newitem)
return result if islist else result[0]
class dummy_ctype:
def __init__(self, cls):
self._cls = cls
def __mul__(self, other):
return self
def __call__(self, *other):
return self._cls(other)
def __eq__(self, other):
return self._cls == other._cls
def __ne__(self, other):
return self._cls != other._cls
def _getintp_ctype():
val = _getintp_ctype.cache
if val is not None:
return val
if ctypes is None:
import numpy as np
val = dummy_ctype(np.intp)
else:
char = dtype('n').char
if char == 'i':
val = ctypes.c_int
elif char == 'l':
val = ctypes.c_long
elif char == 'q':
val = ctypes.c_longlong
else:
val = ctypes.c_long
_getintp_ctype.cache = val
return val
_getintp_ctype.cache = None
# Used for .ctypes attribute of ndarray
class _missing_ctypes:
def cast(self, num, obj):
return num.value
class c_void_p:
def __init__(self, ptr):
self.value = ptr
class _ctypes:
def __init__(self, array, ptr=None):
self._arr = array
if ctypes:
self._ctypes = ctypes
self._data = self._ctypes.c_void_p(ptr)
else:
# fake a pointer-like object that holds onto the reference
self._ctypes = _missing_ctypes()
self._data = self._ctypes.c_void_p(ptr)
self._data._objects = array
if self._arr.ndim == 0:
self._zerod = True
else:
self._zerod = False
def data_as(self, obj):
"""
Return the data pointer cast to a particular c-types object.
For example, calling ``self._as_parameter_`` is equivalent to
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use
the data as a pointer to a ctypes array of floating-point data:
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
The returned pointer will keep a reference to the array.
"""
# _ctypes.cast function causes a circular reference of self._data in
# self._data._objects. Attributes of self._data cannot be released
# until gc.collect is called. Make a copy of the pointer first then
# let it hold the array reference. This is a workaround to circumvent
# the CPython bug https://bugs.python.org/issue12836.
ptr = self._ctypes.cast(self._data, obj)
ptr._arr = self._arr
return ptr
def shape_as(self, obj):
"""
Return the shape tuple as an array of some other c-types
type. For example: ``self.shape_as(ctypes.c_short)``.
"""
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.shape)
def strides_as(self, obj):
"""
Return the strides tuple as an array of some other
c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
"""
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.strides)
@property
def data(self):
"""
A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in
correct byte-order. The memory area may not even be writeable.
The array flags and data-type of this array should be respected
when passing this attribute to arbitrary C-code to avoid trouble
that can include Python crashing. User Beware! The value of this
attribute is exactly the same as:
``self._array_interface_['data'][0]``.
Note that unlike ``data_as``, a reference won't be kept to the array:
code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
pointer to a deallocated array, and should be spelt
``(a + b).ctypes.data_as(ctypes.c_void_p)``
"""
return self._data.value
@property
def shape(self):
"""
(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to ``dtype('p')`` on this
platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
`ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
the platform. The ctypes array contains the shape of
the underlying array.
"""
return self.shape_as(_getintp_ctype())
@property
def strides(self):
"""
(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes
array contains the strides information from the underlying array.
This strides information is important for showing how many bytes
must be jumped to get to the next element in the array.
"""
return self.strides_as(_getintp_ctype())
@property
def _as_parameter_(self):
"""
Overrides the ctypes semi-magic method
Enables `c_func(some_array.ctypes)`
"""
return self.data_as(ctypes.c_void_p)
# Numpy 1.21.0, 2021-05-18
def get_data(self):
"""Deprecated getter for the `_ctypes.data` property.
.. deprecated:: 1.21
"""
warnings.warn('"get_data" is deprecated. Use "data" instead',
DeprecationWarning, stacklevel=2)
return self.data
def get_shape(self):
"""Deprecated getter for the `_ctypes.shape` property.
.. deprecated:: 1.21
"""
warnings.warn('"get_shape" is deprecated. Use "shape" instead',
DeprecationWarning, stacklevel=2)
return self.shape
def get_strides(self):
"""Deprecated getter for the `_ctypes.strides` property.
.. deprecated:: 1.21
"""
warnings.warn('"get_strides" is deprecated. Use "strides" instead',
DeprecationWarning, stacklevel=2)
return self.strides
def get_as_parameter(self):
"""Deprecated getter for the `_ctypes._as_parameter_` property.
.. deprecated:: 1.21
"""
warnings.warn(
'"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
DeprecationWarning, stacklevel=2,
)
return self._as_parameter_
def _newnames(datatype, order):
"""
Given a datatype and an order object, return a new names tuple, with the
order indicated
"""
oldnames = datatype.names
nameslist = list(oldnames)
if isinstance(order, str):
order = [order]
seen = set()
if isinstance(order, (list, tuple)):
for name in order:
try:
nameslist.remove(name)
except ValueError:
if name in seen:
raise ValueError(f"duplicate field name: {name}") from None
else:
raise ValueError(f"unknown field name: {name}") from None
seen.add(name)
return tuple(list(order) + nameslist)
raise ValueError(f"unsupported order value: {order}")
def _copy_fields(ary):
"""Return copy of structured array with padding between fields removed.
Parameters
----------
ary : ndarray
Structured array from which to remove padding bytes
Returns
-------
ary_copy : ndarray
Copy of ary with padding bytes removed
"""
dt = ary.dtype
copy_dtype = {'names': dt.names,
'formats': [dt.fields[name][0] for name in dt.names]}
return array(ary, dtype=copy_dtype, copy=True)
def _promote_fields(dt1, dt2):
""" Perform type promotion for two structured dtypes.
Parameters
----------
dt1 : structured dtype
First dtype.
dt2 : structured dtype
Second dtype.
Returns
-------
out : dtype
The promoted dtype
Notes
-----
If one of the inputs is aligned, the result will be. The titles of
both descriptors must match (point to the same field).
"""
# Both must be structured and have the same names in the same order
if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
raise DTypePromotionError(
f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
# if both are identical, we can (maybe!) just return the same dtype.
identical = dt1 is dt2
new_fields = []
for name in dt1.names:
field1 = dt1.fields[name]
field2 = dt2.fields[name]
new_descr = promote_types(field1[0], field2[0])
identical = identical and new_descr is field1[0]
# Check that the titles match (if given):
if field1[2:] != field2[2:]:
raise DTypePromotionError(
f"field titles of field '{name}' mismatch")
if len(field1) == 2:
new_fields.append((name, new_descr))
else:
new_fields.append(((field1[2], name), new_descr))
res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
# Might as well preserve identity (and metadata) if the dtype is identical
# and the itemsize, offsets are also unmodified. This could probably be
# sped up, but also probably just be removed entirely.
if identical and res.itemsize == dt1.itemsize:
for name in dt1.names:
if dt1.fields[name][1] != res.fields[name][1]:
return res # the dtype changed.
return dt1
return res
def _getfield_is_safe(oldtype, newtype, offset):
""" Checks safety of getfield for object arrays.
As in _view_is_safe, we need to check that memory containing objects is not
reinterpreted as a non-object datatype and vice versa.
Parameters
----------
oldtype : data-type
Data type of the original ndarray.
newtype : data-type
Data type of the field being accessed by ndarray.getfield
offset : int
Offset of the field being accessed by ndarray.getfield
Raises
------
TypeError
If the field access is invalid
"""
if newtype.hasobject or oldtype.hasobject:
if offset == 0 and newtype == oldtype:
return
if oldtype.names is not None:
for name in oldtype.names:
if (oldtype.fields[name][1] == offset and
oldtype.fields[name][0] == newtype):
return
raise TypeError("Cannot get/set field of an object array")
return
def _view_is_safe(oldtype, newtype):
""" Checks safety of a view involving object arrays, for example when
doing::
np.zeros(10, dtype=oldtype).view(newtype)
Parameters
----------
oldtype : data-type
Data type of original ndarray
newtype : data-type
Data type of the view
Raises
------
TypeError
If the new type is incompatible with the old type.
"""
# if the types are equivalent, there is no problem.
# for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
if oldtype == newtype:
return
if newtype.hasobject or oldtype.hasobject:
raise TypeError("Cannot change data-type for array of references.")
return
# Given a string containing a PEP 3118 format specifier,
# construct a NumPy dtype
_pep3118_native_map = {
'?': '?',
'c': 'S1',
'b': 'b',
'B': 'B',
'h': 'h',
'H': 'H',
'i': 'i',
'I': 'I',
'l': 'l',
'L': 'L',
'q': 'q',
'Q': 'Q',
'e': 'e',
'f': 'f',
'd': 'd',
'g': 'g',
'Zf': 'F',
'Zd': 'D',
'Zg': 'G',
's': 'S',
'w': 'U',
'O': 'O',
'x': 'V', # padding
}
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
_pep3118_standard_map = {
'?': '?',
'c': 'S1',
'b': 'b',
'B': 'B',
'h': 'i2',
'H': 'u2',
'i': 'i4',
'I': 'u4',
'l': 'i4',
'L': 'u4',
'q': 'i8',
'Q': 'u8',
'e': 'f2',
'f': 'f',
'd': 'd',
'Zf': 'F',
'Zd': 'D',
's': 'S',
'w': 'U',
'O': 'O',
'x': 'V', # padding
}
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
_pep3118_unsupported_map = {
'u': 'UCS-2 strings',
'&': 'pointers',
't': 'bitfields',
'X': 'function pointers',
}
class _Stream:
def __init__(self, s):
self.s = s
self.byteorder = '@'
def advance(self, n):
res = self.s[:n]
self.s = self.s[n:]
return res
def consume(self, c):
if self.s[:len(c)] == c:
self.advance(len(c))
return True
return False
def consume_until(self, c):
if callable(c):
i = 0
while i < len(self.s) and not c(self.s[i]):
i = i + 1
return self.advance(i)
else:
i = self.s.index(c)
res = self.advance(i)
self.advance(len(c))
return res
@property
def next(self):
return self.s[0]
def __bool__(self):
return bool(self.s)
def _dtype_from_pep3118(spec):
stream = _Stream(spec)
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
return dtype
def __dtype_from_pep3118(stream, is_subdtype):
field_spec = dict(
names=[],
formats=[],
offsets=[],
itemsize=0
)
offset = 0
common_alignment = 1
is_padding = False
# Parse spec
while stream:
value = None
# End of structure, bail out to upper level
if stream.consume('}'):
break
# Sub-arrays (1)
shape = None
if stream.consume('('):
shape = stream.consume_until(')')
shape = tuple(map(int, shape.split(',')))
# Byte order
if stream.next in ('@', '=', '<', '>', '^', '!'):
byteorder = stream.advance(1)
if byteorder == '!':
byteorder = '>'
stream.byteorder = byteorder
# Byte order characters also control native vs. standard type sizes
if stream.byteorder in ('@', '^'):
type_map = _pep3118_native_map
type_map_chars = _pep3118_native_typechars
else:
type_map = _pep3118_standard_map
type_map_chars = _pep3118_standard_typechars
# Item sizes
itemsize_str = stream.consume_until(lambda c: not c.isdigit())
if itemsize_str:
itemsize = int(itemsize_str)
else:
itemsize = 1
# Data types
is_padding = False
if stream.consume('T{'):
value, align = __dtype_from_pep3118(
stream, is_subdtype=True)
elif stream.next in type_map_chars:
if stream.next == 'Z':
typechar = stream.advance(2)
else:
typechar = stream.advance(1)
is_padding = (typechar == 'x')
dtypechar = type_map[typechar]
if dtypechar in 'USV':
dtypechar += '%d' % itemsize
itemsize = 1
numpy_byteorder = {'@': '=', '^': '='}.get(
stream.byteorder, stream.byteorder)
value = dtype(numpy_byteorder + dtypechar)
align = value.alignment
elif stream.next in _pep3118_unsupported_map:
desc = _pep3118_unsupported_map[stream.next]
raise NotImplementedError(
"Unrepresentable PEP 3118 data type {!r} ({})"
.format(stream.next, desc))
else:
raise ValueError(
"Unknown PEP 3118 data type specifier %r" % stream.s
)
#
# Native alignment may require padding
#
# Here we assume that the presence of a '@' character implicitly
# implies that the start of the array is *already* aligned.
#
extra_offset = 0
if stream.byteorder == '@':
start_padding = (-offset) % align
intra_padding = (-value.itemsize) % align
offset += start_padding
if intra_padding != 0:
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
# Inject internal padding to the end of the sub-item
value = _add_trailing_padding(value, intra_padding)
else:
# We can postpone the injection of internal padding,
# as the item appears at most once
extra_offset += intra_padding
# Update common alignment
common_alignment = _lcm(align, common_alignment)
# Convert itemsize to sub-array
if itemsize != 1:
value = dtype((value, (itemsize,)))
# Sub-arrays (2)
if shape is not None:
value = dtype((value, shape))
# Field name
if stream.consume(':'):
name = stream.consume_until(':')
else:
name = None
if not (is_padding and name is None):
if name is not None and name in field_spec['names']:
raise RuntimeError(
f"Duplicate field name '{name}' in PEP3118 format"
)
field_spec['names'].append(name)
field_spec['formats'].append(value)
field_spec['offsets'].append(offset)
offset += value.itemsize
offset += extra_offset
field_spec['itemsize'] = offset
# extra final padding for aligned types
if stream.byteorder == '@':
field_spec['itemsize'] += (-offset) % common_alignment
# Check if this was a simple 1-item type, and unwrap it
if (field_spec['names'] == [None]
and field_spec['offsets'][0] == 0
and field_spec['itemsize'] == field_spec['formats'][0].itemsize
and not is_subdtype):
ret = field_spec['formats'][0]
else:
_fix_names(field_spec)
ret = dtype(field_spec)
# Finished
return ret, common_alignment
def _fix_names(field_spec):
""" Replace names which are None with the next unused f%d name """
names = field_spec['names']
for i, name in enumerate(names):
if name is not None:
continue
j = 0
while True:
name = f'f{j}'
if name not in names:
break
j = j + 1
names[i] = name
def _add_trailing_padding(value, padding):
"""Inject the specified number of padding bytes at the end of a dtype"""
if value.fields is None:
field_spec = dict(
names=['f0'],
formats=[value],
offsets=[0],
itemsize=value.itemsize
)
else:
fields = value.fields
names = value.names
field_spec = dict(
names=names,
formats=[fields[name][0] for name in names],
offsets=[fields[name][1] for name in names],
itemsize=value.itemsize
)
field_spec['itemsize'] += padding
return dtype(field_spec)
def _prod(a):
p = 1
for x in a:
p *= x
return p
def _gcd(a, b):
"""Calculate the greatest common divisor of a and b"""
if not (math.isfinite(a) and math.isfinite(b)):
raise ValueError('Can only find greatest common divisor of '
f'finite arguments, found "{a}" and "{b}"')
while b:
a, b = b, a % b
return a
def _lcm(a, b):
return a // _gcd(a, b) * b
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
""" Format the error message for when __array_ufunc__ gives up. """
args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
['{}={!r}'.format(k, v)
for k, v in kwargs.items()])
args = inputs + kwargs.get('out', ())
types_string = ', '.join(repr(type(arg).__name__) for arg in args)
return ('operand type(s) all returned NotImplemented from '
'__array_ufunc__({!r}, {!r}, {}): {}'
.format(ufunc, method, args_string, types_string))
def array_function_errmsg_formatter(public_api, types):
""" Format the error message for when __array_ufunc__ gives up. """
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
return ("no implementation found for '{}' on types that implement "
'__array_function__: {}'.format(func_name, list(types)))
def _ufunc_doc_signature_formatter(ufunc):
"""
Builds a signature string which resembles PEP 457
This is used to construct the first line of the docstring
"""
# input arguments are simple
if ufunc.nin == 1:
in_args = 'x'
else:
in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
# output arguments are both keyword or positional
if ufunc.nout == 0:
out_args = ', /, out=()'
elif ufunc.nout == 1:
out_args = ', /, out=None'
else:
out_args = '[, {positional}], / [, out={default}]'.format(
positional=', '.join(
'out{}'.format(i+1) for i in range(ufunc.nout)),
default=repr((None,)*ufunc.nout)
)
# keyword only args depend on whether this is a gufunc
kwargs = (
", casting='same_kind'"
", order='K'"
", dtype=None"
", subok=True"
)
# NOTE: gufuncs may or may not support the `axis` parameter
if ufunc.signature is None:
kwargs = f", where=True{kwargs}[, signature]"
else:
kwargs += "[, signature, axes, axis]"
# join all the parts together
return '{name}({in_args}{out_args}, *{kwargs})'.format(
name=ufunc.__name__,
in_args=in_args,
out_args=out_args,
kwargs=kwargs
)
def npy_ctypes_check(cls):
# determine if a class comes from ctypes, in order to work around
# a bug in the buffer protocol for those objects, bpo-10746
try:
# ctypes class are new-style, so have an __mro__. This probably fails
# for ctypes classes with multiple inheritance.
if IS_PYPY:
# (..., _ctypes.basics._CData, Bufferable, object)
ctype_base = cls.__mro__[-3]
else:
# # (..., _ctypes._CData, object)
ctype_base = cls.__mro__[-2]
# right now, they're part of the _ctypes module
return '_ctypes' in ctype_base.__module__
except Exception:
return False
# used to handle the _NoValue default argument for na_object
# in the C implementation of the __reduce__ method for stringdtype
def _convert_to_stringdtype_kwargs(coerce, na_object=_NoValue):
if na_object is _NoValue:
return StringDType(coerce=coerce)
return StringDType(coerce=coerce, na_object=na_object)

View File

@ -0,0 +1,30 @@
from typing import Any, TypeVar, overload, Generic
import ctypes as ct
from numpy.typing import NDArray
from numpy.ctypeslib import c_intp
_CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
_CT = TypeVar("_CT", bound=ct._CData)
_PT = TypeVar("_PT", bound=int)
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
# for 0D arrays once we've got shape-support
class _ctypes(Generic[_PT]):
@overload
def __new__(cls, array: NDArray[Any], ptr: None = ...) -> _ctypes[None]: ...
@overload
def __new__(cls, array: NDArray[Any], ptr: _PT) -> _ctypes[_PT]: ...
@property
def data(self) -> _PT: ...
@property
def shape(self) -> ct.Array[c_intp]: ...
@property
def strides(self) -> ct.Array[c_intp]: ...
@property
def _as_parameter_(self) -> ct.c_void_p: ...
def data_as(self, obj: type[_CastT]) -> _CastT: ...
def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...

View File

@ -0,0 +1,356 @@
"""
Machine arithmetic - determine the parameters of the
floating-point arithmetic system
Author: Pearu Peterson, September 2003
"""
__all__ = ['MachAr']
from .fromnumeric import any
from ._ufunc_config import errstate
from .._utils import set_module
# Need to speed this up...especially for longdouble
# Deprecated 2021-10-20, NumPy 1.22
class MachAr:
"""
Diagnosing machine parameters.
Attributes
----------
ibeta : int
Radix in which numbers are represented.
it : int
Number of base-`ibeta` digits in the floating point mantissa M.
machep : int
Exponent of the smallest (most negative) power of `ibeta` that,
added to 1.0, gives something different from 1.0
eps : float
Floating-point number ``beta**machep`` (floating point precision)
negep : int
Exponent of the smallest power of `ibeta` that, subtracted
from 1.0, gives something different from 1.0.
epsneg : float
Floating-point number ``beta**negep``.
iexp : int
Number of bits in the exponent (including its sign and bias).
minexp : int
Smallest (most negative) power of `ibeta` consistent with there
being no leading zeros in the mantissa.
xmin : float
Floating-point number ``beta**minexp`` (the smallest [in
magnitude] positive floating point number with full precision).
maxexp : int
Smallest (positive) power of `ibeta` that causes overflow.
xmax : float
``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
usable floating value).
irnd : int
In ``range(6)``, information on what kind of rounding is done
in addition, and on how underflow is handled.
ngrd : int
Number of 'guard digits' used when truncating the product
of two mantissas to fit the representation.
epsilon : float
Same as `eps`.
tiny : float
An alias for `smallest_normal`, kept for backwards compatibility.
huge : float
Same as `xmax`.
precision : float
``- int(-log10(eps))``
resolution : float
``- 10**(-precision)``
smallest_normal : float
The smallest positive floating point number with 1 as leading bit in
the mantissa following IEEE-754. Same as `xmin`.
smallest_subnormal : float
The smallest positive floating point number with 0 as leading bit in
the mantissa following IEEE-754.
Parameters
----------
float_conv : function, optional
Function that converts an integer or integer array to a float
or float array. Default is `float`.
int_conv : function, optional
Function that converts a float or float array to an integer or
integer array. Default is `int`.
float_to_float : function, optional
Function that converts a float array to float. Default is `float`.
Note that this does not seem to do anything useful in the current
implementation.
float_to_str : function, optional
Function that converts a single float to a string. Default is
``lambda v:'%24.16e' %v``.
title : str, optional
Title that is printed in the string representation of `MachAr`.
See Also
--------
finfo : Machine limits for floating point types.
iinfo : Machine limits for integer types.
References
----------
.. [1] Press, Teukolsky, Vetterling and Flannery,
"Numerical Recipes in C++," 2nd ed,
Cambridge University Press, 2002, p. 31.
"""
def __init__(self, float_conv=float,int_conv=int,
float_to_float=float,
float_to_str=lambda v:'%24.16e' % v,
title='Python floating point number'):
"""
float_conv - convert integer to float (array)
int_conv - convert float (array) to integer
float_to_float - convert float array to float
float_to_str - convert array float to str
title - description of used floating point numbers
"""
# We ignore all errors here because we are purposely triggering
# underflow to detect the properties of the runninng arch.
with errstate(under='ignore'):
self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
max_iterN = 10000
msg = "Did not converge after %d tries with %s"
one = float_conv(1)
two = one + one
zero = one - one
# Do we really need to do this? Aren't they 2 and 2.0?
# Determine ibeta and beta
a = one
for _ in range(max_iterN):
a = a + a
temp = a + one
temp1 = temp - a
if any(temp1 - one != zero):
break
else:
raise RuntimeError(msg % (_, one.dtype))
b = one
for _ in range(max_iterN):
b = b + b
temp = a + b
itemp = int_conv(temp-a)
if any(itemp != 0):
break
else:
raise RuntimeError(msg % (_, one.dtype))
ibeta = itemp
beta = float_conv(ibeta)
# Determine it and irnd
it = -1
b = one
for _ in range(max_iterN):
it = it + 1
b = b * beta
temp = b + one
temp1 = temp - b
if any(temp1 - one != zero):
break
else:
raise RuntimeError(msg % (_, one.dtype))
betah = beta / two
a = one
for _ in range(max_iterN):
a = a + a
temp = a + one
temp1 = temp - a
if any(temp1 - one != zero):
break
else:
raise RuntimeError(msg % (_, one.dtype))
temp = a + betah
irnd = 0
if any(temp-a != zero):
irnd = 1
tempa = a + beta
temp = tempa + betah
if irnd == 0 and any(temp-tempa != zero):
irnd = 2
# Determine negep and epsneg
negep = it + 3
betain = one / beta
a = one
for i in range(negep):
a = a * betain
b = a
for _ in range(max_iterN):
temp = one - a
if any(temp-one != zero):
break
a = a * beta
negep = negep - 1
# Prevent infinite loop on PPC with gcc 4.0:
if negep < 0:
raise RuntimeError("could not determine machine tolerance "
"for 'negep', locals() -> %s" % (locals()))
else:
raise RuntimeError(msg % (_, one.dtype))
negep = -negep
epsneg = a
# Determine machep and eps
machep = - it - 3
a = b
for _ in range(max_iterN):
temp = one + a
if any(temp-one != zero):
break
a = a * beta
machep = machep + 1
else:
raise RuntimeError(msg % (_, one.dtype))
eps = a
# Determine ngrd
ngrd = 0
temp = one + eps
if irnd == 0 and any(temp*one - one != zero):
ngrd = 1
# Determine iexp
i = 0
k = 1
z = betain
t = one + eps
nxres = 0
for _ in range(max_iterN):
y = z
z = y*y
a = z*one # Check here for underflow
temp = z*t
if any(a+a == zero) or any(abs(z) >= y):
break
temp1 = temp * betain
if any(temp1*beta == z):
break
i = i + 1
k = k + k
else:
raise RuntimeError(msg % (_, one.dtype))
if ibeta != 10:
iexp = i + 1
mx = k + k
else:
iexp = 2
iz = ibeta
while k >= iz:
iz = iz * ibeta
iexp = iexp + 1
mx = iz + iz - 1
# Determine minexp and xmin
for _ in range(max_iterN):
xmin = y
y = y * betain
a = y * one
temp = y * t
if any((a + a) != zero) and any(abs(y) < xmin):
k = k + 1
temp1 = temp * betain
if any(temp1*beta == y) and any(temp != y):
nxres = 3
xmin = y
break
else:
break
else:
raise RuntimeError(msg % (_, one.dtype))
minexp = -k
# Determine maxexp, xmax
if mx <= k + k - 3 and ibeta != 10:
mx = mx + mx
iexp = iexp + 1
maxexp = mx + minexp
irnd = irnd + nxres
if irnd >= 2:
maxexp = maxexp - 2
i = maxexp + minexp
if ibeta == 2 and not i:
maxexp = maxexp - 1
if i > 20:
maxexp = maxexp - 1
if any(a != y):
maxexp = maxexp - 2
xmax = one - epsneg
if any(xmax*one != xmax):
xmax = one - beta*epsneg
xmax = xmax / (xmin*beta*beta*beta)
i = maxexp + minexp + 3
for j in range(i):
if ibeta == 2:
xmax = xmax + xmax
else:
xmax = xmax * beta
smallest_subnormal = abs(xmin / beta ** (it))
self.ibeta = ibeta
self.it = it
self.negep = negep
self.epsneg = float_to_float(epsneg)
self._str_epsneg = float_to_str(epsneg)
self.machep = machep
self.eps = float_to_float(eps)
self._str_eps = float_to_str(eps)
self.ngrd = ngrd
self.iexp = iexp
self.minexp = minexp
self.xmin = float_to_float(xmin)
self._str_xmin = float_to_str(xmin)
self.maxexp = maxexp
self.xmax = float_to_float(xmax)
self._str_xmax = float_to_str(xmax)
self.irnd = irnd
self.title = title
# Commonly used parameters
self.epsilon = self.eps
self.tiny = self.xmin
self.huge = self.xmax
self.smallest_normal = self.xmin
self._str_smallest_normal = float_to_str(self.xmin)
self.smallest_subnormal = float_to_float(smallest_subnormal)
self._str_smallest_subnormal = float_to_str(smallest_subnormal)
import math
self.precision = int(-math.log10(float_to_float(self.eps)))
ten = two + two + two + two + two
resolution = ten ** (-self.precision)
self.resolution = float_to_float(resolution)
self._str_resolution = float_to_str(resolution)
def __str__(self):
fmt = (
'Machine parameters for %(title)s\n'
'---------------------------------------------------------------------\n'
'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
'smallest_normal=%(smallest_normal)s '
'smallest_subnormal=%(smallest_subnormal)s\n'
'---------------------------------------------------------------------\n'
)
return fmt % self.__dict__
if __name__ == '__main__':
print(MachAr())

View File

@ -0,0 +1,260 @@
"""
Array methods which are called by both the C-code for the method
and the Python code for the NumPy-namespace function
"""
import os
import pickle
import warnings
from contextlib import nullcontext
import numpy as np
from numpy._core import multiarray as mu
from numpy._core import umath as um
from numpy._core.multiarray import asanyarray
from numpy._core import numerictypes as nt
from numpy._core import _exceptions
from numpy._core._ufunc_config import _no_nep50_warning
from numpy._globals import _NoValue
# save those O(100) nanoseconds!
bool_dt = mu.dtype("bool")
umr_maximum = um.maximum.reduce
umr_minimum = um.minimum.reduce
umr_sum = um.add.reduce
umr_prod = um.multiply.reduce
umr_bitwise_count = um.bitwise_count
umr_any = um.logical_or.reduce
umr_all = um.logical_and.reduce
# Complex types to -> (2,)float view for fast-path computation in _var()
_complex_to_float = {
nt.dtype(nt.csingle) : nt.dtype(nt.single),
nt.dtype(nt.cdouble) : nt.dtype(nt.double),
}
# Special case for windows: ensure double takes precedence
if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
_complex_to_float.update({
nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
})
# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
# small reductions
def _amax(a, axis=None, out=None, keepdims=False,
initial=_NoValue, where=True):
return umr_maximum(a, axis, None, out, keepdims, initial, where)
def _amin(a, axis=None, out=None, keepdims=False,
initial=_NoValue, where=True):
return umr_minimum(a, axis, None, out, keepdims, initial, where)
def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
initial=_NoValue, where=True):
return umr_sum(a, axis, dtype, out, keepdims, initial, where)
def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
initial=_NoValue, where=True):
return umr_prod(a, axis, dtype, out, keepdims, initial, where)
def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
# By default, return a boolean for any and all
if dtype is None:
dtype = bool_dt
# Parsing keyword arguments is currently fairly slow, so avoid it for now
if where is True:
return umr_any(a, axis, dtype, out, keepdims)
return umr_any(a, axis, dtype, out, keepdims, where=where)
def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
# By default, return a boolean for any and all
if dtype is None:
dtype = bool_dt
# Parsing keyword arguments is currently fairly slow, so avoid it for now
if where is True:
return umr_all(a, axis, dtype, out, keepdims)
return umr_all(a, axis, dtype, out, keepdims, where=where)
def _count_reduce_items(arr, axis, keepdims=False, where=True):
# fast-path for the default case
if where is True:
# no boolean mask given, calculate items according to axis
if axis is None:
axis = tuple(range(arr.ndim))
elif not isinstance(axis, tuple):
axis = (axis,)
items = 1
for ax in axis:
items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
items = nt.intp(items)
else:
# TODO: Optimize case when `where` is broadcast along a non-reduction
# axis and full sum is more excessive than needed.
# guarded to protect circular imports
from numpy.lib._stride_tricks_impl import broadcast_to
# count True values in (potentially broadcasted) boolean mask
items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
keepdims)
return items
def _clip(a, min=None, max=None, out=None, **kwargs):
if a.dtype.kind in "iu":
# If min/max is a Python integer, deal with out-of-bound values here.
# (This enforces NEP 50 rules as no value based promotion is done.)
if type(min) is int and min <= np.iinfo(a.dtype).min:
min = None
if type(max) is int and max >= np.iinfo(a.dtype).max:
max = None
if min is None and max is None:
# return identity
return um.positive(a, out=out, **kwargs)
elif min is None:
return um.minimum(a, max, out=out, **kwargs)
elif max is None:
return um.maximum(a, min, out=out, **kwargs)
else:
return um.clip(a, min, max, out=out, **kwargs)
def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
arr = asanyarray(a)
is_float16_result = False
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None:
if issubclass(arr.dtype.type, (nt.integer, nt.bool)):
dtype = mu.dtype('f8')
elif issubclass(arr.dtype.type, nt.float16):
dtype = mu.dtype('f4')
is_float16_result = True
ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
if isinstance(ret, mu.ndarray):
with _no_nep50_warning():
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
if is_float16_result and out is None:
ret = arr.dtype.type(ret)
elif hasattr(ret, 'dtype'):
if is_float16_result:
ret = arr.dtype.type(ret / rcount)
else:
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
where=True, mean=None):
arr = asanyarray(a)
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
# Make this warning show up on top.
if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool)):
dtype = mu.dtype('f8')
if mean is not None:
arrmean = mean
else:
# Compute the mean.
# Note that if dtype is not of inexact type then arraymean will
# not be either.
arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
# The shape of rcount has to match arrmean to not change the shape of
# out in broadcasting. Otherwise, it cannot be stored back to arrmean.
if rcount.ndim == 0:
# fast-path for default case when where is True
div = rcount
else:
# matching rcount to arrmean when where is specified as array
div = rcount.reshape(arrmean.shape)
if isinstance(arrmean, mu.ndarray):
with _no_nep50_warning():
arrmean = um.true_divide(arrmean, div, out=arrmean,
casting='unsafe', subok=False)
elif hasattr(arrmean, "dtype"):
arrmean = arrmean.dtype.type(arrmean / rcount)
else:
arrmean = arrmean / rcount
# Compute sum of squared deviations from mean
# Note that x may not be inexact and that we need it to be an array,
# not a scalar.
x = asanyarray(arr - arrmean)
if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
x = um.multiply(x, x, out=x)
# Fast-paths for built-in complex types
elif x.dtype in _complex_to_float:
xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
um.multiply(xv, xv, out=xv)
x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
# Most general case; includes handling object arrays containing imaginary
# numbers and complex types with non-native byteorder
else:
x = um.multiply(x, um.conjugate(x), out=x).real
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
# Compute degrees of freedom and make sure it is not negative.
rcount = um.maximum(rcount - ddof, 0)
# divide by degrees of freedom
if isinstance(ret, mu.ndarray):
with _no_nep50_warning():
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
where=True, mean=None):
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims, where=where, mean=mean)
if isinstance(ret, mu.ndarray):
ret = um.sqrt(ret, out=ret)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(um.sqrt(ret))
else:
ret = um.sqrt(ret)
return ret
def _ptp(a, axis=None, out=None, keepdims=False):
return um.subtract(
umr_maximum(a, axis, None, out, keepdims),
umr_minimum(a, axis, None, None, keepdims),
out
)
def _dump(self, file, protocol=2):
if hasattr(file, 'write'):
ctx = nullcontext(file)
else:
ctx = open(os.fspath(file), "wb")
with ctx as f:
pickle.dump(self, f, protocol=protocol)
def _dumps(self, protocol=2):
return pickle.dumps(self, protocol=protocol)
def _bitwise_count(a, out=None, *, where=True, casting='same_kind',
order='K', dtype=None, subok=True):
return umr_bitwise_count(a, out, where=where, casting=casting,
order=order, dtype=dtype, subok=subok)

View File

@ -0,0 +1,100 @@
"""
String-handling utilities to avoid locale-dependence.
Used primarily to generate type name aliases.
"""
# "import string" is costly to import!
# Construct the translation tables directly
# "A" = chr(65), "a" = chr(97)
_all_chars = tuple(map(chr, range(256)))
_ascii_upper = _all_chars[65:65+26]
_ascii_lower = _all_chars[97:97+26]
LOWER_TABLE = _all_chars[:65] + _ascii_lower + _all_chars[65+26:]
UPPER_TABLE = _all_chars[:97] + _ascii_upper + _all_chars[97+26:]
def english_lower(s):
""" Apply English case rules to convert ASCII strings to all lower case.
This is an internal utility function to replace calls to str.lower() such
that we can avoid changing behavior with changing locales. In particular,
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
Parameters
----------
s : str
Returns
-------
lowered : str
Examples
--------
>>> from numpy._core.numerictypes import english_lower
>>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
>>> english_lower('')
''
"""
lowered = s.translate(LOWER_TABLE)
return lowered
def english_upper(s):
""" Apply English case rules to convert ASCII strings to all upper case.
This is an internal utility function to replace calls to str.upper() such
that we can avoid changing behavior with changing locales. In particular,
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
Parameters
----------
s : str
Returns
-------
uppered : str
Examples
--------
>>> from numpy._core.numerictypes import english_upper
>>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
>>> english_upper('')
''
"""
uppered = s.translate(UPPER_TABLE)
return uppered
def english_capitalize(s):
""" Apply English case rules to convert the first character of an ASCII
string to upper case.
This is an internal utility function to replace calls to str.capitalize()
such that we can avoid changing behavior with changing locales.
Parameters
----------
s : str
Returns
-------
capitalized : str
Examples
--------
>>> from numpy._core.numerictypes import english_capitalize
>>> english_capitalize('int8')
'Int8'
>>> english_capitalize('Int8')
'Int8'
>>> english_capitalize('')
''
"""
if s:
return english_upper(s[0]) + s[1:]
else:
return s

View File

@ -0,0 +1,119 @@
"""
Due to compatibility, numpy has a very large number of different naming
conventions for the scalar types (those subclassing from `numpy.generic`).
This file produces a convoluted set of dictionaries mapping names to types,
and sometimes other mappings too.
.. data:: allTypes
A dictionary of names to types that will be exposed as attributes through
``np._core.numerictypes.*``
.. data:: sctypeDict
Similar to `allTypes`, but maps a broader set of aliases to their types.
.. data:: sctypes
A dictionary keyed by a "type group" string, providing a list of types
under that group.
"""
import numpy._core.multiarray as ma
from numpy._core.multiarray import typeinfo, dtype
######################################
# Building `sctypeDict` and `allTypes`
######################################
sctypeDict = {}
allTypes = {}
c_names_dict = {}
_abstract_type_names = {
"generic", "integer", "inexact", "floating", "number",
"flexible", "character", "complexfloating", "unsignedinteger",
"signedinteger"
}
for _abstract_type_name in _abstract_type_names:
allTypes[_abstract_type_name] = getattr(ma, _abstract_type_name)
for k, v in typeinfo.items():
if k.startswith("NPY_") and v not in c_names_dict:
c_names_dict[k[4:]] = v
else:
concrete_type = v.type
allTypes[k] = concrete_type
sctypeDict[k] = concrete_type
_aliases = {
"double": "float64",
"cdouble": "complex128",
"single": "float32",
"csingle": "complex64",
"half": "float16",
"bool_": "bool",
# Default integer:
"int_": "intp",
"uint": "uintp",
}
for k, v in _aliases.items():
sctypeDict[k] = allTypes[v]
allTypes[k] = allTypes[v]
# extra aliases are added only to `sctypeDict`
# to support dtype name access, such as`np.dtype("float")`
_extra_aliases = {
"float": "float64",
"complex": "complex128",
"object": "object_",
"bytes": "bytes_",
"a": "bytes_",
"int": "int_",
"str": "str_",
"unicode": "str_",
}
for k, v in _extra_aliases.items():
sctypeDict[k] = allTypes[v]
# include extended precision sized aliases
for is_complex, full_name in [(False, "longdouble"), (True, "clongdouble")]:
longdouble_type: type = allTypes[full_name]
bits: int = dtype(longdouble_type).itemsize * 8
base_name: str = "complex" if is_complex else "float"
extended_prec_name: str = f"{base_name}{bits}"
if extended_prec_name not in allTypes:
sctypeDict[extended_prec_name] = longdouble_type
allTypes[extended_prec_name] = longdouble_type
####################
# Building `sctypes`
####################
sctypes = {"int": set(), "uint": set(), "float": set(),
"complex": set(), "others": set()}
for type_info in typeinfo.values():
if type_info.kind in ["M", "m"]: # exclude timedelta and datetime
continue
concrete_type = type_info.type
# find proper group for each concrete type
for type_group, abstract_type in [
("int", ma.signedinteger), ("uint", ma.unsignedinteger),
("float", ma.floating), ("complex", ma.complexfloating),
("others", ma.generic)
]:
if issubclass(concrete_type, abstract_type):
sctypes[type_group].add(concrete_type)
break
# sort sctype groups by bitsize
for sctype_key in sctypes.keys():
sctype_list = list(sctypes[sctype_key])
sctype_list.sort(key=lambda x: dtype(x).itemsize)
sctypes[sctype_key] = sctype_list

View File

@ -0,0 +1,3 @@
from numpy import generic
sctypeDict: dict[int | str, type[generic]]

View File

@ -0,0 +1,503 @@
"""
Functions for changing global ufunc configuration
This provides helpers which wrap `_get_extobj_dict` and `_make_extobj`, and
`_extobj_contextvar` from umath.
"""
import collections.abc
import contextlib
import contextvars
import functools
from .._utils import set_module
from .umath import _make_extobj, _get_extobj_dict, _extobj_contextvar
__all__ = [
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
"errstate", '_no_nep50_warning'
]
@set_module('numpy')
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
"""
Set how floating-point errors are handled.
Note that operations on integer scalar types (such as `int16`) are
handled like floating point, and are affected by these settings.
Parameters
----------
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Set treatment for all types of floating-point errors at once:
- ignore: Take no action when the exception occurs.
- warn: Print a :exc:`RuntimeWarning` (via the Python `warnings`
module).
- raise: Raise a :exc:`FloatingPointError`.
- call: Call a function specified using the `seterrcall` function.
- print: Print a warning directly to ``stdout``.
- log: Record error in a Log object specified by `seterrcall`.
The default is not to change the current behavior.
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for division by zero.
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for floating-point overflow.
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for floating-point underflow.
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for invalid floating-point operation.
Returns
-------
old_settings : dict
Dictionary containing the old settings.
See also
--------
seterrcall : Set a callback function for the 'call' mode.
geterr, geterrcall, errstate
Notes
-----
The floating-point exceptions are defined in the IEEE 754 standard [1]_:
- Division by zero: infinite result obtained from finite numbers.
- Overflow: result too large to be expressed.
- Underflow: result so close to zero that some precision
was lost.
- Invalid operation: result is not an expressible number, typically
indicates that a NaN was produced.
.. [1] https://en.wikipedia.org/wiki/IEEE_754
Examples
--------
>>> import numpy as np
>>> orig_settings = np.seterr(all='ignore') # seterr to known value
>>> np.int16(32000) * np.int16(3)
30464
>>> np.seterr(over='raise')
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in scalar multiply
>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
>>> np.int16(32000) * np.int16(3)
30464
>>> np.seterr(**orig_settings) # restore original
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
"""
old = _get_extobj_dict()
# The errstate doesn't include call and bufsize, so pop them:
old.pop("call", None)
old.pop("bufsize", None)
extobj = _make_extobj(
all=all, divide=divide, over=over, under=under, invalid=invalid)
_extobj_contextvar.set(extobj)
return old
@set_module('numpy')
def geterr():
"""
Get the current way of handling floating-point errors.
Returns
-------
res : dict
A dictionary with keys "divide", "over", "under", and "invalid",
whose values are from the strings "ignore", "print", "log", "warn",
"raise", and "call". The keys represent possible floating-point
exceptions, and the values define how these exceptions are handled.
See Also
--------
geterrcall, seterr, seterrcall
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> import numpy as np
>>> np.geterr()
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
>>> np.arange(3.) / np.arange(3.) # doctest: +SKIP
array([nan, 1., 1.])
RuntimeWarning: invalid value encountered in divide
>>> oldsettings = np.seterr(all='warn', invalid='raise')
>>> np.geterr()
{'divide': 'warn', 'over': 'warn', 'under': 'warn', 'invalid': 'raise'}
>>> np.arange(3.) / np.arange(3.)
Traceback (most recent call last):
...
FloatingPointError: invalid value encountered in divide
>>> oldsettings = np.seterr(**oldsettings) # restore original
"""
res = _get_extobj_dict()
# The "geterr" doesn't include call and bufsize,:
res.pop("call", None)
res.pop("bufsize", None)
return res
@set_module('numpy')
def setbufsize(size):
"""
Set the size of the buffer used in ufuncs.
.. versionchanged:: 2.0
The scope of setting the buffer is tied to the `numpy.errstate`
context. Exiting a ``with errstate():`` will also restore the bufsize.
Parameters
----------
size : int
Size of buffer.
Returns
-------
bufsize : int
Previous size of ufunc buffer in bytes.
Examples
--------
When exiting a `numpy.errstate` context manager the bufsize is restored:
>>> import numpy as np
>>> with np.errstate():
... np.setbufsize(4096)
... print(np.getbufsize())
...
8192
4096
>>> np.getbufsize()
8192
"""
old = _get_extobj_dict()["bufsize"]
extobj = _make_extobj(bufsize=size)
_extobj_contextvar.set(extobj)
return old
@set_module('numpy')
def getbufsize():
"""
Return the size of the buffer used in ufuncs.
Returns
-------
getbufsize : int
Size of ufunc buffer in bytes.
Examples
--------
>>> import numpy as np
>>> np.getbufsize()
8192
"""
return _get_extobj_dict()["bufsize"]
@set_module('numpy')
def seterrcall(func):
"""
Set the floating-point error callback function or log object.
There are two ways to capture floating-point error messages. The first
is to set the error-handler to 'call', using `seterr`. Then, set
the function to call using this function.
The second is to set the error-handler to 'log', using `seterr`.
Floating-point errors then trigger a call to the 'write' method of
the provided object.
Parameters
----------
func : callable f(err, flag) or object with write method
Function to call upon floating-point errors ('call'-mode) or
object whose 'write' method is used to log such message ('log'-mode).
The call function takes two arguments. The first is a string describing
the type of error (such as "divide by zero", "overflow", "underflow",
or "invalid value"), and the second is the status flag. The flag is a
byte, whose four least-significant bits indicate the type of error, one
of "divide", "over", "under", "invalid"::
[0 0 0 0 divide over under invalid]
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
If an object is provided, its write method should take one argument,
a string.
Returns
-------
h : callable, log instance or None
The old error handler.
See Also
--------
seterr, geterr, geterrcall
Examples
--------
Callback upon error:
>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...
>>> import numpy as np
>>> orig_handler = np.seterrcall(err_handler)
>>> orig_err = np.seterr(all='call')
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([inf, inf, inf])
>>> np.seterrcall(orig_handler)
<function err_handler at 0x...>
>>> np.seterr(**orig_err)
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
Log error message:
>>> class Log:
... def write(self, msg):
... print("LOG: %s" % msg)
...
>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')
>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide
array([inf, inf, inf])
>>> np.seterrcall(orig_handler)
<numpy.Log object at 0x...>
>>> np.seterr(**orig_err)
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
"""
old = _get_extobj_dict()["call"]
extobj = _make_extobj(call=func)
_extobj_contextvar.set(extobj)
return old
@set_module('numpy')
def geterrcall():
"""
Return the current callback function used on floating-point errors.
When the error handling for a floating-point error (one of "divide",
"over", "under", or "invalid") is set to 'call' or 'log', the function
that is called or the log instance that is written to is returned by
`geterrcall`. This function or log instance has been set with
`seterrcall`.
Returns
-------
errobj : callable, log instance or None
The current error handler. If no handler was set through `seterrcall`,
``None`` is returned.
See Also
--------
seterrcall, seterr, geterr
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> import numpy as np
>>> np.geterrcall() # we did not yet set a handler, returns None
>>> orig_settings = np.seterr(all='call')
>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
>>> old_handler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([inf, inf, inf])
>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
True
>>> old_settings = np.seterr(**orig_settings) # restore original
>>> old_handler = np.seterrcall(None) # restore original
"""
return _get_extobj_dict()["call"]
class _unspecified:
pass
_Unspecified = _unspecified()
@set_module('numpy')
class errstate:
"""
errstate(**kwargs)
Context manager for floating-point error handling.
Using an instance of `errstate` as a context manager allows statements in
that context to execute with a known error handling behavior. Upon entering
the context the error handling is set with `seterr` and `seterrcall`, and
upon exiting it is reset to what it was before.
.. versionchanged:: 1.17.0
`errstate` is also usable as a function decorator, saving
a level of indentation if an entire function is wrapped.
.. versionchanged:: 2.0
`errstate` is now fully thread and asyncio safe, but may not be
entered more than once.
It is not safe to decorate async functions using ``errstate``.
Parameters
----------
kwargs : {divide, over, under, invalid}
Keyword arguments. The valid keywords are the possible floating-point
exceptions. Each keyword should have a string value that defines the
treatment for the particular error. Possible values are
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
See Also
--------
seterr, geterr, seterrcall, geterrcall
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> import numpy as np
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
>>> np.arange(3) / 0.
array([nan, inf, inf])
>>> with np.errstate(divide='ignore'):
... np.arange(3) / 0.
array([nan, inf, inf])
>>> np.sqrt(-1)
np.float64(nan)
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
FloatingPointError: invalid value encountered in sqrt
Outside the context the error handling behavior has not changed:
>>> np.geterr()
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> olderr = np.seterr(**olderr) # restore original state
"""
__slots__ = (
"_call", "_all", "_divide", "_over", "_under", "_invalid", "_token")
def __init__(self, *, call=_Unspecified,
all=None, divide=None, over=None, under=None, invalid=None):
self._token = None
self._call = call
self._all = all
self._divide = divide
self._over = over
self._under = under
self._invalid = invalid
def __enter__(self):
# Note that __call__ duplicates much of this logic
if self._token is not None:
raise TypeError("Cannot enter `np.errstate` twice.")
if self._call is _Unspecified:
extobj = _make_extobj(
all=self._all, divide=self._divide, over=self._over,
under=self._under, invalid=self._invalid)
else:
extobj = _make_extobj(
call=self._call,
all=self._all, divide=self._divide, over=self._over,
under=self._under, invalid=self._invalid)
self._token = _extobj_contextvar.set(extobj)
def __exit__(self, *exc_info):
_extobj_contextvar.reset(self._token)
def __call__(self, func):
# We need to customize `__call__` compared to `ContextDecorator`
# because we must store the token per-thread so cannot store it on
# the instance (we could create a new instance for this).
# This duplicates the code from `__enter__`.
@functools.wraps(func)
def inner(*args, **kwargs):
if self._call is _Unspecified:
extobj = _make_extobj(
all=self._all, divide=self._divide, over=self._over,
under=self._under, invalid=self._invalid)
else:
extobj = _make_extobj(
call=self._call,
all=self._all, divide=self._divide, over=self._over,
under=self._under, invalid=self._invalid)
_token = _extobj_contextvar.set(extobj)
try:
# Call the original, decorated, function:
return func(*args, **kwargs)
finally:
_extobj_contextvar.reset(_token)
return inner
NO_NEP50_WARNING = contextvars.ContextVar("_no_nep50_warning", default=False)
@set_module('numpy')
@contextlib.contextmanager
def _no_nep50_warning():
"""
Context manager to disable NEP 50 warnings. This context manager is
only relevant if the NEP 50 warnings are enabled globally (which is not
thread/context safe).
This warning context manager itself is fully safe, however.
"""
token = NO_NEP50_WARNING.set(True)
try:
yield
finally:
NO_NEP50_WARNING.reset(token)

View File

@ -0,0 +1,37 @@
from collections.abc import Callable
from typing import Any, Literal, TypedDict
from numpy import _SupportsWrite
_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
_ErrFunc = Callable[[str, int], Any]
class _ErrDict(TypedDict):
divide: _ErrKind
over: _ErrKind
under: _ErrKind
invalid: _ErrKind
class _ErrDictOptional(TypedDict, total=False):
all: None | _ErrKind
divide: None | _ErrKind
over: None | _ErrKind
under: None | _ErrKind
invalid: None | _ErrKind
def seterr(
all: None | _ErrKind = ...,
divide: None | _ErrKind = ...,
over: None | _ErrKind = ...,
under: None | _ErrKind = ...,
invalid: None | _ErrKind = ...,
) -> _ErrDict: ...
def geterr() -> _ErrDict: ...
def setbufsize(size: int) -> int: ...
def getbufsize() -> int: ...
def seterrcall(
func: None | _ErrFunc | _SupportsWrite[str]
) -> None | _ErrFunc | _SupportsWrite[str]: ...
def geterrcall() -> None | _ErrFunc | _SupportsWrite[str]: ...
# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,135 @@
from collections.abc import Callable
from typing import Any, Literal, TypedDict, SupportsIndex
# Using a private class is by no means ideal, but it is simply a consequence
# of a `contextlib.context` returning an instance of aforementioned class
from contextlib import _GeneratorContextManager
import numpy as np
from numpy import (
integer,
timedelta64,
datetime64,
floating,
complexfloating,
void,
longdouble,
clongdouble,
)
from numpy._typing import NDArray, _CharLike_co, _FloatLike_co
_FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
class _FormatDict(TypedDict, total=False):
bool: Callable[[np.bool], str]
int: Callable[[integer[Any]], str]
timedelta: Callable[[timedelta64], str]
datetime: Callable[[datetime64], str]
float: Callable[[floating[Any]], str]
longfloat: Callable[[longdouble], str]
complexfloat: Callable[[complexfloating[Any, Any]], str]
longcomplexfloat: Callable[[clongdouble], str]
void: Callable[[void], str]
numpystr: Callable[[_CharLike_co], str]
object: Callable[[object], str]
all: Callable[[object], str]
int_kind: Callable[[integer[Any]], str]
float_kind: Callable[[floating[Any]], str]
complex_kind: Callable[[complexfloating[Any, Any]], str]
str_kind: Callable[[_CharLike_co], str]
class _FormatOptions(TypedDict):
precision: int
threshold: int
edgeitems: int
linewidth: int
suppress: bool
nanstr: str
infstr: str
formatter: None | _FormatDict
sign: Literal["-", "+", " "]
floatmode: _FloatMode
legacy: Literal[False, "1.13", "1.21"]
def set_printoptions(
precision: None | SupportsIndex = ...,
threshold: None | int = ...,
edgeitems: None | int = ...,
linewidth: None | int = ...,
suppress: None | bool = ...,
nanstr: None | str = ...,
infstr: None | str = ...,
formatter: None | _FormatDict = ...,
sign: Literal[None, "-", "+", " "] = ...,
floatmode: None | _FloatMode = ...,
*,
legacy: Literal[None, False, "1.13", "1.21"] = ...,
override_repr: None | Callable[[NDArray[Any]], str] = ...,
) -> None: ...
def get_printoptions() -> _FormatOptions: ...
def array2string(
a: NDArray[Any],
max_line_width: None | int = ...,
precision: None | SupportsIndex = ...,
suppress_small: None | bool = ...,
separator: str = ...,
prefix: str = ...,
# NOTE: With the `style` argument being deprecated,
# all arguments between `formatter` and `suffix` are de facto
# keyworld-only arguments
*,
formatter: None | _FormatDict = ...,
threshold: None | int = ...,
edgeitems: None | int = ...,
sign: Literal[None, "-", "+", " "] = ...,
floatmode: None | _FloatMode = ...,
suffix: str = ...,
legacy: Literal[None, False, "1.13", "1.21"] = ...,
) -> str: ...
def format_float_scientific(
x: _FloatLike_co,
precision: None | int = ...,
unique: bool = ...,
trim: Literal["k", ".", "0", "-"] = ...,
sign: bool = ...,
pad_left: None | int = ...,
exp_digits: None | int = ...,
min_digits: None | int = ...,
) -> str: ...
def format_float_positional(
x: _FloatLike_co,
precision: None | int = ...,
unique: bool = ...,
fractional: bool = ...,
trim: Literal["k", ".", "0", "-"] = ...,
sign: bool = ...,
pad_left: None | int = ...,
pad_right: None | int = ...,
min_digits: None | int = ...,
) -> str: ...
def array_repr(
arr: NDArray[Any],
max_line_width: None | int = ...,
precision: None | SupportsIndex = ...,
suppress_small: None | bool = ...,
) -> str: ...
def array_str(
a: NDArray[Any],
max_line_width: None | int = ...,
precision: None | SupportsIndex = ...,
suppress_small: None | bool = ...,
) -> str: ...
def printoptions(
precision: None | SupportsIndex = ...,
threshold: None | int = ...,
edgeitems: None | int = ...,
linewidth: None | int = ...,
suppress: None | bool = ...,
nanstr: None | str = ...,
infstr: None | str = ...,
formatter: None | _FormatDict = ...,
sign: Literal[None, "-", "+", " "] = ...,
floatmode: None | _FloatMode = ...,
*,
legacy: Literal[None, False, "1.13", "1.21"] = ...
) -> _GeneratorContextManager[_FormatOptions]: ...

View File

@ -0,0 +1,13 @@
"""Simple script to compute the api hash of the current API.
The API has is defined by numpy_api_order and ufunc_api_order.
"""
from os.path import dirname
from code_generators.genapi import fullapi_hash
from code_generators.numpy_api import full_api
if __name__ == '__main__':
curdir = dirname(__file__)
print(fullapi_hash(full_api))

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,843 @@
from typing import (
Literal as L,
overload,
TypeVar,
Any,
SupportsIndex,
SupportsInt,
)
import numpy as np
from numpy import (
ndarray,
dtype,
str_,
bytes_,
int_,
object_,
_OrderKACF,
_ShapeType_co,
_CharDType,
_SupportsBuffer,
)
from numpy._typing import (
NDArray,
_ShapeLike,
_ArrayLikeStr_co as U_co,
_ArrayLikeBytes_co as S_co,
_ArrayLikeInt_co as i_co,
_ArrayLikeBool_co as b_co,
)
from numpy._core.multiarray import compare_chararrays as compare_chararrays
_SCT = TypeVar("_SCT", str_, bytes_)
_CharArray = chararray[Any, dtype[_SCT]]
class chararray(ndarray[_ShapeType_co, _CharDType]):
@overload
def __new__(
subtype,
shape: _ShapeLike,
itemsize: SupportsIndex | SupportsInt = ...,
unicode: L[False] = ...,
buffer: _SupportsBuffer = ...,
offset: SupportsIndex = ...,
strides: _ShapeLike = ...,
order: _OrderKACF = ...,
) -> chararray[Any, dtype[bytes_]]: ...
@overload
def __new__(
subtype,
shape: _ShapeLike,
itemsize: SupportsIndex | SupportsInt = ...,
unicode: L[True] = ...,
buffer: _SupportsBuffer = ...,
offset: SupportsIndex = ...,
strides: _ShapeLike = ...,
order: _OrderKACF = ...,
) -> chararray[Any, dtype[str_]]: ...
def __array_finalize__(self, obj: object) -> None: ...
def __mul__(self, other: i_co) -> chararray[Any, _CharDType]: ...
def __rmul__(self, other: i_co) -> chararray[Any, _CharDType]: ...
def __mod__(self, i: Any) -> chararray[Any, _CharDType]: ...
@overload
def __eq__(
self: _CharArray[str_],
other: U_co,
) -> NDArray[np.bool]: ...
@overload
def __eq__(
self: _CharArray[bytes_],
other: S_co,
) -> NDArray[np.bool]: ...
@overload
def __ne__(
self: _CharArray[str_],
other: U_co,
) -> NDArray[np.bool]: ...
@overload
def __ne__(
self: _CharArray[bytes_],
other: S_co,
) -> NDArray[np.bool]: ...
@overload
def __ge__(
self: _CharArray[str_],
other: U_co,
) -> NDArray[np.bool]: ...
@overload
def __ge__(
self: _CharArray[bytes_],
other: S_co,
) -> NDArray[np.bool]: ...
@overload
def __le__(
self: _CharArray[str_],
other: U_co,
) -> NDArray[np.bool]: ...
@overload
def __le__(
self: _CharArray[bytes_],
other: S_co,
) -> NDArray[np.bool]: ...
@overload
def __gt__(
self: _CharArray[str_],
other: U_co,
) -> NDArray[np.bool]: ...
@overload
def __gt__(
self: _CharArray[bytes_],
other: S_co,
) -> NDArray[np.bool]: ...
@overload
def __lt__(
self: _CharArray[str_],
other: U_co,
) -> NDArray[np.bool]: ...
@overload
def __lt__(
self: _CharArray[bytes_],
other: S_co,
) -> NDArray[np.bool]: ...
@overload
def __add__(
self: _CharArray[str_],
other: U_co,
) -> _CharArray[str_]: ...
@overload
def __add__(
self: _CharArray[bytes_],
other: S_co,
) -> _CharArray[bytes_]: ...
@overload
def __radd__(
self: _CharArray[str_],
other: U_co,
) -> _CharArray[str_]: ...
@overload
def __radd__(
self: _CharArray[bytes_],
other: S_co,
) -> _CharArray[bytes_]: ...
@overload
def center(
self: _CharArray[str_],
width: i_co,
fillchar: U_co = ...,
) -> _CharArray[str_]: ...
@overload
def center(
self: _CharArray[bytes_],
width: i_co,
fillchar: S_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def count(
self: _CharArray[str_],
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def count(
self: _CharArray[bytes_],
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
def decode(
self: _CharArray[bytes_],
encoding: None | str = ...,
errors: None | str = ...,
) -> _CharArray[str_]: ...
def encode(
self: _CharArray[str_],
encoding: None | str = ...,
errors: None | str = ...,
) -> _CharArray[bytes_]: ...
@overload
def endswith(
self: _CharArray[str_],
suffix: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
@overload
def endswith(
self: _CharArray[bytes_],
suffix: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
def expandtabs(
self,
tabsize: i_co = ...,
) -> chararray[Any, _CharDType]: ...
@overload
def find(
self: _CharArray[str_],
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def find(
self: _CharArray[bytes_],
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def index(
self: _CharArray[str_],
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def index(
self: _CharArray[bytes_],
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def join(
self: _CharArray[str_],
seq: U_co,
) -> _CharArray[str_]: ...
@overload
def join(
self: _CharArray[bytes_],
seq: S_co,
) -> _CharArray[bytes_]: ...
@overload
def ljust(
self: _CharArray[str_],
width: i_co,
fillchar: U_co = ...,
) -> _CharArray[str_]: ...
@overload
def ljust(
self: _CharArray[bytes_],
width: i_co,
fillchar: S_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def lstrip(
self: _CharArray[str_],
chars: None | U_co = ...,
) -> _CharArray[str_]: ...
@overload
def lstrip(
self: _CharArray[bytes_],
chars: None | S_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def partition(
self: _CharArray[str_],
sep: U_co,
) -> _CharArray[str_]: ...
@overload
def partition(
self: _CharArray[bytes_],
sep: S_co,
) -> _CharArray[bytes_]: ...
@overload
def replace(
self: _CharArray[str_],
old: U_co,
new: U_co,
count: None | i_co = ...,
) -> _CharArray[str_]: ...
@overload
def replace(
self: _CharArray[bytes_],
old: S_co,
new: S_co,
count: None | i_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def rfind(
self: _CharArray[str_],
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rfind(
self: _CharArray[bytes_],
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rindex(
self: _CharArray[str_],
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rindex(
self: _CharArray[bytes_],
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rjust(
self: _CharArray[str_],
width: i_co,
fillchar: U_co = ...,
) -> _CharArray[str_]: ...
@overload
def rjust(
self: _CharArray[bytes_],
width: i_co,
fillchar: S_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def rpartition(
self: _CharArray[str_],
sep: U_co,
) -> _CharArray[str_]: ...
@overload
def rpartition(
self: _CharArray[bytes_],
sep: S_co,
) -> _CharArray[bytes_]: ...
@overload
def rsplit(
self: _CharArray[str_],
sep: None | U_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def rsplit(
self: _CharArray[bytes_],
sep: None | S_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def rstrip(
self: _CharArray[str_],
chars: None | U_co = ...,
) -> _CharArray[str_]: ...
@overload
def rstrip(
self: _CharArray[bytes_],
chars: None | S_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def split(
self: _CharArray[str_],
sep: None | U_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def split(
self: _CharArray[bytes_],
sep: None | S_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
def splitlines(self, keepends: None | b_co = ...) -> NDArray[object_]: ...
@overload
def startswith(
self: _CharArray[str_],
prefix: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
@overload
def startswith(
self: _CharArray[bytes_],
prefix: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
@overload
def strip(
self: _CharArray[str_],
chars: None | U_co = ...,
) -> _CharArray[str_]: ...
@overload
def strip(
self: _CharArray[bytes_],
chars: None | S_co = ...,
) -> _CharArray[bytes_]: ...
@overload
def translate(
self: _CharArray[str_],
table: U_co,
deletechars: None | U_co = ...,
) -> _CharArray[str_]: ...
@overload
def translate(
self: _CharArray[bytes_],
table: S_co,
deletechars: None | S_co = ...,
) -> _CharArray[bytes_]: ...
def zfill(self, width: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
def capitalize(self) -> chararray[_ShapeType_co, _CharDType]: ...
def title(self) -> chararray[_ShapeType_co, _CharDType]: ...
def swapcase(self) -> chararray[_ShapeType_co, _CharDType]: ...
def lower(self) -> chararray[_ShapeType_co, _CharDType]: ...
def upper(self) -> chararray[_ShapeType_co, _CharDType]: ...
def isalnum(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def isalpha(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def isdigit(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def islower(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def isspace(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def istitle(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def isupper(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def isnumeric(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
def isdecimal(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
__all__: list[str]
# Comparison
@overload
def equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
@overload
def equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
@overload
def not_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
@overload
def not_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
@overload
def greater_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
@overload
def greater_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
@overload
def less_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
@overload
def less_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
@overload
def greater(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
@overload
def greater(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
@overload
def less(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
@overload
def less(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
# String operations
@overload
def add(x1: U_co, x2: U_co) -> NDArray[str_]: ...
@overload
def add(x1: S_co, x2: S_co) -> NDArray[bytes_]: ...
@overload
def multiply(a: U_co, i: i_co) -> NDArray[str_]: ...
@overload
def multiply(a: S_co, i: i_co) -> NDArray[bytes_]: ...
@overload
def mod(a: U_co, value: Any) -> NDArray[str_]: ...
@overload
def mod(a: S_co, value: Any) -> NDArray[bytes_]: ...
@overload
def capitalize(a: U_co) -> NDArray[str_]: ...
@overload
def capitalize(a: S_co) -> NDArray[bytes_]: ...
@overload
def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
@overload
def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
def decode(
a: S_co,
encoding: None | str = ...,
errors: None | str = ...,
) -> NDArray[str_]: ...
def encode(
a: U_co,
encoding: None | str = ...,
errors: None | str = ...,
) -> NDArray[bytes_]: ...
@overload
def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ...
@overload
def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ...
@overload
def join(sep: U_co, seq: U_co) -> NDArray[str_]: ...
@overload
def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ...
@overload
def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
@overload
def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
@overload
def lower(a: U_co) -> NDArray[str_]: ...
@overload
def lower(a: S_co) -> NDArray[bytes_]: ...
@overload
def lstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
@overload
def lstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
@overload
def partition(a: U_co, sep: U_co) -> NDArray[str_]: ...
@overload
def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
@overload
def replace(
a: U_co,
old: U_co,
new: U_co,
count: None | i_co = ...,
) -> NDArray[str_]: ...
@overload
def replace(
a: S_co,
old: S_co,
new: S_co,
count: None | i_co = ...,
) -> NDArray[bytes_]: ...
@overload
def rjust(
a: U_co,
width: i_co,
fillchar: U_co = ...,
) -> NDArray[str_]: ...
@overload
def rjust(
a: S_co,
width: i_co,
fillchar: S_co = ...,
) -> NDArray[bytes_]: ...
@overload
def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ...
@overload
def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
@overload
def rsplit(
a: U_co,
sep: None | U_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def rsplit(
a: S_co,
sep: None | S_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def rstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
@overload
def rstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
@overload
def split(
a: U_co,
sep: None | U_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def split(
a: S_co,
sep: None | S_co = ...,
maxsplit: None | i_co = ...,
) -> NDArray[object_]: ...
@overload
def splitlines(a: U_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
@overload
def splitlines(a: S_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
@overload
def strip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
@overload
def strip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
@overload
def swapcase(a: U_co) -> NDArray[str_]: ...
@overload
def swapcase(a: S_co) -> NDArray[bytes_]: ...
@overload
def title(a: U_co) -> NDArray[str_]: ...
@overload
def title(a: S_co) -> NDArray[bytes_]: ...
@overload
def translate(
a: U_co,
table: U_co,
deletechars: None | U_co = ...,
) -> NDArray[str_]: ...
@overload
def translate(
a: S_co,
table: S_co,
deletechars: None | S_co = ...,
) -> NDArray[bytes_]: ...
@overload
def upper(a: U_co) -> NDArray[str_]: ...
@overload
def upper(a: S_co) -> NDArray[bytes_]: ...
@overload
def zfill(a: U_co, width: i_co) -> NDArray[str_]: ...
@overload
def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ...
# String information
@overload
def count(
a: U_co,
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def count(
a: S_co,
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def endswith(
a: U_co,
suffix: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
@overload
def endswith(
a: S_co,
suffix: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
@overload
def find(
a: U_co,
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def find(
a: S_co,
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def index(
a: U_co,
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def index(
a: S_co,
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
def isalpha(a: U_co | S_co) -> NDArray[np.bool]: ...
def isalnum(a: U_co | S_co) -> NDArray[np.bool]: ...
def isdecimal(a: U_co) -> NDArray[np.bool]: ...
def isdigit(a: U_co | S_co) -> NDArray[np.bool]: ...
def islower(a: U_co | S_co) -> NDArray[np.bool]: ...
def isnumeric(a: U_co) -> NDArray[np.bool]: ...
def isspace(a: U_co | S_co) -> NDArray[np.bool]: ...
def istitle(a: U_co | S_co) -> NDArray[np.bool]: ...
def isupper(a: U_co | S_co) -> NDArray[np.bool]: ...
@overload
def rfind(
a: U_co,
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rfind(
a: S_co,
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rindex(
a: U_co,
sub: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def rindex(
a: S_co,
sub: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[int_]: ...
@overload
def startswith(
a: U_co,
prefix: U_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
@overload
def startswith(
a: S_co,
prefix: S_co,
start: i_co = ...,
end: None | i_co = ...,
) -> NDArray[np.bool]: ...
def str_len(A: U_co | S_co) -> NDArray[int_]: ...
# Overload 1 and 2: str- or bytes-based array-likes
# overload 3: arbitrary object with unicode=False (-> bytes_)
# overload 4: arbitrary object with unicode=True (-> str_)
@overload
def array(
obj: U_co,
itemsize: None | int = ...,
copy: bool = ...,
unicode: L[False] = ...,
order: _OrderKACF = ...,
) -> _CharArray[str_]: ...
@overload
def array(
obj: S_co,
itemsize: None | int = ...,
copy: bool = ...,
unicode: L[False] = ...,
order: _OrderKACF = ...,
) -> _CharArray[bytes_]: ...
@overload
def array(
obj: object,
itemsize: None | int = ...,
copy: bool = ...,
unicode: L[False] = ...,
order: _OrderKACF = ...,
) -> _CharArray[bytes_]: ...
@overload
def array(
obj: object,
itemsize: None | int = ...,
copy: bool = ...,
unicode: L[True] = ...,
order: _OrderKACF = ...,
) -> _CharArray[str_]: ...
@overload
def asarray(
obj: U_co,
itemsize: None | int = ...,
unicode: L[False] = ...,
order: _OrderKACF = ...,
) -> _CharArray[str_]: ...
@overload
def asarray(
obj: S_co,
itemsize: None | int = ...,
unicode: L[False] = ...,
order: _OrderKACF = ...,
) -> _CharArray[bytes_]: ...
@overload
def asarray(
obj: object,
itemsize: None | int = ...,
unicode: L[False] = ...,
order: _OrderKACF = ...,
) -> _CharArray[bytes_]: ...
@overload
def asarray(
obj: object,
itemsize: None | int = ...,
unicode: L[True] = ...,
order: _OrderKACF = ...,
) -> _CharArray[str_]: ...

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,183 @@
from collections.abc import Sequence
from typing import TypeVar, Any, overload, Literal
import numpy as np
from numpy import number, _OrderKACF
from numpy._typing import (
NDArray,
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
_ArrayLikeInt_co,
_ArrayLikeFloat_co,
_ArrayLikeComplex_co,
_ArrayLikeObject_co,
_DTypeLikeBool,
_DTypeLikeUInt,
_DTypeLikeInt,
_DTypeLikeFloat,
_DTypeLikeComplex,
_DTypeLikeComplex_co,
_DTypeLikeObject,
)
_ArrayType = TypeVar(
"_ArrayType",
bound=NDArray[np.bool | number[Any]],
)
_OptimizeKind = None | bool | Literal["greedy", "optimal"] | Sequence[Any]
_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
_CastingUnsafe = Literal["unsafe"]
__all__: list[str]
# TODO: Properly handle the `casting`-based combinatorics
# TODO: We need to evaluate the content `__subscripts` in order
# to identify whether or an array or scalar is returned. At a cursory
# glance this seems like something that can quite easily be done with
# a mypy plugin.
# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeBool_co,
out: None = ...,
dtype: None | _DTypeLikeBool = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeUInt_co,
out: None = ...,
dtype: None | _DTypeLikeUInt = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeInt_co,
out: None = ...,
dtype: None | _DTypeLikeInt = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeFloat_co,
out: None = ...,
dtype: None | _DTypeLikeFloat = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeComplex_co,
out: None = ...,
dtype: None | _DTypeLikeComplex = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: Any,
casting: _CastingUnsafe,
dtype: None | _DTypeLikeComplex_co = ...,
out: None = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeComplex_co,
out: _ArrayType,
dtype: None | _DTypeLikeComplex_co = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> _ArrayType: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: Any,
out: _ArrayType,
casting: _CastingUnsafe,
dtype: None | _DTypeLikeComplex_co = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
) -> _ArrayType: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeObject_co,
out: None = ...,
dtype: None | _DTypeLikeObject = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: Any,
casting: _CastingUnsafe,
dtype: None | _DTypeLikeObject = ...,
out: None = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
) -> Any: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeObject_co,
out: _ArrayType,
dtype: None | _DTypeLikeObject = ...,
order: _OrderKACF = ...,
casting: _CastingSafe = ...,
optimize: _OptimizeKind = ...,
) -> _ArrayType: ...
@overload
def einsum(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: Any,
out: _ArrayType,
casting: _CastingUnsafe,
dtype: None | _DTypeLikeObject = ...,
order: _OrderKACF = ...,
optimize: _OptimizeKind = ...,
) -> _ArrayType: ...
# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
# It is therefore excluded from the signatures below.
# NOTE: In practice the list consists of a `str` (first element)
# and a variable number of integer tuples.
def einsum_path(
subscripts: str | _ArrayLikeInt_co,
/,
*operands: _ArrayLikeComplex_co | _DTypeLikeObject,
optimize: _OptimizeKind = ...,
) -> tuple[list[Any], str]: ...

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,562 @@
import functools
import warnings
import operator
import types
import numpy as np
from . import numeric as _nx
from .numeric import result_type, nan, asanyarray, ndim
from numpy._core.multiarray import add_docstring
from numpy._core._multiarray_umath import _array_converter
from numpy._core import overrides
__all__ = ['logspace', 'linspace', 'geomspace']
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
dtype=None, axis=None, *, device=None):
return (start, stop)
@array_function_dispatch(_linspace_dispatcher)
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
axis=0, *, device=None):
"""
Return evenly spaced numbers over a specified interval.
Returns `num` evenly spaced samples, calculated over the
interval [`start`, `stop`].
The endpoint of the interval can optionally be excluded.
.. versionchanged:: 1.16.0
Non-scalar `start` and `stop` are now supported.
.. versionchanged:: 1.20.0
Values are rounded towards ``-inf`` instead of ``0`` when an
integer ``dtype`` is specified. The old behavior can
still be obtained with ``np.linspace(start, stop, num).astype(int)``
Parameters
----------
start : array_like
The starting value of the sequence.
stop : array_like
The end value of the sequence, unless `endpoint` is set to False.
In that case, the sequence consists of all but the last of ``num + 1``
evenly spaced samples, so that `stop` is excluded. Note that the step
size changes when `endpoint` is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, `stop` is the last sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (`samples`, `step`), where `step` is the spacing
between samples.
dtype : dtype, optional
The type of the output array. If `dtype` is not given, the data type
is inferred from `start` and `stop`. The inferred dtype will never be
an integer; `float` is chosen even if the arguments would produce an
array of integers.
.. versionadded:: 1.9.0
axis : int, optional
The axis in the result to store the samples. Relevant only if start
or stop are array-like. By default (0), the samples will be along a
new axis inserted at the beginning. Use -1 to get an axis at the end.
.. versionadded:: 1.16.0
device : str, optional
The device on which to place the created array. Default: None.
For Array-API interoperability only, so must be ``"cpu"`` if passed.
.. versionadded:: 2.0.0
Returns
-------
samples : ndarray
There are `num` equally spaced samples in the closed interval
``[start, stop]`` or the half-open interval ``[start, stop)``
(depending on whether `endpoint` is True or False).
step : float, optional
Only returned if `retstep` is True
Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
number of samples).
geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
scale (a geometric progression).
logspace : Similar to `geomspace`, but with the end points specified as
logarithms.
:ref:`how-to-partition`
Examples
--------
>>> import numpy as np
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()
"""
num = operator.index(num)
if num < 0:
raise ValueError(
"Number of samples, %s, must be non-negative." % num
)
div = (num - 1) if endpoint else num
conv = _array_converter(start, stop)
start, stop = conv.as_arrays()
dt = conv.result_type(ensure_inexact=True)
if dtype is None:
dtype = dt
integer_dtype = False
else:
integer_dtype = _nx.issubdtype(dtype, _nx.integer)
# Use `dtype=type(dt)` to enforce a floating point evaluation:
delta = np.subtract(stop, start, dtype=type(dt))
y = _nx.arange(
0, num, dtype=dt, device=device
).reshape((-1,) + (1,) * ndim(delta))
# In-place multiplication y *= delta/div is faster, but prevents
# the multiplicant from overriding what class is produced, and thus
# prevents, e.g. use of Quantities, see gh-7142. Hence, we multiply
# in place only for standard scalar types.
if div > 0:
_mult_inplace = _nx.isscalar(delta)
step = delta / div
any_step_zero = (
step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any())
if any_step_zero:
# Special handling for denormal numbers, gh-5437
y /= div
if _mult_inplace:
y *= delta
else:
y = y * delta
else:
if _mult_inplace:
y *= step
else:
y = y * step
else:
# sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
# have an undefined step
step = nan
# Multiply with delta to allow possible override of output class.
y = y * delta
y += start
if endpoint and num > 1:
y[-1, ...] = stop
if axis != 0:
y = _nx.moveaxis(y, 0, axis)
if integer_dtype:
_nx.floor(y, out=y)
y = conv.wrap(y.astype(dtype, copy=False))
if retstep:
return y, step
else:
return y
def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
dtype=None, axis=None):
return (start, stop, base)
@array_function_dispatch(_logspace_dispatcher)
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
axis=0):
"""
Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at ``base ** start``
(`base` to the power of `start`) and ends with ``base ** stop``
(see `endpoint` below).
.. versionchanged:: 1.16.0
Non-scalar `start` and `stop` are now supported.
.. versionchanged:: 1.25.0
Non-scalar 'base` is now supported
Parameters
----------
start : array_like
``base ** start`` is the starting value of the sequence.
stop : array_like
``base ** stop`` is the final value of the sequence, unless `endpoint`
is False. In that case, ``num + 1`` values are spaced over the
interval in log-space, of which all but the last (a sequence of
length `num`) are returned.
num : integer, optional
Number of samples to generate. Default is 50.
endpoint : boolean, optional
If true, `stop` is the last sample. Otherwise, it is not included.
Default is True.
base : array_like, optional
The base of the log space. The step size between the elements in
``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
Default is 10.0.
dtype : dtype
The type of the output array. If `dtype` is not given, the data type
is inferred from `start` and `stop`. The inferred type will never be
an integer; `float` is chosen even if the arguments would produce an
array of integers.
axis : int, optional
The axis in the result to store the samples. Relevant only if start,
stop, or base are array-like. By default (0), the samples will be
along a new axis inserted at the beginning. Use -1 to get an axis at
the end.
.. versionadded:: 1.16.0
Returns
-------
samples : ndarray
`num` samples, equally spaced on a log scale.
See Also
--------
arange : Similar to linspace, with the step size specified instead of the
number of samples. Note that, when used with a float endpoint, the
endpoint may or may not be included.
linspace : Similar to logspace, but with the samples uniformly distributed
in linear space, instead of log space.
geomspace : Similar to logspace, but with endpoints specified directly.
:ref:`how-to-partition`
Notes
-----
If base is a scalar, logspace is equivalent to the code
>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
... # doctest: +SKIP
>>> power(base, y).astype(dtype)
... # doctest: +SKIP
Examples
--------
>>> import numpy as np
>>> np.logspace(2.0, 3.0, num=4)
array([ 100. , 215.443469 , 464.15888336, 1000. ])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
array([100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
array([4. , 5.0396842 , 6.34960421, 8. ])
>>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
array([[ 4. , 5.0396842 , 6.34960421, 8. ],
[ 9. , 12.98024613, 18.72075441, 27. ]])
Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros(N)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()
"""
if not isinstance(base, (float, int)) and np.ndim(base):
# If base is non-scalar, broadcast it with the others, since it
# may influence how axis is interpreted.
ndmax = np.broadcast(start, stop, base).ndim
start, stop, base = (
np.array(a, copy=None, subok=True, ndmin=ndmax)
for a in (start, stop, base)
)
base = np.expand_dims(base, axis=axis)
y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
if dtype is None:
return _nx.power(base, y)
return _nx.power(base, y).astype(dtype, copy=False)
def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
axis=None):
return (start, stop)
@array_function_dispatch(_geomspace_dispatcher)
def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
"""
Return numbers spaced evenly on a log scale (a geometric progression).
This is similar to `logspace`, but with endpoints specified directly.
Each output sample is a constant multiple of the previous.
.. versionchanged:: 1.16.0
Non-scalar `start` and `stop` are now supported.
Parameters
----------
start : array_like
The starting value of the sequence.
stop : array_like
The final value of the sequence, unless `endpoint` is False.
In that case, ``num + 1`` values are spaced over the
interval in log-space, of which all but the last (a sequence of
length `num`) are returned.
num : integer, optional
Number of samples to generate. Default is 50.
endpoint : boolean, optional
If true, `stop` is the last sample. Otherwise, it is not included.
Default is True.
dtype : dtype
The type of the output array. If `dtype` is not given, the data type
is inferred from `start` and `stop`. The inferred dtype will never be
an integer; `float` is chosen even if the arguments would produce an
array of integers.
axis : int, optional
The axis in the result to store the samples. Relevant only if start
or stop are array-like. By default (0), the samples will be along a
new axis inserted at the beginning. Use -1 to get an axis at the end.
.. versionadded:: 1.16.0
Returns
-------
samples : ndarray
`num` samples, equally spaced on a log scale.
See Also
--------
logspace : Similar to geomspace, but with endpoints specified using log
and base.
linspace : Similar to geomspace, but with arithmetic instead of geometric
progression.
arange : Similar to linspace, with the step size specified instead of the
number of samples.
:ref:`how-to-partition`
Notes
-----
If the inputs or dtype are complex, the output will follow a logarithmic
spiral in the complex plane. (There are an infinite number of spirals
passing through two points; the output will follow the shortest such path.)
Examples
--------
>>> import numpy as np
>>> np.geomspace(1, 1000, num=4)
array([ 1., 10., 100., 1000.])
>>> np.geomspace(1, 1000, num=3, endpoint=False)
array([ 1., 10., 100.])
>>> np.geomspace(1, 1000, num=4, endpoint=False)
array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
>>> np.geomspace(1, 256, num=9)
array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
Note that the above may not produce exact integers:
>>> np.geomspace(1, 256, num=9, dtype=int)
array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
>>> np.around(np.geomspace(1, 256, num=9)).astype(int)
array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
Negative, decreasing, and complex inputs are allowed:
>>> np.geomspace(1000, 1, num=4)
array([1000., 100., 10., 1.])
>>> np.geomspace(-1000, -1, num=4)
array([-1000., -100., -10., -1.])
>>> np.geomspace(1j, 1000j, num=4) # Straight line
array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
>>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
1.00000000e+00+0.00000000e+00j])
Graphical illustration of `endpoint` parameter:
>>> import matplotlib.pyplot as plt
>>> N = 10
>>> y = np.zeros(N)
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.axis([0.5, 2000, 0, 3])
[0.5, 2000, 0, 3]
>>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
>>> plt.show()
"""
start = asanyarray(start)
stop = asanyarray(stop)
if _nx.any(start == 0) or _nx.any(stop == 0):
raise ValueError('Geometric sequence cannot include zero')
dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
if dtype is None:
dtype = dt
else:
# complex to dtype('complex128'), for instance
dtype = _nx.dtype(dtype)
# Promote both arguments to the same dtype in case, for instance, one is
# complex and another is negative and log would produce NaN otherwise.
# Copy since we may change things in-place further down.
start = start.astype(dt, copy=True)
stop = stop.astype(dt, copy=True)
# Allow negative real values and ensure a consistent result for complex
# (including avoiding negligible real or imaginary parts in output) by
# rotating start to positive real, calculating, then undoing rotation.
out_sign = _nx.sign(start)
start /= out_sign
stop = stop / out_sign
log_start = _nx.log10(start)
log_stop = _nx.log10(stop)
result = logspace(log_start, log_stop, num=num,
endpoint=endpoint, base=10.0, dtype=dt)
# Make sure the endpoints match the start and stop arguments. This is
# necessary because np.exp(np.log(x)) is not necessarily equal to x.
if num > 0:
result[0] = start
if num > 1 and endpoint:
result[-1] = stop
result *= out_sign
if axis != 0:
result = _nx.moveaxis(result, 0, axis)
return result.astype(dtype, copy=False)
def _needs_add_docstring(obj):
"""
Returns true if the only way to set the docstring of `obj` from python is
via add_docstring.
This function errs on the side of being overly conservative.
"""
Py_TPFLAGS_HEAPTYPE = 1 << 9
if isinstance(obj, (types.FunctionType, types.MethodType, property)):
return False
if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
return False
return True
def _add_docstring(obj, doc, warn_on_python):
if warn_on_python and not _needs_add_docstring(obj):
warnings.warn(
"add_newdoc was used on a pure-python object {}. "
"Prefer to attach it directly to the source."
.format(obj),
UserWarning,
stacklevel=3)
try:
add_docstring(obj, doc)
except Exception:
pass
def add_newdoc(place, obj, doc, warn_on_python=True):
"""
Add documentation to an existing object, typically one defined in C
The purpose is to allow easier editing of the docstrings without requiring
a re-compile. This exists primarily for internal use within numpy itself.
Parameters
----------
place : str
The absolute name of the module to import from
obj : str or None
The name of the object to add documentation to, typically a class or
function name.
doc : {str, Tuple[str, str], List[Tuple[str, str]]}
If a string, the documentation to apply to `obj`
If a tuple, then the first element is interpreted as an attribute
of `obj` and the second as the docstring to apply -
``(method, docstring)``
If a list, then each element of the list should be a tuple of length
two - ``[(method1, docstring1), (method2, docstring2), ...]``
warn_on_python : bool
If True, the default, emit `UserWarning` if this is used to attach
documentation to a pure-python object.
Notes
-----
This routine never raises an error if the docstring can't be written, but
will raise an error if the object being documented does not exist.
This routine cannot modify read-only docstrings, as appear
in new-style classes or built-in functions. Because this
routine never raises an error the caller must check manually
that the docstrings were changed.
Since this function grabs the ``char *`` from a c-level str object and puts
it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
C-API best-practices, by:
- modifying a `PyTypeObject` after calling `PyType_Ready`
- calling `Py_INCREF` on the str and losing the reference, so the str
will never be released
If possible it should be avoided.
"""
new = getattr(__import__(place, globals(), {}, [obj]), obj)
if isinstance(doc, str):
_add_docstring(new, doc.strip(), warn_on_python)
elif isinstance(doc, tuple):
attr, docstring = doc
_add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
elif isinstance(doc, list):
for attr, docstring in doc:
_add_docstring(
getattr(new, attr), docstring.strip(), warn_on_python
)

View File

@ -0,0 +1,202 @@
from typing import (
Literal as L,
overload,
Any,
SupportsIndex,
TypeVar,
)
from numpy import floating, complexfloating, generic
from numpy._typing import (
NDArray,
DTypeLike,
_DTypeLike,
_ArrayLikeFloat_co,
_ArrayLikeComplex_co,
)
_SCT = TypeVar("_SCT", bound=generic)
__all__: list[str]
@overload
def linspace(
start: _ArrayLikeFloat_co,
stop: _ArrayLikeFloat_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[False] = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> NDArray[floating[Any]]: ...
@overload
def linspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[False] = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def linspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[False] = ...,
dtype: _DTypeLike[_SCT] = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> NDArray[_SCT]: ...
@overload
def linspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[False] = ...,
dtype: DTypeLike = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> NDArray[Any]: ...
@overload
def linspace(
start: _ArrayLikeFloat_co,
stop: _ArrayLikeFloat_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[True] = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> tuple[NDArray[floating[Any]], floating[Any]]: ...
@overload
def linspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[True] = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> tuple[NDArray[complexfloating[Any, Any]], complexfloating[Any, Any]]: ...
@overload
def linspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[True] = ...,
dtype: _DTypeLike[_SCT] = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> tuple[NDArray[_SCT], _SCT]: ...
@overload
def linspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
retstep: L[True] = ...,
dtype: DTypeLike = ...,
axis: SupportsIndex = ...,
*,
device: None | L["cpu"] = ...,
) -> tuple[NDArray[Any], Any]: ...
@overload
def logspace(
start: _ArrayLikeFloat_co,
stop: _ArrayLikeFloat_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
base: _ArrayLikeFloat_co = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
) -> NDArray[floating[Any]]: ...
@overload
def logspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
base: _ArrayLikeComplex_co = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def logspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
base: _ArrayLikeComplex_co = ...,
dtype: _DTypeLike[_SCT] = ...,
axis: SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def logspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
base: _ArrayLikeComplex_co = ...,
dtype: DTypeLike = ...,
axis: SupportsIndex = ...,
) -> NDArray[Any]: ...
@overload
def geomspace(
start: _ArrayLikeFloat_co,
stop: _ArrayLikeFloat_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
) -> NDArray[floating[Any]]: ...
@overload
def geomspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
dtype: None = ...,
axis: SupportsIndex = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def geomspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
dtype: _DTypeLike[_SCT] = ...,
axis: SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def geomspace(
start: _ArrayLikeComplex_co,
stop: _ArrayLikeComplex_co,
num: SupportsIndex = ...,
endpoint: bool = ...,
dtype: DTypeLike = ...,
axis: SupportsIndex = ...,
) -> NDArray[Any]: ...
def add_newdoc(
place: str,
obj: str,
doc: str | tuple[str, str] | list[tuple[str, str]],
warn_on_python: bool = ...,
) -> None: ...

View File

@ -0,0 +1,742 @@
"""Machine limits for Float32 and Float64 and (long double) if available...
"""
__all__ = ['finfo', 'iinfo']
import warnings
from .._utils import set_module
from ._machar import MachAr
from . import numeric
from . import numerictypes as ntypes
from .numeric import array, inf, nan
from .umath import log10, exp2, nextafter, isnan
def _fr0(a):
"""fix rank-0 --> rank-1"""
if a.ndim == 0:
a = a.copy()
a.shape = (1,)
return a
def _fr1(a):
"""fix rank > 0 --> rank-0"""
if a.size == 1:
a = a.copy()
a.shape = ()
return a
class MachArLike:
""" Object to simulate MachAr instance """
def __init__(self, ftype, *, eps, epsneg, huge, tiny,
ibeta, smallest_subnormal=None, **kwargs):
self.params = _MACHAR_PARAMS[ftype]
self.ftype = ftype
self.title = self.params['title']
# Parameter types same as for discovered MachAr object.
if not smallest_subnormal:
self._smallest_subnormal = nextafter(
self.ftype(0), self.ftype(1), dtype=self.ftype)
else:
self._smallest_subnormal = smallest_subnormal
self.epsilon = self.eps = self._float_to_float(eps)
self.epsneg = self._float_to_float(epsneg)
self.xmax = self.huge = self._float_to_float(huge)
self.xmin = self._float_to_float(tiny)
self.smallest_normal = self.tiny = self._float_to_float(tiny)
self.ibeta = self.params['itype'](ibeta)
self.__dict__.update(kwargs)
self.precision = int(-log10(self.eps))
self.resolution = self._float_to_float(
self._float_conv(10) ** (-self.precision))
self._str_eps = self._float_to_str(self.eps)
self._str_epsneg = self._float_to_str(self.epsneg)
self._str_xmin = self._float_to_str(self.xmin)
self._str_xmax = self._float_to_str(self.xmax)
self._str_resolution = self._float_to_str(self.resolution)
self._str_smallest_normal = self._float_to_str(self.xmin)
@property
def smallest_subnormal(self):
"""Return the value for the smallest subnormal.
Returns
-------
smallest_subnormal : float
value for the smallest subnormal.
Warns
-----
UserWarning
If the calculated value for the smallest subnormal is zero.
"""
# Check that the calculated value is not zero, in case it raises a
# warning.
value = self._smallest_subnormal
if self.ftype(0) == value:
warnings.warn(
'The value of the smallest subnormal for {} type '
'is zero.'.format(self.ftype), UserWarning, stacklevel=2)
return self._float_to_float(value)
@property
def _str_smallest_subnormal(self):
"""Return the string representation of the smallest subnormal."""
return self._float_to_str(self.smallest_subnormal)
def _float_to_float(self, value):
"""Converts float to float.
Parameters
----------
value : float
value to be converted.
"""
return _fr1(self._float_conv(value))
def _float_conv(self, value):
"""Converts float to conv.
Parameters
----------
value : float
value to be converted.
"""
return array([value], self.ftype)
def _float_to_str(self, value):
"""Converts float to str.
Parameters
----------
value : float
value to be converted.
"""
return self.params['fmt'] % array(_fr0(value)[0], self.ftype)
_convert_to_float = {
ntypes.csingle: ntypes.single,
ntypes.complex128: ntypes.float64,
ntypes.clongdouble: ntypes.longdouble
}
# Parameters for creating MachAr / MachAr-like objects
_title_fmt = 'numpy {} precision floating point number'
_MACHAR_PARAMS = {
ntypes.double: dict(
itype = ntypes.int64,
fmt = '%24.16e',
title = _title_fmt.format('double')),
ntypes.single: dict(
itype = ntypes.int32,
fmt = '%15.7e',
title = _title_fmt.format('single')),
ntypes.longdouble: dict(
itype = ntypes.longlong,
fmt = '%s',
title = _title_fmt.format('long double')),
ntypes.half: dict(
itype = ntypes.int16,
fmt = '%12.5e',
title = _title_fmt.format('half'))}
# Key to identify the floating point type. Key is result of
#
# ftype = np.longdouble # or float64, float32, etc.
# v = (ftype(-1.0) / ftype(10.0))
# v.view(v.dtype.newbyteorder('<')).tobytes()
#
# Uses division to work around deficiencies in strtold on some platforms.
# See:
# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
_KNOWN_TYPES = {}
def _register_type(machar, bytepat):
_KNOWN_TYPES[bytepat] = machar
_float_ma = {}
def _register_known_types():
# Known parameters for float16
# See docstring of MachAr class for description of parameters.
f16 = ntypes.float16
float16_ma = MachArLike(f16,
machep=-10,
negep=-11,
minexp=-14,
maxexp=16,
it=10,
iexp=5,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(f16(-10)),
epsneg=exp2(f16(-11)),
huge=f16(65504),
tiny=f16(2 ** -14))
_register_type(float16_ma, b'f\xae')
_float_ma[16] = float16_ma
# Known parameters for float32
f32 = ntypes.float32
float32_ma = MachArLike(f32,
machep=-23,
negep=-24,
minexp=-126,
maxexp=128,
it=23,
iexp=8,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(f32(-23)),
epsneg=exp2(f32(-24)),
huge=f32((1 - 2 ** -24) * 2**128),
tiny=exp2(f32(-126)))
_register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
_float_ma[32] = float32_ma
# Known parameters for float64
f64 = ntypes.float64
epsneg_f64 = 2.0 ** -53.0
tiny_f64 = 2.0 ** -1022.0
float64_ma = MachArLike(f64,
machep=-52,
negep=-53,
minexp=-1022,
maxexp=1024,
it=52,
iexp=11,
ibeta=2,
irnd=5,
ngrd=0,
eps=2.0 ** -52.0,
epsneg=epsneg_f64,
huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
tiny=tiny_f64)
_register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
_float_ma[64] = float64_ma
# Known parameters for IEEE 754 128-bit binary float
ld = ntypes.longdouble
epsneg_f128 = exp2(ld(-113))
tiny_f128 = exp2(ld(-16382))
# Ignore runtime error when this is not f128
with numeric.errstate(all='ignore'):
huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
float128_ma = MachArLike(ld,
machep=-112,
negep=-113,
minexp=-16382,
maxexp=16384,
it=112,
iexp=15,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-112)),
epsneg=epsneg_f128,
huge=huge_f128,
tiny=tiny_f128)
# IEEE 754 128-bit binary float
_register_type(float128_ma,
b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
_float_ma[128] = float128_ma
# Known parameters for float80 (Intel 80-bit extended precision)
epsneg_f80 = exp2(ld(-64))
tiny_f80 = exp2(ld(-16382))
# Ignore runtime error when this is not f80
with numeric.errstate(all='ignore'):
huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
float80_ma = MachArLike(ld,
machep=-63,
negep=-64,
minexp=-16382,
maxexp=16384,
it=63,
iexp=15,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-63)),
epsneg=epsneg_f80,
huge=huge_f80,
tiny=tiny_f80)
# float80, first 10 bytes containing actual storage
_register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
_float_ma[80] = float80_ma
# Guessed / known parameters for double double; see:
# https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
# These numbers have the same exponent range as float64, but extended
# number of digits in the significand.
huge_dd = nextafter(ld(inf), ld(0), dtype=ld)
# As the smallest_normal in double double is so hard to calculate we set
# it to NaN.
smallest_normal_dd = nan
# Leave the same value for the smallest subnormal as double
smallest_subnormal_dd = ld(nextafter(0., 1.))
float_dd_ma = MachArLike(ld,
machep=-105,
negep=-106,
minexp=-1022,
maxexp=1024,
it=105,
iexp=11,
ibeta=2,
irnd=5,
ngrd=0,
eps=exp2(ld(-105)),
epsneg=exp2(ld(-106)),
huge=huge_dd,
tiny=smallest_normal_dd,
smallest_subnormal=smallest_subnormal_dd)
# double double; low, high order (e.g. PPC 64)
_register_type(float_dd_ma,
b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
# double double; high, low order (e.g. PPC 64 le)
_register_type(float_dd_ma,
b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
_float_ma['dd'] = float_dd_ma
def _get_machar(ftype):
""" Get MachAr instance or MachAr-like instance
Get parameters for floating point type, by first trying signatures of
various known floating point types, then, if none match, attempting to
identify parameters by analysis.
Parameters
----------
ftype : class
Numpy floating point type class (e.g. ``np.float64``)
Returns
-------
ma_like : instance of :class:`MachAr` or :class:`MachArLike`
Object giving floating point parameters for `ftype`.
Warns
-----
UserWarning
If the binary signature of the float type is not in the dictionary of
known float types.
"""
params = _MACHAR_PARAMS.get(ftype)
if params is None:
raise ValueError(repr(ftype))
# Detect known / suspected types
# ftype(-1.0) / ftype(10.0) is better than ftype('-0.1') because stold
# may be deficient
key = (ftype(-1.0) / ftype(10.))
key = key.view(key.dtype.newbyteorder("<")).tobytes()
ma_like = None
if ftype == ntypes.longdouble:
# Could be 80 bit == 10 byte extended precision, where last bytes can
# be random garbage.
# Comparing first 10 bytes to pattern first to avoid branching on the
# random garbage.
ma_like = _KNOWN_TYPES.get(key[:10])
if ma_like is None:
# see if the full key is known.
ma_like = _KNOWN_TYPES.get(key)
if ma_like is None and len(key) == 16:
# machine limits could be f80 masquerading as np.float128,
# find all keys with length 16 and make new dict, but make the keys
# only 10 bytes long, the last bytes can be random garbage
_kt = {k[:10]: v for k, v in _KNOWN_TYPES.items() if len(k) == 16}
ma_like = _kt.get(key[:10])
if ma_like is not None:
return ma_like
# Fall back to parameter discovery
warnings.warn(
f'Signature {key} for {ftype} does not match any known type: '
'falling back to type probe function.\n'
'This warnings indicates broken support for the dtype!',
UserWarning, stacklevel=2)
return _discovered_machar(ftype)
def _discovered_machar(ftype):
""" Create MachAr instance with found information on float types
TODO: MachAr should be retired completely ideally. We currently only
ever use it system with broken longdouble (valgrind, WSL).
"""
params = _MACHAR_PARAMS[ftype]
return MachAr(lambda v: array([v], ftype),
lambda v: _fr0(v.astype(params['itype']))[0],
lambda v: array(_fr0(v)[0], ftype),
lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
params['title'])
@set_module('numpy')
class finfo:
"""
finfo(dtype)
Machine limits for floating point types.
Attributes
----------
bits : int
The number of bits occupied by the type.
dtype : dtype
Returns the dtype for which `finfo` returns information. For complex
input, the returned dtype is the associated ``float*`` dtype for its
real and complex components.
eps : float
The difference between 1.0 and the next smallest representable float
larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
standard, ``eps = 2**-52``, approximately 2.22e-16.
epsneg : float
The difference between 1.0 and the next smallest representable float
less than 1.0. For example, for 64-bit binary floats in the IEEE-754
standard, ``epsneg = 2**-53``, approximately 1.11e-16.
iexp : int
The number of bits in the exponent portion of the floating point
representation.
machep : int
The exponent that yields `eps`.
max : floating point number of the appropriate type
The largest representable number.
maxexp : int
The smallest positive power of the base (2) that causes overflow.
min : floating point number of the appropriate type
The smallest representable number, typically ``-max``.
minexp : int
The most negative power of the base (2) consistent with there
being no leading 0's in the mantissa.
negep : int
The exponent that yields `epsneg`.
nexp : int
The number of bits in the exponent including its sign and bias.
nmant : int
The number of bits in the mantissa.
precision : int
The approximate number of decimal digits to which this kind of
float is precise.
resolution : floating point number of the appropriate type
The approximate decimal resolution of this type, i.e.,
``10**-precision``.
tiny : float
An alias for `smallest_normal`, kept for backwards compatibility.
smallest_normal : float
The smallest positive floating point number with 1 as leading bit in
the mantissa following IEEE-754 (see Notes).
smallest_subnormal : float
The smallest positive floating point number with 0 as leading bit in
the mantissa following IEEE-754.
Parameters
----------
dtype : float, dtype, or instance
Kind of floating point or complex floating point
data-type about which to get information.
See Also
--------
iinfo : The equivalent for integer data types.
spacing : The distance between a value and the nearest adjacent number
nextafter : The next floating point value after x1 towards x2
Notes
-----
For developers of NumPy: do not instantiate this at the module level.
The initial calculation of these parameters is expensive and negatively
impacts import times. These objects are cached, so calling ``finfo()``
repeatedly inside your functions is not a problem.
Note that ``smallest_normal`` is not actually the smallest positive
representable value in a NumPy floating point type. As in the IEEE-754
standard [1]_, NumPy floating point types make use of subnormal numbers to
fill the gap between 0 and ``smallest_normal``. However, subnormal numbers
may have significantly reduced precision [2]_.
This function can also be used for complex data types as well. If used,
the output will be the same as the corresponding real float type
(e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)).
However, the output is true for the real and imaginary components.
References
----------
.. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
pp.1-70, 2008, https://doi.org/10.1109/IEEESTD.2008.4610935
.. [2] Wikipedia, "Denormal Numbers",
https://en.wikipedia.org/wiki/Denormal_number
Examples
--------
>>> import numpy as np
>>> np.finfo(np.float64).dtype
dtype('float64')
>>> np.finfo(np.complex64).dtype
dtype('float32')
"""
_finfo_cache = {}
def __new__(cls, dtype):
try:
obj = cls._finfo_cache.get(dtype) # most common path
if obj is not None:
return obj
except TypeError:
pass
if dtype is None:
# Deprecated in NumPy 1.25, 2023-01-16
warnings.warn(
"finfo() dtype cannot be None. This behavior will "
"raise an error in the future. (Deprecated in NumPy 1.25)",
DeprecationWarning,
stacklevel=2
)
try:
dtype = numeric.dtype(dtype)
except TypeError:
# In case a float instance was given
dtype = numeric.dtype(type(dtype))
obj = cls._finfo_cache.get(dtype)
if obj is not None:
return obj
dtypes = [dtype]
newdtype = ntypes.obj2sctype(dtype)
if newdtype is not dtype:
dtypes.append(newdtype)
dtype = newdtype
if not issubclass(dtype, numeric.inexact):
raise ValueError("data type %r not inexact" % (dtype))
obj = cls._finfo_cache.get(dtype)
if obj is not None:
return obj
if not issubclass(dtype, numeric.floating):
newdtype = _convert_to_float[dtype]
if newdtype is not dtype:
# dtype changed, for example from complex128 to float64
dtypes.append(newdtype)
dtype = newdtype
obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
# the original dtype was not in the cache, but the new
# dtype is in the cache. we add the original dtypes to
# the cache and return the result
for dt in dtypes:
cls._finfo_cache[dt] = obj
return obj
obj = object.__new__(cls)._init(dtype)
for dt in dtypes:
cls._finfo_cache[dt] = obj
return obj
def _init(self, dtype):
self.dtype = numeric.dtype(dtype)
machar = _get_machar(dtype)
for word in ['precision', 'iexp',
'maxexp', 'minexp', 'negep',
'machep']:
setattr(self, word, getattr(machar, word))
for word in ['resolution', 'epsneg', 'smallest_subnormal']:
setattr(self, word, getattr(machar, word).flat[0])
self.bits = self.dtype.itemsize * 8
self.max = machar.huge.flat[0]
self.min = -self.max
self.eps = machar.eps.flat[0]
self.nexp = machar.iexp
self.nmant = machar.it
self._machar = machar
self._str_tiny = machar._str_xmin.strip()
self._str_max = machar._str_xmax.strip()
self._str_epsneg = machar._str_epsneg.strip()
self._str_eps = machar._str_eps.strip()
self._str_resolution = machar._str_resolution.strip()
self._str_smallest_normal = machar._str_smallest_normal.strip()
self._str_smallest_subnormal = machar._str_smallest_subnormal.strip()
return self
def __str__(self):
fmt = (
'Machine parameters for %(dtype)s\n'
'---------------------------------------------------------------\n'
'precision = %(precision)3s resolution = %(_str_resolution)s\n'
'machep = %(machep)6s eps = %(_str_eps)s\n'
'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
'maxexp = %(maxexp)6s max = %(_str_max)s\n'
'nexp = %(nexp)6s min = -max\n'
'smallest_normal = %(_str_smallest_normal)s '
'smallest_subnormal = %(_str_smallest_subnormal)s\n'
'---------------------------------------------------------------\n'
)
return fmt % self.__dict__
def __repr__(self):
c = self.__class__.__name__
d = self.__dict__.copy()
d['klass'] = c
return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
" max=%(_str_max)s, dtype=%(dtype)s)") % d)
@property
def smallest_normal(self):
"""Return the value for the smallest normal.
Returns
-------
smallest_normal : float
Value for the smallest normal.
Warns
-----
UserWarning
If the calculated value for the smallest normal is requested for
double-double.
"""
# This check is necessary because the value for smallest_normal is
# platform dependent for longdouble types.
if isnan(self._machar.smallest_normal.flat[0]):
warnings.warn(
'The value of smallest normal is undefined for double double',
UserWarning, stacklevel=2)
return self._machar.smallest_normal.flat[0]
@property
def tiny(self):
"""Return the value for tiny, alias of smallest_normal.
Returns
-------
tiny : float
Value for the smallest normal, alias of smallest_normal.
Warns
-----
UserWarning
If the calculated value for the smallest normal is requested for
double-double.
"""
return self.smallest_normal
@set_module('numpy')
class iinfo:
"""
iinfo(type)
Machine limits for integer types.
Attributes
----------
bits : int
The number of bits occupied by the type.
dtype : dtype
Returns the dtype for which `iinfo` returns information.
min : int
The smallest integer expressible by the type.
max : int
The largest integer expressible by the type.
Parameters
----------
int_type : integer type, dtype, or instance
The kind of integer data type to get information about.
See Also
--------
finfo : The equivalent for floating point data types.
Examples
--------
With types:
>>> import numpy as np
>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647
With instances:
>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647
"""
_min_vals = {}
_max_vals = {}
def __init__(self, int_type):
try:
self.dtype = numeric.dtype(int_type)
except TypeError:
self.dtype = numeric.dtype(type(int_type))
self.kind = self.dtype.kind
self.bits = self.dtype.itemsize * 8
self.key = "%s%d" % (self.kind, self.bits)
if self.kind not in 'iu':
raise ValueError("Invalid integer data type %r." % (self.kind,))
@property
def min(self):
"""Minimum value of given dtype."""
if self.kind == 'u':
return 0
else:
try:
val = iinfo._min_vals[self.key]
except KeyError:
val = int(-(1 << (self.bits-1)))
iinfo._min_vals[self.key] = val
return val
@property
def max(self):
"""Maximum value of given dtype."""
try:
val = iinfo._max_vals[self.key]
except KeyError:
if self.kind == 'u':
val = int((1 << self.bits) - 1)
else:
val = int((1 << (self.bits-1)) - 1)
iinfo._max_vals[self.key] = val
return val
def __str__(self):
"""String representation."""
fmt = (
'Machine parameters for %(dtype)s\n'
'---------------------------------------------------------------\n'
'min = %(min)s\n'
'max = %(max)s\n'
'---------------------------------------------------------------\n'
)
return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
def __repr__(self):
return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
self.min, self.max, self.dtype)

View File

@ -0,0 +1,6 @@
from numpy import (
finfo as finfo,
iinfo as iinfo,
)
__all__: list[str]

View File

@ -0,0 +1,376 @@
/* These pointers will be stored in the C-object for use in other
extension modules
*/
void *PyArray_API[] = {
(void *) PyArray_GetNDArrayCVersion,
NULL,
(void *) &PyArray_Type,
(void *) &PyArrayDescr_Type,
NULL,
(void *) &PyArrayIter_Type,
(void *) &PyArrayMultiIter_Type,
(int *) &NPY_NUMUSERTYPES,
(void *) &PyBoolArrType_Type,
(void *) &_PyArrayScalar_BoolValues,
(void *) &PyGenericArrType_Type,
(void *) &PyNumberArrType_Type,
(void *) &PyIntegerArrType_Type,
(void *) &PySignedIntegerArrType_Type,
(void *) &PyUnsignedIntegerArrType_Type,
(void *) &PyInexactArrType_Type,
(void *) &PyFloatingArrType_Type,
(void *) &PyComplexFloatingArrType_Type,
(void *) &PyFlexibleArrType_Type,
(void *) &PyCharacterArrType_Type,
(void *) &PyByteArrType_Type,
(void *) &PyShortArrType_Type,
(void *) &PyIntArrType_Type,
(void *) &PyLongArrType_Type,
(void *) &PyLongLongArrType_Type,
(void *) &PyUByteArrType_Type,
(void *) &PyUShortArrType_Type,
(void *) &PyUIntArrType_Type,
(void *) &PyULongArrType_Type,
(void *) &PyULongLongArrType_Type,
(void *) &PyFloatArrType_Type,
(void *) &PyDoubleArrType_Type,
(void *) &PyLongDoubleArrType_Type,
(void *) &PyCFloatArrType_Type,
(void *) &PyCDoubleArrType_Type,
(void *) &PyCLongDoubleArrType_Type,
(void *) &PyObjectArrType_Type,
(void *) &PyStringArrType_Type,
(void *) &PyUnicodeArrType_Type,
(void *) &PyVoidArrType_Type,
NULL,
NULL,
(void *) PyArray_INCREF,
(void *) PyArray_XDECREF,
(void *) PyArray_SetStringFunction,
(void *) PyArray_DescrFromType,
(void *) PyArray_TypeObjectFromType,
(void *) PyArray_Zero,
(void *) PyArray_One,
(void *) PyArray_CastToType,
(void *) PyArray_CopyInto,
(void *) PyArray_CopyAnyInto,
(void *) PyArray_CanCastSafely,
(void *) PyArray_CanCastTo,
(void *) PyArray_ObjectType,
(void *) PyArray_DescrFromObject,
(void *) PyArray_ConvertToCommonType,
(void *) PyArray_DescrFromScalar,
(void *) PyArray_DescrFromTypeObject,
(void *) PyArray_Size,
(void *) PyArray_Scalar,
(void *) PyArray_FromScalar,
(void *) PyArray_ScalarAsCtype,
(void *) PyArray_CastScalarToCtype,
(void *) PyArray_CastScalarDirect,
(void *) PyArray_Pack,
NULL,
NULL,
NULL,
(void *) PyArray_FromAny,
(void *) PyArray_EnsureArray,
(void *) PyArray_EnsureAnyArray,
(void *) PyArray_FromFile,
(void *) PyArray_FromString,
(void *) PyArray_FromBuffer,
(void *) PyArray_FromIter,
(void *) PyArray_Return,
(void *) PyArray_GetField,
(void *) PyArray_SetField,
(void *) PyArray_Byteswap,
(void *) PyArray_Resize,
NULL,
NULL,
NULL,
(void *) PyArray_CopyObject,
(void *) PyArray_NewCopy,
(void *) PyArray_ToList,
(void *) PyArray_ToString,
(void *) PyArray_ToFile,
(void *) PyArray_Dump,
(void *) PyArray_Dumps,
(void *) PyArray_ValidType,
(void *) PyArray_UpdateFlags,
(void *) PyArray_New,
(void *) PyArray_NewFromDescr,
(void *) PyArray_DescrNew,
(void *) PyArray_DescrNewFromType,
(void *) PyArray_GetPriority,
(void *) PyArray_IterNew,
(void *) PyArray_MultiIterNew,
(void *) PyArray_PyIntAsInt,
(void *) PyArray_PyIntAsIntp,
(void *) PyArray_Broadcast,
NULL,
(void *) PyArray_FillWithScalar,
(void *) PyArray_CheckStrides,
(void *) PyArray_DescrNewByteorder,
(void *) PyArray_IterAllButAxis,
(void *) PyArray_CheckFromAny,
(void *) PyArray_FromArray,
(void *) PyArray_FromInterface,
(void *) PyArray_FromStructInterface,
(void *) PyArray_FromArrayAttr,
(void *) PyArray_ScalarKind,
(void *) PyArray_CanCoerceScalar,
NULL,
(void *) PyArray_CanCastScalar,
NULL,
(void *) PyArray_RemoveSmallest,
(void *) PyArray_ElementStrides,
(void *) PyArray_Item_INCREF,
(void *) PyArray_Item_XDECREF,
NULL,
(void *) PyArray_Transpose,
(void *) PyArray_TakeFrom,
(void *) PyArray_PutTo,
(void *) PyArray_PutMask,
(void *) PyArray_Repeat,
(void *) PyArray_Choose,
(void *) PyArray_Sort,
(void *) PyArray_ArgSort,
(void *) PyArray_SearchSorted,
(void *) PyArray_ArgMax,
(void *) PyArray_ArgMin,
(void *) PyArray_Reshape,
(void *) PyArray_Newshape,
(void *) PyArray_Squeeze,
(void *) PyArray_View,
(void *) PyArray_SwapAxes,
(void *) PyArray_Max,
(void *) PyArray_Min,
(void *) PyArray_Ptp,
(void *) PyArray_Mean,
(void *) PyArray_Trace,
(void *) PyArray_Diagonal,
(void *) PyArray_Clip,
(void *) PyArray_Conjugate,
(void *) PyArray_Nonzero,
(void *) PyArray_Std,
(void *) PyArray_Sum,
(void *) PyArray_CumSum,
(void *) PyArray_Prod,
(void *) PyArray_CumProd,
(void *) PyArray_All,
(void *) PyArray_Any,
(void *) PyArray_Compress,
(void *) PyArray_Flatten,
(void *) PyArray_Ravel,
(void *) PyArray_MultiplyList,
(void *) PyArray_MultiplyIntList,
(void *) PyArray_GetPtr,
(void *) PyArray_CompareLists,
(void *) PyArray_AsCArray,
NULL,
NULL,
(void *) PyArray_Free,
(void *) PyArray_Converter,
(void *) PyArray_IntpFromSequence,
(void *) PyArray_Concatenate,
(void *) PyArray_InnerProduct,
(void *) PyArray_MatrixProduct,
NULL,
(void *) PyArray_Correlate,
NULL,
(void *) PyArray_DescrConverter,
(void *) PyArray_DescrConverter2,
(void *) PyArray_IntpConverter,
(void *) PyArray_BufferConverter,
(void *) PyArray_AxisConverter,
(void *) PyArray_BoolConverter,
(void *) PyArray_ByteorderConverter,
(void *) PyArray_OrderConverter,
(void *) PyArray_EquivTypes,
(void *) PyArray_Zeros,
(void *) PyArray_Empty,
(void *) PyArray_Where,
(void *) PyArray_Arange,
(void *) PyArray_ArangeObj,
(void *) PyArray_SortkindConverter,
(void *) PyArray_LexSort,
(void *) PyArray_Round,
(void *) PyArray_EquivTypenums,
(void *) PyArray_RegisterDataType,
(void *) PyArray_RegisterCastFunc,
(void *) PyArray_RegisterCanCast,
(void *) PyArray_InitArrFuncs,
(void *) PyArray_IntTupleFromIntp,
NULL,
(void *) PyArray_ClipmodeConverter,
(void *) PyArray_OutputConverter,
(void *) PyArray_BroadcastToShape,
NULL,
NULL,
(void *) PyArray_DescrAlignConverter,
(void *) PyArray_DescrAlignConverter2,
(void *) PyArray_SearchsideConverter,
(void *) PyArray_CheckAxis,
(void *) PyArray_OverflowMultiplyList,
NULL,
(void *) PyArray_MultiIterFromObjects,
(void *) PyArray_GetEndianness,
(void *) PyArray_GetNDArrayCFeatureVersion,
(void *) PyArray_Correlate2,
(void *) PyArray_NeighborhoodIterNew,
(void *) &PyTimeIntegerArrType_Type,
(void *) &PyDatetimeArrType_Type,
(void *) &PyTimedeltaArrType_Type,
(void *) &PyHalfArrType_Type,
(void *) &NpyIter_Type,
NULL,
NULL,
NULL,
NULL,
NULL,
(void *) NpyIter_New,
(void *) NpyIter_MultiNew,
(void *) NpyIter_AdvancedNew,
(void *) NpyIter_Copy,
(void *) NpyIter_Deallocate,
(void *) NpyIter_HasDelayedBufAlloc,
(void *) NpyIter_HasExternalLoop,
(void *) NpyIter_EnableExternalLoop,
(void *) NpyIter_GetInnerStrideArray,
(void *) NpyIter_GetInnerLoopSizePtr,
(void *) NpyIter_Reset,
(void *) NpyIter_ResetBasePointers,
(void *) NpyIter_ResetToIterIndexRange,
(void *) NpyIter_GetNDim,
(void *) NpyIter_GetNOp,
(void *) NpyIter_GetIterNext,
(void *) NpyIter_GetIterSize,
(void *) NpyIter_GetIterIndexRange,
(void *) NpyIter_GetIterIndex,
(void *) NpyIter_GotoIterIndex,
(void *) NpyIter_HasMultiIndex,
(void *) NpyIter_GetShape,
(void *) NpyIter_GetGetMultiIndex,
(void *) NpyIter_GotoMultiIndex,
(void *) NpyIter_RemoveMultiIndex,
(void *) NpyIter_HasIndex,
(void *) NpyIter_IsBuffered,
(void *) NpyIter_IsGrowInner,
(void *) NpyIter_GetBufferSize,
(void *) NpyIter_GetIndexPtr,
(void *) NpyIter_GotoIndex,
(void *) NpyIter_GetDataPtrArray,
(void *) NpyIter_GetDescrArray,
(void *) NpyIter_GetOperandArray,
(void *) NpyIter_GetIterView,
(void *) NpyIter_GetReadFlags,
(void *) NpyIter_GetWriteFlags,
(void *) NpyIter_DebugPrint,
(void *) NpyIter_IterationNeedsAPI,
(void *) NpyIter_GetInnerFixedStrideArray,
(void *) NpyIter_RemoveAxis,
(void *) NpyIter_GetAxisStrideArray,
(void *) NpyIter_RequiresBuffering,
(void *) NpyIter_GetInitialDataPtrArray,
(void *) NpyIter_CreateCompatibleStrides,
(void *) PyArray_CastingConverter,
(void *) PyArray_CountNonzero,
(void *) PyArray_PromoteTypes,
(void *) PyArray_MinScalarType,
(void *) PyArray_ResultType,
(void *) PyArray_CanCastArrayTo,
(void *) PyArray_CanCastTypeTo,
(void *) PyArray_EinsteinSum,
(void *) PyArray_NewLikeArray,
NULL,
(void *) PyArray_ConvertClipmodeSequence,
(void *) PyArray_MatrixProduct2,
(void *) NpyIter_IsFirstVisit,
(void *) PyArray_SetBaseObject,
(void *) PyArray_CreateSortedStridePerm,
(void *) PyArray_RemoveAxesInPlace,
(void *) PyArray_DebugPrint,
(void *) PyArray_FailUnlessWriteable,
(void *) PyArray_SetUpdateIfCopyBase,
(void *) PyDataMem_NEW,
(void *) PyDataMem_FREE,
(void *) PyDataMem_RENEW,
NULL,
(NPY_CASTING *) &NPY_DEFAULT_ASSIGN_CASTING,
NULL,
NULL,
NULL,
(void *) PyArray_Partition,
(void *) PyArray_ArgPartition,
(void *) PyArray_SelectkindConverter,
(void *) PyDataMem_NEW_ZEROED,
(void *) PyArray_CheckAnyScalarExact,
NULL,
(void *) PyArray_ResolveWritebackIfCopy,
(void *) PyArray_SetWritebackIfCopyBase,
(void *) PyDataMem_SetHandler,
(void *) PyDataMem_GetHandler,
(PyObject* *) &PyDataMem_DefaultHandler,
(void *) NpyDatetime_ConvertDatetime64ToDatetimeStruct,
(void *) NpyDatetime_ConvertDatetimeStructToDatetime64,
(void *) NpyDatetime_ConvertPyDateTimeToDatetimeStruct,
(void *) NpyDatetime_GetDatetimeISO8601StrLen,
(void *) NpyDatetime_MakeISO8601Datetime,
(void *) NpyDatetime_ParseISO8601Datetime,
(void *) NpyString_load,
(void *) NpyString_pack,
(void *) NpyString_pack_null,
(void *) NpyString_acquire_allocator,
(void *) NpyString_acquire_allocators,
(void *) NpyString_release_allocator,
(void *) NpyString_release_allocators,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
(void *) PyArray_GetDefaultDescr,
(void *) PyArrayInitDTypeMeta_FromSpec,
(void *) PyArray_CommonDType,
(void *) PyArray_PromoteDTypeSequence,
(void *) _PyDataType_GetArrFuncs,
NULL,
NULL,
NULL
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,54 @@
/* These pointers will be stored in the C-object for use in other
extension modules
*/
void *PyUFunc_API[] = {
(void *) &PyUFunc_Type,
(void *) PyUFunc_FromFuncAndData,
(void *) PyUFunc_RegisterLoopForType,
NULL,
(void *) PyUFunc_f_f_As_d_d,
(void *) PyUFunc_d_d,
(void *) PyUFunc_f_f,
(void *) PyUFunc_g_g,
(void *) PyUFunc_F_F_As_D_D,
(void *) PyUFunc_F_F,
(void *) PyUFunc_D_D,
(void *) PyUFunc_G_G,
(void *) PyUFunc_O_O,
(void *) PyUFunc_ff_f_As_dd_d,
(void *) PyUFunc_ff_f,
(void *) PyUFunc_dd_d,
(void *) PyUFunc_gg_g,
(void *) PyUFunc_FF_F_As_DD_D,
(void *) PyUFunc_DD_D,
(void *) PyUFunc_FF_F,
(void *) PyUFunc_GG_G,
(void *) PyUFunc_OO_O,
(void *) PyUFunc_O_O_method,
(void *) PyUFunc_OO_O_method,
(void *) PyUFunc_On_Om,
NULL,
NULL,
(void *) PyUFunc_clearfperr,
(void *) PyUFunc_getfperr,
NULL,
(void *) PyUFunc_ReplaceLoopBySignature,
(void *) PyUFunc_FromFuncAndDataAndSignature,
NULL,
(void *) PyUFunc_e_e,
(void *) PyUFunc_e_e_As_f_f,
(void *) PyUFunc_e_e_As_d_d,
(void *) PyUFunc_ee_e,
(void *) PyUFunc_ee_e_As_ff_f,
(void *) PyUFunc_ee_e_As_dd_d,
(void *) PyUFunc_DefaultTypeResolver,
(void *) PyUFunc_ValidateCasting,
(void *) PyUFunc_RegisterLoopForDescr,
(void *) PyUFunc_FromFuncAndDataAndSignatureAndIdentity,
(void *) PyUFunc_AddLoopFromSpec,
(void *) PyUFunc_AddPromoter,
(void *) PyUFunc_AddWrappingLoop,
(void *) PyUFunc_GiveFloatingpointErrors
};

View File

@ -0,0 +1,340 @@
#ifdef _UMATHMODULE
extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndData \
(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int);
NPY_NO_EXPORT int PyUFunc_RegisterLoopForType \
(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *);
NPY_NO_EXPORT void PyUFunc_f_f_As_d_d \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_d_d \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_f_f \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_g_g \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_F_F_As_D_D \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_F_F \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_D_D \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_G_G \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_O_O \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_ff_f_As_dd_d \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_ff_f \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_dd_d \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_gg_g \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_FF_F_As_DD_D \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_DD_D \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_FF_F \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_GG_G \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_OO_O \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_O_O_method \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_OO_O_method \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_On_Om \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_clearfperr \
(void);
NPY_NO_EXPORT int PyUFunc_getfperr \
(void);
NPY_NO_EXPORT int PyUFunc_ReplaceLoopBySignature \
(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *);
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignature \
(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *);
NPY_NO_EXPORT void PyUFunc_e_e \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_e_e_As_f_f \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_e_e_As_d_d \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_ee_e \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_ee_e_As_ff_f \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT void PyUFunc_ee_e_As_dd_d \
(char **, npy_intp const *, npy_intp const *, void *);
NPY_NO_EXPORT int PyUFunc_DefaultTypeResolver \
(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **);
NPY_NO_EXPORT int PyUFunc_ValidateCasting \
(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *);
NPY_NO_EXPORT int PyUFunc_RegisterLoopForDescr \
(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *);
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *);
NPY_NO_EXPORT int PyUFunc_AddLoopFromSpec \
(PyObject *, PyArrayMethod_Spec *);
NPY_NO_EXPORT int PyUFunc_AddPromoter \
(PyObject *, PyObject *, PyObject *);
NPY_NO_EXPORT int PyUFunc_AddWrappingLoop \
(PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *);
NPY_NO_EXPORT int PyUFunc_GiveFloatingpointErrors \
(const char *, int);
#else
#if defined(PY_UFUNC_UNIQUE_SYMBOL)
#define PyUFunc_API PY_UFUNC_UNIQUE_SYMBOL
#endif
/* By default do not export API in an .so (was never the case on windows) */
#ifndef NPY_API_SYMBOL_ATTRIBUTE
#define NPY_API_SYMBOL_ATTRIBUTE NPY_VISIBILITY_HIDDEN
#endif
#if defined(NO_IMPORT) || defined(NO_IMPORT_UFUNC)
extern NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API;
#else
#if defined(PY_UFUNC_UNIQUE_SYMBOL)
NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API;
#else
static void **PyUFunc_API=NULL;
#endif
#endif
#define PyUFunc_Type (*(PyTypeObject *)PyUFunc_API[0])
#define PyUFunc_FromFuncAndData \
(*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int)) \
PyUFunc_API[1])
#define PyUFunc_RegisterLoopForType \
(*(int (*)(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *)) \
PyUFunc_API[2])
#define PyUFunc_f_f_As_d_d \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[4])
#define PyUFunc_d_d \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[5])
#define PyUFunc_f_f \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[6])
#define PyUFunc_g_g \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[7])
#define PyUFunc_F_F_As_D_D \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[8])
#define PyUFunc_F_F \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[9])
#define PyUFunc_D_D \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[10])
#define PyUFunc_G_G \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[11])
#define PyUFunc_O_O \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[12])
#define PyUFunc_ff_f_As_dd_d \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[13])
#define PyUFunc_ff_f \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[14])
#define PyUFunc_dd_d \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[15])
#define PyUFunc_gg_g \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[16])
#define PyUFunc_FF_F_As_DD_D \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[17])
#define PyUFunc_DD_D \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[18])
#define PyUFunc_FF_F \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[19])
#define PyUFunc_GG_G \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[20])
#define PyUFunc_OO_O \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[21])
#define PyUFunc_O_O_method \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[22])
#define PyUFunc_OO_O_method \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[23])
#define PyUFunc_On_Om \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[24])
#define PyUFunc_clearfperr \
(*(void (*)(void)) \
PyUFunc_API[27])
#define PyUFunc_getfperr \
(*(int (*)(void)) \
PyUFunc_API[28])
#define PyUFunc_ReplaceLoopBySignature \
(*(int (*)(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *)) \
PyUFunc_API[30])
#define PyUFunc_FromFuncAndDataAndSignature \
(*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *)) \
PyUFunc_API[31])
#define PyUFunc_e_e \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[33])
#define PyUFunc_e_e_As_f_f \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[34])
#define PyUFunc_e_e_As_d_d \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[35])
#define PyUFunc_ee_e \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[36])
#define PyUFunc_ee_e_As_ff_f \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[37])
#define PyUFunc_ee_e_As_dd_d \
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
PyUFunc_API[38])
#define PyUFunc_DefaultTypeResolver \
(*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **)) \
PyUFunc_API[39])
#define PyUFunc_ValidateCasting \
(*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *)) \
PyUFunc_API[40])
#define PyUFunc_RegisterLoopForDescr \
(*(int (*)(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *)) \
PyUFunc_API[41])
#if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION
#define PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
(*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *)) \
PyUFunc_API[42])
#endif
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
#define PyUFunc_AddLoopFromSpec \
(*(int (*)(PyObject *, PyArrayMethod_Spec *)) \
PyUFunc_API[43])
#endif
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
#define PyUFunc_AddPromoter \
(*(int (*)(PyObject *, PyObject *, PyObject *)) \
PyUFunc_API[44])
#endif
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
#define PyUFunc_AddWrappingLoop \
(*(int (*)(PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *)) \
PyUFunc_API[45])
#endif
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
#define PyUFunc_GiveFloatingpointErrors \
(*(int (*)(const char *, int)) \
PyUFunc_API[46])
#endif
static inline int
_import_umath(void)
{
PyObject *numpy = PyImport_ImportModule("numpy._core._multiarray_umath");
if (numpy == NULL && PyErr_ExceptionMatches(PyExc_ModuleNotFoundError)) {
PyErr_Clear();
numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
}
if (numpy == NULL) {
PyErr_SetString(PyExc_ImportError,
"_multiarray_umath failed to import");
return -1;
}
PyObject *c_api = PyObject_GetAttrString(numpy, "_UFUNC_API");
Py_DECREF(numpy);
if (c_api == NULL) {
PyErr_SetString(PyExc_AttributeError, "_UFUNC_API not found");
return -1;
}
if (!PyCapsule_CheckExact(c_api)) {
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCapsule object");
Py_DECREF(c_api);
return -1;
}
PyUFunc_API = (void **)PyCapsule_GetPointer(c_api, NULL);
Py_DECREF(c_api);
if (PyUFunc_API == NULL) {
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is NULL pointer");
return -1;
}
return 0;
}
#define import_umath() \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError,\
"numpy._core.umath failed to import");\
return NULL;\
}\
} while(0)
#define import_umath1(ret) \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError,\
"numpy._core.umath failed to import");\
return ret;\
}\
} while(0)
#define import_umath2(ret, msg) \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError, msg);\
return ret;\
}\
} while(0)
#define import_ufunc() \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError,\
"numpy._core.umath failed to import");\
}\
} while(0)
static inline int
PyUFunc_ImportUFuncAPI()
{
if (NPY_UNLIKELY(PyUFunc_API == NULL)) {
import_umath1(-1);
}
return 0;
}
#endif

View File

@ -0,0 +1,90 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_
#error You should not include this header directly
#endif
/*
* Private API (here for inline)
*/
static inline int
_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter);
/*
* Update to next item of the iterator
*
* Note: this simply increment the coordinates vector, last dimension
* incremented first , i.e, for dimension 3
* ...
* -1, -1, -1
* -1, -1, 0
* -1, -1, 1
* ....
* -1, 0, -1
* -1, 0, 0
* ....
* 0, -1, -1
* 0, -1, 0
* ....
*/
#define _UPDATE_COORD_ITER(c) \
wb = iter->coordinates[c] < iter->bounds[c][1]; \
if (wb) { \
iter->coordinates[c] += 1; \
return 0; \
} \
else { \
iter->coordinates[c] = iter->bounds[c][0]; \
}
static inline int
_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter)
{
npy_intp i, wb;
for (i = iter->nd - 1; i >= 0; --i) {
_UPDATE_COORD_ITER(i)
}
return 0;
}
/*
* Version optimized for 2d arrays, manual loop unrolling
*/
static inline int
_PyArrayNeighborhoodIter_IncrCoord2D(PyArrayNeighborhoodIterObject* iter)
{
npy_intp wb;
_UPDATE_COORD_ITER(1)
_UPDATE_COORD_ITER(0)
return 0;
}
#undef _UPDATE_COORD_ITER
/*
* Advance to the next neighbour
*/
static inline int
PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
{
_PyArrayNeighborhoodIter_IncrCoord (iter);
iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
return 0;
}
/*
* Reset functions
*/
static inline int
PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
{
npy_intp i;
for (i = 0; i < iter->nd; ++i) {
iter->coordinates[i] = iter->bounds[i][0];
}
iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
return 0;
}

View File

@ -0,0 +1,33 @@
/* #undef NPY_HAVE_ENDIAN_H */
#define NPY_SIZEOF_SHORT 2
#define NPY_SIZEOF_INT 4
#define NPY_SIZEOF_LONG 8
#define NPY_SIZEOF_FLOAT 4
#define NPY_SIZEOF_COMPLEX_FLOAT 8
#define NPY_SIZEOF_DOUBLE 8
#define NPY_SIZEOF_COMPLEX_DOUBLE 16
#define NPY_SIZEOF_LONGDOUBLE 16
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
#define NPY_SIZEOF_PY_INTPTR_T 8
#define NPY_SIZEOF_INTP 8
#define NPY_SIZEOF_UINTP 8
#define NPY_SIZEOF_WCHAR_T 4
#define NPY_SIZEOF_OFF_T 8
#define NPY_SIZEOF_PY_LONG_LONG 8
#define NPY_SIZEOF_LONGLONG 8
/*
* Defined to 1 or 0. Note that Pyodide hardcodes NPY_NO_SMP (and other defines
* in this header) for better cross-compilation, so don't rename them without a
* good reason.
*/
#define NPY_NO_SMP 0
#define NPY_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#define NPY_ABI_VERSION 0x02000000
#define NPY_API_VERSION 0x00000013
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif

View File

@ -0,0 +1,86 @@
/*
* Public exposure of the DType Classes. These are tricky to expose
* via the Python API, so they are exposed through this header for now.
*
* These definitions are only relevant for the public API and we reserve
* the slots 320-360 in the API table generation for this (currently).
*
* TODO: This file should be consolidated with the API table generation
* (although not sure the current generation is worth preserving).
*/
#ifndef NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_
#define NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
/* All of these require NumPy 2.0 support */
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
/*
* The type of the DType metaclass
*/
#define PyArrayDTypeMeta_Type (*(PyTypeObject *)(PyArray_API + 320)[0])
/*
* NumPy's builtin DTypes:
*/
#define PyArray_BoolDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[1])
/* Integers */
#define PyArray_ByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[2])
#define PyArray_UByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[3])
#define PyArray_ShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[4])
#define PyArray_UShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[5])
#define PyArray_IntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[6])
#define PyArray_UIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[7])
#define PyArray_LongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[8])
#define PyArray_ULongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[9])
#define PyArray_LongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[10])
#define PyArray_ULongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[11])
/* Integer aliases */
#define PyArray_Int8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[12])
#define PyArray_UInt8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[13])
#define PyArray_Int16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[14])
#define PyArray_UInt16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[15])
#define PyArray_Int32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[16])
#define PyArray_UInt32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[17])
#define PyArray_Int64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[18])
#define PyArray_UInt64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[19])
#define PyArray_IntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[20])
#define PyArray_UIntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[21])
/* Floats */
#define PyArray_HalfDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[22])
#define PyArray_FloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[23])
#define PyArray_DoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[24])
#define PyArray_LongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[25])
/* Complex */
#define PyArray_CFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[26])
#define PyArray_CDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[27])
#define PyArray_CLongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[28])
/* String/Bytes */
#define PyArray_BytesDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[29])
#define PyArray_UnicodeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[30])
/* Datetime/Timedelta */
#define PyArray_DatetimeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[31])
#define PyArray_TimedeltaDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[32])
/* Object/Void */
#define PyArray_ObjectDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[33])
#define PyArray_VoidDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[34])
/* Python types (used as markers for scalars) */
#define PyArray_PyLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[35])
#define PyArray_PyFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[36])
#define PyArray_PyComplexDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[37])
/* Default integer type */
#define PyArray_DefaultIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[38])
/* New non-legacy DTypes follow in the order they were added */
#define PyArray_StringDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[39])
/* NOTE: offset 40 is free */
/* Need to start with a larger offset again for the abstract classes: */
#define PyArray_IntAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[366])
#define PyArray_FloatAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[367])
#define PyArray_ComplexAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[368])
#endif /* NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION */
#endif /* NPY_INTERNAL_BUILD */
#endif /* NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_ */

View File

@ -0,0 +1,7 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_
#define Py_ARRAYOBJECT_H
#include "ndarrayobject.h"
#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_ */

View File

@ -0,0 +1,196 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_
#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_
#ifndef _MULTIARRAYMODULE
typedef struct {
PyObject_HEAD
npy_bool obval;
} PyBoolScalarObject;
#endif
typedef struct {
PyObject_HEAD
signed char obval;
} PyByteScalarObject;
typedef struct {
PyObject_HEAD
short obval;
} PyShortScalarObject;
typedef struct {
PyObject_HEAD
int obval;
} PyIntScalarObject;
typedef struct {
PyObject_HEAD
long obval;
} PyLongScalarObject;
typedef struct {
PyObject_HEAD
npy_longlong obval;
} PyLongLongScalarObject;
typedef struct {
PyObject_HEAD
unsigned char obval;
} PyUByteScalarObject;
typedef struct {
PyObject_HEAD
unsigned short obval;
} PyUShortScalarObject;
typedef struct {
PyObject_HEAD
unsigned int obval;
} PyUIntScalarObject;
typedef struct {
PyObject_HEAD
unsigned long obval;
} PyULongScalarObject;
typedef struct {
PyObject_HEAD
npy_ulonglong obval;
} PyULongLongScalarObject;
typedef struct {
PyObject_HEAD
npy_half obval;
} PyHalfScalarObject;
typedef struct {
PyObject_HEAD
float obval;
} PyFloatScalarObject;
typedef struct {
PyObject_HEAD
double obval;
} PyDoubleScalarObject;
typedef struct {
PyObject_HEAD
npy_longdouble obval;
} PyLongDoubleScalarObject;
typedef struct {
PyObject_HEAD
npy_cfloat obval;
} PyCFloatScalarObject;
typedef struct {
PyObject_HEAD
npy_cdouble obval;
} PyCDoubleScalarObject;
typedef struct {
PyObject_HEAD
npy_clongdouble obval;
} PyCLongDoubleScalarObject;
typedef struct {
PyObject_HEAD
PyObject * obval;
} PyObjectScalarObject;
typedef struct {
PyObject_HEAD
npy_datetime obval;
PyArray_DatetimeMetaData obmeta;
} PyDatetimeScalarObject;
typedef struct {
PyObject_HEAD
npy_timedelta obval;
PyArray_DatetimeMetaData obmeta;
} PyTimedeltaScalarObject;
typedef struct {
PyObject_HEAD
char obval;
} PyScalarObject;
#define PyStringScalarObject PyBytesObject
#ifndef Py_LIMITED_API
typedef struct {
/* note that the PyObject_HEAD macro lives right here */
PyUnicodeObject base;
Py_UCS4 *obval;
#if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
char *buffer_fmt;
#endif
} PyUnicodeScalarObject;
#endif
typedef struct {
PyObject_VAR_HEAD
char *obval;
#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
/* Internally use the subclass to allow accessing names/fields */
_PyArray_LegacyDescr *descr;
#else
PyArray_Descr *descr;
#endif
int flags;
PyObject *base;
#if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
void *_buffer_info; /* private buffer info, tagged to allow warning */
#endif
} PyVoidScalarObject;
/* Macros
Py<Cls><bitsize>ScalarObject
Py<Cls><bitsize>ArrType_Type
are defined in ndarrayobject.h
*/
#define PyArrayScalar_False ((PyObject *)(&(_PyArrayScalar_BoolValues[0])))
#define PyArrayScalar_True ((PyObject *)(&(_PyArrayScalar_BoolValues[1])))
#define PyArrayScalar_FromLong(i) \
((PyObject *)(&(_PyArrayScalar_BoolValues[((i)!=0)])))
#define PyArrayScalar_RETURN_BOOL_FROM_LONG(i) \
return Py_INCREF(PyArrayScalar_FromLong(i)), \
PyArrayScalar_FromLong(i)
#define PyArrayScalar_RETURN_FALSE \
return Py_INCREF(PyArrayScalar_False), \
PyArrayScalar_False
#define PyArrayScalar_RETURN_TRUE \
return Py_INCREF(PyArrayScalar_True), \
PyArrayScalar_True
#define PyArrayScalar_New(cls) \
Py##cls##ArrType_Type.tp_alloc(&Py##cls##ArrType_Type, 0)
#ifndef Py_LIMITED_API
/* For the limited API, use PyArray_ScalarAsCtype instead */
#define PyArrayScalar_VAL(obj, cls) \
((Py##cls##ScalarObject *)obj)->obval
#define PyArrayScalar_ASSIGN(obj, cls, val) \
PyArrayScalar_VAL(obj, cls) = val
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_ */

View File

@ -0,0 +1,479 @@
/*
* The public DType API
*/
#ifndef NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_
#define NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_
struct PyArrayMethodObject_tag;
/*
* Largely opaque struct for DType classes (i.e. metaclass instances).
* The internal definition is currently in `ndarraytypes.h` (export is a bit
* more complex because `PyArray_Descr` is a DTypeMeta internally but not
* externally).
*/
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
#ifndef Py_LIMITED_API
typedef struct PyArray_DTypeMeta_tag {
PyHeapTypeObject super;
/*
* Most DTypes will have a singleton default instance, for the
* parametric legacy DTypes (bytes, string, void, datetime) this
* may be a pointer to the *prototype* instance?
*/
PyArray_Descr *singleton;
/* Copy of the legacy DTypes type number, usually invalid. */
int type_num;
/* The type object of the scalar instances (may be NULL?) */
PyTypeObject *scalar_type;
/*
* DType flags to signal legacy, parametric, or
* abstract. But plenty of space for additional information/flags.
*/
npy_uint64 flags;
/*
* Use indirection in order to allow a fixed size for this struct.
* A stable ABI size makes creating a static DType less painful
* while also ensuring flexibility for all opaque API (with one
* indirection due the pointer lookup).
*/
void *dt_slots;
/* Allow growing (at the moment also beyond this) */
void *reserved[3];
} PyArray_DTypeMeta;
#else
typedef PyTypeObject PyArray_DTypeMeta;
#endif /* Py_LIMITED_API */
#endif /* not internal build */
/*
* ******************************************************
* ArrayMethod API (Casting and UFuncs)
* ******************************************************
*/
typedef enum {
/* Flag for whether the GIL is required */
NPY_METH_REQUIRES_PYAPI = 1 << 0,
/*
* Some functions cannot set floating point error flags, this flag
* gives us the option (not requirement) to skip floating point error
* setup/check. No function should set error flags and ignore them
* since it would interfere with chaining operations (e.g. casting).
*/
NPY_METH_NO_FLOATINGPOINT_ERRORS = 1 << 1,
/* Whether the method supports unaligned access (not runtime) */
NPY_METH_SUPPORTS_UNALIGNED = 1 << 2,
/*
* Used for reductions to allow reordering the operation. At this point
* assume that if set, it also applies to normal operations though!
*/
NPY_METH_IS_REORDERABLE = 1 << 3,
/*
* Private flag for now for *logic* functions. The logical functions
* `logical_or` and `logical_and` can always cast the inputs to booleans
* "safely" (because that is how the cast to bool is defined).
* @seberg: I am not sure this is the best way to handle this, so its
* private for now (also it is very limited anyway).
* There is one "exception". NA aware dtypes cannot cast to bool
* (hopefully), so the `??->?` loop should error even with this flag.
* But a second NA fallback loop will be necessary.
*/
_NPY_METH_FORCE_CAST_INPUTS = 1 << 17,
/* All flags which can change at runtime */
NPY_METH_RUNTIME_FLAGS = (
NPY_METH_REQUIRES_PYAPI |
NPY_METH_NO_FLOATINGPOINT_ERRORS),
} NPY_ARRAYMETHOD_FLAGS;
typedef struct PyArrayMethod_Context_tag {
/* The caller, which is typically the original ufunc. May be NULL */
PyObject *caller;
/* The method "self". Currently an opaque object. */
struct PyArrayMethodObject_tag *method;
/* Operand descriptors, filled in by resolve_descriptors */
PyArray_Descr *const *descriptors;
/* Structure may grow (this is harmless for DType authors) */
} PyArrayMethod_Context;
/*
* The main object for creating a new ArrayMethod. We use the typical `slots`
* mechanism used by the Python limited API (see below for the slot defs).
*/
typedef struct {
const char *name;
int nin, nout;
NPY_CASTING casting;
NPY_ARRAYMETHOD_FLAGS flags;
PyArray_DTypeMeta **dtypes;
PyType_Slot *slots;
} PyArrayMethod_Spec;
/*
* ArrayMethod slots
* -----------------
*
* SLOTS IDs For the ArrayMethod creation, once fully public, IDs are fixed
* but can be deprecated and arbitrarily extended.
*/
#define _NPY_METH_resolve_descriptors_with_scalars 1
#define NPY_METH_resolve_descriptors 2
#define NPY_METH_get_loop 3
#define NPY_METH_get_reduction_initial 4
/* specific loops for constructions/default get_loop: */
#define NPY_METH_strided_loop 5
#define NPY_METH_contiguous_loop 6
#define NPY_METH_unaligned_strided_loop 7
#define NPY_METH_unaligned_contiguous_loop 8
#define NPY_METH_contiguous_indexed_loop 9
#define _NPY_METH_static_data 10
/*
* The resolve descriptors function, must be able to handle NULL values for
* all output (but not input) `given_descrs` and fill `loop_descrs`.
* Return -1 on error or 0 if the operation is not possible without an error
* set. (This may still be in flux.)
* Otherwise must return the "casting safety", for normal functions, this is
* almost always "safe" (or even "equivalent"?).
*
* `resolve_descriptors` is optional if all output DTypes are non-parametric.
*/
typedef NPY_CASTING (PyArrayMethod_ResolveDescriptors)(
/* "method" is currently opaque (necessary e.g. to wrap Python) */
struct PyArrayMethodObject_tag *method,
/* DTypes the method was created for */
PyArray_DTypeMeta *const *dtypes,
/* Input descriptors (instances). Outputs may be NULL. */
PyArray_Descr *const *given_descrs,
/* Exact loop descriptors to use, must not hold references on error */
PyArray_Descr **loop_descrs,
npy_intp *view_offset);
/*
* Rarely needed, slightly more powerful version of `resolve_descriptors`.
* See also `PyArrayMethod_ResolveDescriptors` for details on shared arguments.
*
* NOTE: This function is private now as it is unclear how and what to pass
* exactly as additional information to allow dealing with the scalars.
* See also gh-24915.
*/
typedef NPY_CASTING (PyArrayMethod_ResolveDescriptorsWithScalar)(
struct PyArrayMethodObject_tag *method,
PyArray_DTypeMeta *const *dtypes,
/* Unlike above, these can have any DType and we may allow NULL. */
PyArray_Descr *const *given_descrs,
/*
* Input scalars or NULL. Only ever passed for python scalars.
* WARNING: In some cases, a loop may be explicitly selected and the
* value passed is not available (NULL) or does not have the
* expected type.
*/
PyObject *const *input_scalars,
PyArray_Descr **loop_descrs,
npy_intp *view_offset);
typedef int (PyArrayMethod_StridedLoop)(PyArrayMethod_Context *context,
char *const *data, const npy_intp *dimensions, const npy_intp *strides,
NpyAuxData *transferdata);
typedef int (PyArrayMethod_GetLoop)(
PyArrayMethod_Context *context,
int aligned, int move_references,
const npy_intp *strides,
PyArrayMethod_StridedLoop **out_loop,
NpyAuxData **out_transferdata,
NPY_ARRAYMETHOD_FLAGS *flags);
/**
* Query an ArrayMethod for the initial value for use in reduction.
*
* @param context The arraymethod context, mainly to access the descriptors.
* @param reduction_is_empty Whether the reduction is empty. When it is, the
* value returned may differ. In this case it is a "default" value that
* may differ from the "identity" value normally used. For example:
* - `0.0` is the default for `sum([])`. But `-0.0` is the correct
* identity otherwise as it preserves the sign for `sum([-0.0])`.
* - We use no identity for object, but return the default of `0` and `1`
* for the empty `sum([], dtype=object)` and `prod([], dtype=object)`.
* This allows `np.sum(np.array(["a", "b"], dtype=object))` to work.
* - `-inf` or `INT_MIN` for `max` is an identity, but at least `INT_MIN`
* not a good *default* when there are no items.
* @param initial Pointer to initial data to be filled (if possible)
*
* @returns -1, 0, or 1 indicating error, no initial value, and initial being
* successfully filled. Errors must not be given where 0 is correct, NumPy
* may call this even when not strictly necessary.
*/
typedef int (PyArrayMethod_GetReductionInitial)(
PyArrayMethod_Context *context, npy_bool reduction_is_empty,
void *initial);
/*
* The following functions are only used by the wrapping array method defined
* in umath/wrapping_array_method.c
*/
/*
* The function to convert the given descriptors (passed in to
* `resolve_descriptors`) and translates them for the wrapped loop.
* The new descriptors MUST be viewable with the old ones, `NULL` must be
* supported (for outputs) and should normally be forwarded.
*
* The function must clean up on error.
*
* NOTE: We currently assume that this translation gives "viewable" results.
* I.e. there is no additional casting related to the wrapping process.
* In principle that could be supported, but not sure it is useful.
* This currently also means that e.g. alignment must apply identically
* to the new dtypes.
*
* TODO: Due to the fact that `resolve_descriptors` is also used for `can_cast`
* there is no way to "pass out" the result of this function. This means
* it will be called twice for every ufunc call.
* (I am considering including `auxdata` as an "optional" parameter to
* `resolve_descriptors`, so that it can be filled there if not NULL.)
*/
typedef int (PyArrayMethod_TranslateGivenDescriptors)(int nin, int nout,
PyArray_DTypeMeta *const wrapped_dtypes[],
PyArray_Descr *const given_descrs[], PyArray_Descr *new_descrs[]);
/**
* The function to convert the actual loop descriptors (as returned by the
* original `resolve_descriptors` function) to the ones the output array
* should use.
* This function must return "viewable" types, it must not mutate them in any
* form that would break the inner-loop logic. Does not need to support NULL.
*
* The function must clean up on error.
*
* @param nargs Number of arguments
* @param new_dtypes The DTypes of the output (usually probably not needed)
* @param given_descrs Original given_descrs to the resolver, necessary to
* fetch any information related to the new dtypes from the original.
* @param original_descrs The `loop_descrs` returned by the wrapped loop.
* @param loop_descrs The output descriptors, compatible to `original_descrs`.
*
* @returns 0 on success, -1 on failure.
*/
typedef int (PyArrayMethod_TranslateLoopDescriptors)(int nin, int nout,
PyArray_DTypeMeta *const new_dtypes[], PyArray_Descr *const given_descrs[],
PyArray_Descr *original_descrs[], PyArray_Descr *loop_descrs[]);
/*
* A traverse loop working on a single array. This is similar to the general
* strided-loop function. This is designed for loops that need to visit every
* element of a single array.
*
* Currently this is used for array clearing, via the NPY_DT_get_clear_loop
* API hook, and zero-filling, via the NPY_DT_get_fill_zero_loop API hook.
* These are most useful for handling arrays storing embedded references to
* python objects or heap-allocated data.
*
* The `void *traverse_context` is passed in because we may need to pass in
* Interpreter state or similar in the future, but we don't want to pass in
* a full context (with pointers to dtypes, method, caller which all make
* no sense for a traverse function).
*
* We assume for now that this context can be just passed through in the
* the future (for structured dtypes).
*
*/
typedef int (PyArrayMethod_TraverseLoop)(
void *traverse_context, const PyArray_Descr *descr, char *data,
npy_intp size, npy_intp stride, NpyAuxData *auxdata);
/*
* Simplified get_loop function specific to dtype traversal
*
* It should set the flags needed for the traversal loop and set out_loop to the
* loop function, which must be a valid PyArrayMethod_TraverseLoop
* pointer. Currently this is used for zero-filling and clearing arrays storing
* embedded references.
*
*/
typedef int (PyArrayMethod_GetTraverseLoop)(
void *traverse_context, const PyArray_Descr *descr,
int aligned, npy_intp fixed_stride,
PyArrayMethod_TraverseLoop **out_loop, NpyAuxData **out_auxdata,
NPY_ARRAYMETHOD_FLAGS *flags);
/*
* Type of the C promoter function, which must be wrapped into a
* PyCapsule with name "numpy._ufunc_promoter".
*
* Note that currently the output dtypes are always NULL unless they are
* also part of the signature. This is an implementation detail and could
* change in the future. However, in general promoters should not have a
* need for output dtypes.
* (There are potential use-cases, these are currently unsupported.)
*/
typedef int (PyArrayMethod_PromoterFunction)(PyObject *ufunc,
PyArray_DTypeMeta *const op_dtypes[], PyArray_DTypeMeta *const signature[],
PyArray_DTypeMeta *new_op_dtypes[]);
/*
* ****************************
* DTYPE API
* ****************************
*/
#define NPY_DT_ABSTRACT 1 << 1
#define NPY_DT_PARAMETRIC 1 << 2
#define NPY_DT_NUMERIC 1 << 3
/*
* These correspond to slots in the NPY_DType_Slots struct and must
* be in the same order as the members of that struct. If new slots
* get added or old slots get removed NPY_NUM_DTYPE_SLOTS must also
* be updated
*/
#define NPY_DT_discover_descr_from_pyobject 1
// this slot is considered private because its API hasn't been decided
#define _NPY_DT_is_known_scalar_type 2
#define NPY_DT_default_descr 3
#define NPY_DT_common_dtype 4
#define NPY_DT_common_instance 5
#define NPY_DT_ensure_canonical 6
#define NPY_DT_setitem 7
#define NPY_DT_getitem 8
#define NPY_DT_get_clear_loop 9
#define NPY_DT_get_fill_zero_loop 10
#define NPY_DT_finalize_descr 11
// These PyArray_ArrFunc slots will be deprecated and replaced eventually
// getitem and setitem can be defined as a performance optimization;
// by default the user dtypes call `legacy_getitem_using_DType` and
// `legacy_setitem_using_DType`, respectively. This functionality is
// only supported for basic NumPy DTypes.
// used to separate dtype slots from arrfuncs slots
// intended only for internal use but defined here for clarity
#define _NPY_DT_ARRFUNCS_OFFSET (1 << 10)
// Cast is disabled
// #define NPY_DT_PyArray_ArrFuncs_cast 0 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_getitem 1 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_setitem 2 + _NPY_DT_ARRFUNCS_OFFSET
// Copyswap is disabled
// #define NPY_DT_PyArray_ArrFuncs_copyswapn 3 + _NPY_DT_ARRFUNCS_OFFSET
// #define NPY_DT_PyArray_ArrFuncs_copyswap 4 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_compare 5 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_argmax 6 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_dotfunc 7 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_scanfunc 8 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_fromstr 9 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_nonzero 10 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_fill 11 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_fillwithscalar 12 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_sort 13 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_argsort 14 + _NPY_DT_ARRFUNCS_OFFSET
// Casting related slots are disabled. See
// https://github.com/numpy/numpy/pull/23173#discussion_r1101098163
// #define NPY_DT_PyArray_ArrFuncs_castdict 15 + _NPY_DT_ARRFUNCS_OFFSET
// #define NPY_DT_PyArray_ArrFuncs_scalarkind 16 + _NPY_DT_ARRFUNCS_OFFSET
// #define NPY_DT_PyArray_ArrFuncs_cancastscalarkindto 17 + _NPY_DT_ARRFUNCS_OFFSET
// #define NPY_DT_PyArray_ArrFuncs_cancastto 18 + _NPY_DT_ARRFUNCS_OFFSET
// These are deprecated in NumPy 1.19, so are disabled here.
// #define NPY_DT_PyArray_ArrFuncs_fastclip 19 + _NPY_DT_ARRFUNCS_OFFSET
// #define NPY_DT_PyArray_ArrFuncs_fastputmask 20 + _NPY_DT_ARRFUNCS_OFFSET
// #define NPY_DT_PyArray_ArrFuncs_fasttake 21 + _NPY_DT_ARRFUNCS_OFFSET
#define NPY_DT_PyArray_ArrFuncs_argmin 22 + _NPY_DT_ARRFUNCS_OFFSET
// TODO: These slots probably still need some thought, and/or a way to "grow"?
typedef struct {
PyTypeObject *typeobj; /* type of python scalar or NULL */
int flags; /* flags, including parametric and abstract */
/* NULL terminated cast definitions. Use NULL for the newly created DType */
PyArrayMethod_Spec **casts;
PyType_Slot *slots;
/* Baseclass or NULL (will always subclass `np.dtype`) */
PyTypeObject *baseclass;
} PyArrayDTypeMeta_Spec;
typedef PyArray_Descr *(PyArrayDTypeMeta_DiscoverDescrFromPyobject)(
PyArray_DTypeMeta *cls, PyObject *obj);
/*
* Before making this public, we should decide whether it should pass
* the type, or allow looking at the object. A possible use-case:
* `np.array(np.array([0]), dtype=np.ndarray)`
* Could consider arrays that are not `dtype=ndarray` "scalars".
*/
typedef int (PyArrayDTypeMeta_IsKnownScalarType)(
PyArray_DTypeMeta *cls, PyTypeObject *obj);
typedef PyArray_Descr *(PyArrayDTypeMeta_DefaultDescriptor)(PyArray_DTypeMeta *cls);
typedef PyArray_DTypeMeta *(PyArrayDTypeMeta_CommonDType)(
PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtype2);
/*
* Convenience utility for getting a reference to the DType metaclass associated
* with a dtype instance.
*/
#define NPY_DTYPE(descr) ((PyArray_DTypeMeta *)Py_TYPE(descr))
static inline PyArray_DTypeMeta *
NPY_DT_NewRef(PyArray_DTypeMeta *o) {
Py_INCREF((PyObject *)o);
return o;
}
typedef PyArray_Descr *(PyArrayDTypeMeta_CommonInstance)(
PyArray_Descr *dtype1, PyArray_Descr *dtype2);
typedef PyArray_Descr *(PyArrayDTypeMeta_EnsureCanonical)(PyArray_Descr *dtype);
/*
* Returns either a new reference to *dtype* or a new descriptor instance
* initialized with the same parameters as *dtype*. The caller cannot know
* which choice a dtype will make. This function is called just before the
* array buffer is created for a newly created array, it is not called for
* views and the descriptor returned by this function is attached to the array.
*/
typedef PyArray_Descr *(PyArrayDTypeMeta_FinalizeDescriptor)(PyArray_Descr *dtype);
/*
* TODO: These two functions are currently only used for experimental DType
* API support. Their relation should be "reversed": NumPy should
* always use them internally.
* There are open points about "casting safety" though, e.g. setting
* elements is currently always unsafe.
*/
typedef int(PyArrayDTypeMeta_SetItem)(PyArray_Descr *, PyObject *, char *);
typedef PyObject *(PyArrayDTypeMeta_GetItem)(PyArray_Descr *, char *);
#endif /* NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_ */

View File

@ -0,0 +1,70 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_
#include <Python.h>
#include <numpy/npy_math.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Half-precision routines
*/
/* Conversions */
float npy_half_to_float(npy_half h);
double npy_half_to_double(npy_half h);
npy_half npy_float_to_half(float f);
npy_half npy_double_to_half(double d);
/* Comparisons */
int npy_half_eq(npy_half h1, npy_half h2);
int npy_half_ne(npy_half h1, npy_half h2);
int npy_half_le(npy_half h1, npy_half h2);
int npy_half_lt(npy_half h1, npy_half h2);
int npy_half_ge(npy_half h1, npy_half h2);
int npy_half_gt(npy_half h1, npy_half h2);
/* faster *_nonan variants for when you know h1 and h2 are not NaN */
int npy_half_eq_nonan(npy_half h1, npy_half h2);
int npy_half_lt_nonan(npy_half h1, npy_half h2);
int npy_half_le_nonan(npy_half h1, npy_half h2);
/* Miscellaneous functions */
int npy_half_iszero(npy_half h);
int npy_half_isnan(npy_half h);
int npy_half_isinf(npy_half h);
int npy_half_isfinite(npy_half h);
int npy_half_signbit(npy_half h);
npy_half npy_half_copysign(npy_half x, npy_half y);
npy_half npy_half_spacing(npy_half h);
npy_half npy_half_nextafter(npy_half x, npy_half y);
npy_half npy_half_divmod(npy_half x, npy_half y, npy_half *modulus);
/*
* Half-precision constants
*/
#define NPY_HALF_ZERO (0x0000u)
#define NPY_HALF_PZERO (0x0000u)
#define NPY_HALF_NZERO (0x8000u)
#define NPY_HALF_ONE (0x3c00u)
#define NPY_HALF_NEGONE (0xbc00u)
#define NPY_HALF_PINF (0x7c00u)
#define NPY_HALF_NINF (0xfc00u)
#define NPY_HALF_NAN (0x7e00u)
#define NPY_MAX_HALF (0x7bffu)
/*
* Bit-level conversions
*/
npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f);
npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d);
npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h);
npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h);
#ifdef __cplusplus
}
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_ */

View File

@ -0,0 +1,304 @@
/*
* DON'T INCLUDE THIS DIRECTLY.
*/
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <Python.h>
#include "ndarraytypes.h"
#include "dtype_api.h"
/* Includes the "function" C-API -- these are all stored in a
list of pointers --- one for each file
The two lists are concatenated into one in multiarray.
They are available as import_array()
*/
#include "__multiarray_api.h"
/*
* Include any definitions which are defined differently for 1.x and 2.x
* (Symbols only available on 2.x are not there, but rather guarded.)
*/
#include "npy_2_compat.h"
/* C-API that requires previous API to be defined */
#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)
#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type)
#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type)
#define PyArray_HasArrayInterfaceType(op, type, context, out) \
((((out)=PyArray_FromStructInterface(op)) != Py_NotImplemented) || \
(((out)=PyArray_FromInterface(op)) != Py_NotImplemented) || \
(((out)=PyArray_FromArrayAttr(op, type, context)) != \
Py_NotImplemented))
#define PyArray_HasArrayInterface(op, out) \
PyArray_HasArrayInterfaceType(op, NULL, NULL, out)
#define PyArray_IsZeroDim(op) (PyArray_Check(op) && \
(PyArray_NDIM((PyArrayObject *)op) == 0))
#define PyArray_IsScalar(obj, cls) \
(PyObject_TypeCheck(obj, &Py##cls##ArrType_Type))
#define PyArray_CheckScalar(m) (PyArray_IsScalar(m, Generic) || \
PyArray_IsZeroDim(m))
#define PyArray_IsPythonNumber(obj) \
(PyFloat_Check(obj) || PyComplex_Check(obj) || \
PyLong_Check(obj) || PyBool_Check(obj))
#define PyArray_IsIntegerScalar(obj) (PyLong_Check(obj) \
|| PyArray_IsScalar((obj), Integer))
#define PyArray_IsPythonScalar(obj) \
(PyArray_IsPythonNumber(obj) || PyBytes_Check(obj) || \
PyUnicode_Check(obj))
#define PyArray_IsAnyScalar(obj) \
(PyArray_IsScalar(obj, Generic) || PyArray_IsPythonScalar(obj))
#define PyArray_CheckAnyScalar(obj) (PyArray_IsPythonScalar(obj) || \
PyArray_CheckScalar(obj))
#define PyArray_GETCONTIGUOUS(m) (PyArray_ISCONTIGUOUS(m) ? \
Py_INCREF(m), (m) : \
(PyArrayObject *)(PyArray_Copy(m)))
#define PyArray_SAMESHAPE(a1,a2) ((PyArray_NDIM(a1) == PyArray_NDIM(a2)) && \
PyArray_CompareLists(PyArray_DIMS(a1), \
PyArray_DIMS(a2), \
PyArray_NDIM(a1)))
#define PyArray_SIZE(m) PyArray_MultiplyList(PyArray_DIMS(m), PyArray_NDIM(m))
#define PyArray_NBYTES(m) (PyArray_ITEMSIZE(m) * PyArray_SIZE(m))
#define PyArray_FROM_O(m) PyArray_FromAny(m, NULL, 0, 0, 0, NULL)
#define PyArray_FROM_OF(m,flags) PyArray_CheckFromAny(m, NULL, 0, 0, flags, \
NULL)
#define PyArray_FROM_OT(m,type) PyArray_FromAny(m, \
PyArray_DescrFromType(type), 0, 0, 0, NULL)
#define PyArray_FROM_OTF(m, type, flags) \
PyArray_FromAny(m, PyArray_DescrFromType(type), 0, 0, \
(((flags) & NPY_ARRAY_ENSURECOPY) ? \
((flags) | NPY_ARRAY_DEFAULT) : (flags)), NULL)
#define PyArray_FROMANY(m, type, min, max, flags) \
PyArray_FromAny(m, PyArray_DescrFromType(type), min, max, \
(((flags) & NPY_ARRAY_ENSURECOPY) ? \
(flags) | NPY_ARRAY_DEFAULT : (flags)), NULL)
#define PyArray_ZEROS(m, dims, type, is_f_order) \
PyArray_Zeros(m, dims, PyArray_DescrFromType(type), is_f_order)
#define PyArray_EMPTY(m, dims, type, is_f_order) \
PyArray_Empty(m, dims, PyArray_DescrFromType(type), is_f_order)
#define PyArray_FILLWBYTE(obj, val) memset(PyArray_DATA(obj), val, \
PyArray_NBYTES(obj))
#define PyArray_ContiguousFromAny(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_DEFAULT, NULL)
#define PyArray_EquivArrTypes(a1, a2) \
PyArray_EquivTypes(PyArray_DESCR(a1), PyArray_DESCR(a2))
#define PyArray_EquivByteorders(b1, b2) \
(((b1) == (b2)) || (PyArray_ISNBO(b1) == PyArray_ISNBO(b2)))
#define PyArray_SimpleNew(nd, dims, typenum) \
PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, NULL, 0, 0, NULL)
#define PyArray_SimpleNewFromData(nd, dims, typenum, data) \
PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, \
data, 0, NPY_ARRAY_CARRAY, NULL)
#define PyArray_SimpleNewFromDescr(nd, dims, descr) \
PyArray_NewFromDescr(&PyArray_Type, descr, nd, dims, \
NULL, NULL, 0, NULL)
#define PyArray_ToScalar(data, arr) \
PyArray_Scalar(data, PyArray_DESCR(arr), (PyObject *)arr)
/* These might be faster without the dereferencing of obj
going on inside -- of course an optimizing compiler should
inline the constants inside a for loop making it a moot point
*/
#define PyArray_GETPTR1(obj, i) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0]))
#define PyArray_GETPTR2(obj, i, j) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0] + \
(j)*PyArray_STRIDES(obj)[1]))
#define PyArray_GETPTR3(obj, i, j, k) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0] + \
(j)*PyArray_STRIDES(obj)[1] + \
(k)*PyArray_STRIDES(obj)[2]))
#define PyArray_GETPTR4(obj, i, j, k, l) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0] + \
(j)*PyArray_STRIDES(obj)[1] + \
(k)*PyArray_STRIDES(obj)[2] + \
(l)*PyArray_STRIDES(obj)[3]))
static inline void
PyArray_DiscardWritebackIfCopy(PyArrayObject *arr)
{
PyArrayObject_fields *fa = (PyArrayObject_fields *)arr;
if (fa && fa->base) {
if (fa->flags & NPY_ARRAY_WRITEBACKIFCOPY) {
PyArray_ENABLEFLAGS((PyArrayObject*)fa->base, NPY_ARRAY_WRITEABLE);
Py_DECREF(fa->base);
fa->base = NULL;
PyArray_CLEARFLAGS(arr, NPY_ARRAY_WRITEBACKIFCOPY);
}
}
}
#define PyArray_DESCR_REPLACE(descr) do { \
PyArray_Descr *_new_; \
_new_ = PyArray_DescrNew(descr); \
Py_XDECREF(descr); \
descr = _new_; \
} while(0)
/* Copy should always return contiguous array */
#define PyArray_Copy(obj) PyArray_NewCopy(obj, NPY_CORDER)
#define PyArray_FromObject(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_BEHAVED | \
NPY_ARRAY_ENSUREARRAY, NULL)
#define PyArray_ContiguousFromObject(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_DEFAULT | \
NPY_ARRAY_ENSUREARRAY, NULL)
#define PyArray_CopyFromObject(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_ENSURECOPY | \
NPY_ARRAY_DEFAULT | \
NPY_ARRAY_ENSUREARRAY, NULL)
#define PyArray_Cast(mp, type_num) \
PyArray_CastToType(mp, PyArray_DescrFromType(type_num), 0)
#define PyArray_Take(ap, items, axis) \
PyArray_TakeFrom(ap, items, axis, NULL, NPY_RAISE)
#define PyArray_Put(ap, items, values) \
PyArray_PutTo(ap, items, values, NPY_RAISE)
/*
Check to see if this key in the dictionary is the "title"
entry of the tuple (i.e. a duplicate dictionary entry in the fields
dict).
*/
static inline int
NPY_TITLE_KEY_check(PyObject *key, PyObject *value)
{
PyObject *title;
if (PyTuple_Size(value) != 3) {
return 0;
}
title = PyTuple_GetItem(value, 2);
if (key == title) {
return 1;
}
#ifdef PYPY_VERSION
/*
* On PyPy, dictionary keys do not always preserve object identity.
* Fall back to comparison by value.
*/
if (PyUnicode_Check(title) && PyUnicode_Check(key)) {
return PyUnicode_Compare(title, key) == 0 ? 1 : 0;
}
#endif
return 0;
}
/* Macro, for backward compat with "if NPY_TITLE_KEY(key, value) { ..." */
#define NPY_TITLE_KEY(key, value) (NPY_TITLE_KEY_check((key), (value)))
#define DEPRECATE(msg) PyErr_WarnEx(PyExc_DeprecationWarning,msg,1)
#define DEPRECATE_FUTUREWARNING(msg) PyErr_WarnEx(PyExc_FutureWarning,msg,1)
/*
* These macros and functions unfortunately require runtime version checks
* that are only defined in `npy_2_compat.h`. For that reasons they cannot be
* part of `ndarraytypes.h` which tries to be self contained.
*/
static inline npy_intp
PyArray_ITEMSIZE(const PyArrayObject *arr)
{
return PyDataType_ELSIZE(((PyArrayObject_fields *)arr)->descr);
}
#define PyDataType_HASFIELDS(obj) (PyDataType_ISLEGACY((PyArray_Descr*)(obj)) && PyDataType_NAMES((PyArray_Descr*)(obj)) != NULL)
#define PyDataType_HASSUBARRAY(dtype) (PyDataType_ISLEGACY(dtype) && PyDataType_SUBARRAY(dtype) != NULL)
#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \
!PyDataType_HASFIELDS(dtype))
#define PyDataType_FLAGCHK(dtype, flag) \
((PyDataType_FLAGS(dtype) & (flag)) == (flag))
#define PyDataType_REFCHK(dtype) \
PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT)
#define NPY_BEGIN_THREADS_DESCR(dtype) \
do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
NPY_BEGIN_THREADS;} while (0);
#define NPY_END_THREADS_DESCR(dtype) \
do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
NPY_END_THREADS; } while (0);
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
/* The internal copy of this is now defined in `dtypemeta.h` */
/*
* `PyArray_Scalar` is the same as this function but converts will convert
* most NumPy types to Python scalars.
*/
static inline PyObject *
PyArray_GETITEM(const PyArrayObject *arr, const char *itemptr)
{
return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->getitem(
(void *)itemptr, (PyArrayObject *)arr);
}
/*
* SETITEM should only be used if it is known that the value is a scalar
* and of a type understood by the arrays dtype.
* Use `PyArray_Pack` if the value may be of a different dtype.
*/
static inline int
PyArray_SETITEM(PyArrayObject *arr, char *itemptr, PyObject *v)
{
return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->setitem(v, itemptr, arr);
}
#endif /* not internal */
#ifdef __cplusplus
}
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,112 @@
#ifndef NPY_DEPRECATED_INCLUDES
#error "Should never include npy_*_*_deprecated_api directly."
#endif
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_
/* Emit a warning if the user did not specifically request the old API */
#ifndef NPY_NO_DEPRECATED_API
#if defined(_WIN32)
#define _WARN___STR2__(x) #x
#define _WARN___STR1__(x) _WARN___STR2__(x)
#define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
#pragma message(_WARN___LOC__"Using deprecated NumPy API, disable it with " \
"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION")
#else
#warning "Using deprecated NumPy API, disable it with " \
"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION"
#endif
#endif
/*
* This header exists to collect all dangerous/deprecated NumPy API
* as of NumPy 1.7.
*
* This is an attempt to remove bad API, the proliferation of macros,
* and namespace pollution currently produced by the NumPy headers.
*/
/* These array flags are deprecated as of NumPy 1.7 */
#define NPY_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
#define NPY_FORTRAN NPY_ARRAY_F_CONTIGUOUS
/*
* The consistent NPY_ARRAY_* names which don't pollute the NPY_*
* namespace were added in NumPy 1.7.
*
* These versions of the carray flags are deprecated, but
* probably should only be removed after two releases instead of one.
*/
#define NPY_C_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
#define NPY_F_CONTIGUOUS NPY_ARRAY_F_CONTIGUOUS
#define NPY_OWNDATA NPY_ARRAY_OWNDATA
#define NPY_FORCECAST NPY_ARRAY_FORCECAST
#define NPY_ENSURECOPY NPY_ARRAY_ENSURECOPY
#define NPY_ENSUREARRAY NPY_ARRAY_ENSUREARRAY
#define NPY_ELEMENTSTRIDES NPY_ARRAY_ELEMENTSTRIDES
#define NPY_ALIGNED NPY_ARRAY_ALIGNED
#define NPY_NOTSWAPPED NPY_ARRAY_NOTSWAPPED
#define NPY_WRITEABLE NPY_ARRAY_WRITEABLE
#define NPY_BEHAVED NPY_ARRAY_BEHAVED
#define NPY_BEHAVED_NS NPY_ARRAY_BEHAVED_NS
#define NPY_CARRAY NPY_ARRAY_CARRAY
#define NPY_CARRAY_RO NPY_ARRAY_CARRAY_RO
#define NPY_FARRAY NPY_ARRAY_FARRAY
#define NPY_FARRAY_RO NPY_ARRAY_FARRAY_RO
#define NPY_DEFAULT NPY_ARRAY_DEFAULT
#define NPY_IN_ARRAY NPY_ARRAY_IN_ARRAY
#define NPY_OUT_ARRAY NPY_ARRAY_OUT_ARRAY
#define NPY_INOUT_ARRAY NPY_ARRAY_INOUT_ARRAY
#define NPY_IN_FARRAY NPY_ARRAY_IN_FARRAY
#define NPY_OUT_FARRAY NPY_ARRAY_OUT_FARRAY
#define NPY_INOUT_FARRAY NPY_ARRAY_INOUT_FARRAY
#define NPY_UPDATE_ALL NPY_ARRAY_UPDATE_ALL
/* This way of accessing the default type is deprecated as of NumPy 1.7 */
#define PyArray_DEFAULT NPY_DEFAULT_TYPE
/*
* Deprecated as of NumPy 1.7, this kind of shortcut doesn't
* belong in the public API.
*/
#define NPY_AO PyArrayObject
/*
* Deprecated as of NumPy 1.7, an all-lowercase macro doesn't
* belong in the public API.
*/
#define fortran fortran_
/*
* Deprecated as of NumPy 1.7, as it is a namespace-polluting
* macro.
*/
#define FORTRAN_IF PyArray_FORTRAN_IF
/* Deprecated as of NumPy 1.7, datetime64 uses c_metadata instead */
#define NPY_METADATA_DTSTR "__timeunit__"
/*
* Deprecated as of NumPy 1.7.
* The reasoning:
* - These are for datetime, but there's no datetime "namespace".
* - They just turn NPY_STR_<x> into "<x>", which is just
* making something simple be indirected.
*/
#define NPY_STR_Y "Y"
#define NPY_STR_M "M"
#define NPY_STR_W "W"
#define NPY_STR_D "D"
#define NPY_STR_h "h"
#define NPY_STR_m "m"
#define NPY_STR_s "s"
#define NPY_STR_ms "ms"
#define NPY_STR_us "us"
#define NPY_STR_ns "ns"
#define NPY_STR_ps "ps"
#define NPY_STR_fs "fs"
#define NPY_STR_as "as"
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_ */

View File

@ -0,0 +1,249 @@
/*
* This header file defines relevant features which:
* - Require runtime inspection depending on the NumPy version.
* - May be needed when compiling with an older version of NumPy to allow
* a smooth transition.
*
* As such, it is shipped with NumPy 2.0, but designed to be vendored in full
* or parts by downstream projects.
*
* It must be included after any other includes. `import_array()` must have
* been called in the scope or version dependency will misbehave, even when
* only `PyUFunc_` API is used.
*
* If required complicated defs (with inline functions) should be written as:
*
* #if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
* Simple definition when NumPy 2.0 API is guaranteed.
* #else
* static inline definition of a 1.x compatibility shim
* #if NPY_ABI_VERSION < 0x02000000
* Make 1.x compatibility shim the public API (1.x only branch)
* #else
* Runtime dispatched version (1.x or 2.x)
* #endif
* #endif
*
* An internal build always passes NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
*/
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_
/*
* New macros for accessing real and complex part of a complex number can be
* found in "npy_2_complexcompat.h".
*/
/*
* This header is meant to be included by downstream directly for 1.x compat.
* In that case we need to ensure that users first included the full headers
* and not just `ndarraytypes.h`.
*/
#ifndef NPY_FEATURE_VERSION
#error "The NumPy 2 compat header requires `import_array()` for which " \
"the `ndarraytypes.h` header include is not sufficient. Please " \
"include it after `numpy/ndarrayobject.h` or similar.\n" \
"To simplify inclusion, you may use `PyArray_ImportNumPy()` " \
"which is defined in the compat header and is lightweight (can be)."
#endif
#if NPY_ABI_VERSION < 0x02000000
/*
* Define 2.0 feature version as it is needed below to decide whether we
* compile for both 1.x and 2.x (defining it guarantees 1.x only).
*/
#define NPY_2_0_API_VERSION 0x00000012
/*
* If we are compiling with NumPy 1.x, PyArray_RUNTIME_VERSION so we
* pretend the `PyArray_RUNTIME_VERSION` is `NPY_FEATURE_VERSION`.
* This allows downstream to use `PyArray_RUNTIME_VERSION` if they need to.
*/
#define PyArray_RUNTIME_VERSION NPY_FEATURE_VERSION
/* Compiling on NumPy 1.x where these are the same: */
#define PyArray_DescrProto PyArray_Descr
#endif
/*
* Define a better way to call `_import_array()` to simplify backporting as
* we now require imports more often (necessary to make ABI flexible).
*/
#ifdef import_array1
static inline int
PyArray_ImportNumPyAPI(void)
{
if (NPY_UNLIKELY(PyArray_API == NULL)) {
import_array1(-1);
}
return 0;
}
#endif /* import_array1 */
/*
* NPY_DEFAULT_INT
*
* The default integer has changed, `NPY_DEFAULT_INT` is available at runtime
* for use as type number, e.g. `PyArray_DescrFromType(NPY_DEFAULT_INT)`.
*
* NPY_RAVEL_AXIS
*
* This was introduced in NumPy 2.0 to allow indicating that an axis should be
* raveled in an operation. Before NumPy 2.0, NPY_MAXDIMS was used for this purpose.
*
* NPY_MAXDIMS
*
* A constant indicating the maximum number dimensions allowed when creating
* an ndarray.
*
* NPY_NTYPES_LEGACY
*
* The number of built-in NumPy dtypes.
*/
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
#define NPY_DEFAULT_INT NPY_INTP
#define NPY_RAVEL_AXIS NPY_MIN_INT
#define NPY_MAXARGS 64
#elif NPY_ABI_VERSION < 0x02000000
#define NPY_DEFAULT_INT NPY_LONG
#define NPY_RAVEL_AXIS 32
#define NPY_MAXARGS 32
/* Aliases of 2.x names to 1.x only equivalent names */
#define NPY_NTYPES NPY_NTYPES_LEGACY
#define PyArray_DescrProto PyArray_Descr
#define _PyArray_LegacyDescr PyArray_Descr
/* NumPy 2 definition always works, but add it for 1.x only */
#define PyDataType_ISLEGACY(dtype) (1)
#else
#define NPY_DEFAULT_INT \
(PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_INTP : NPY_LONG)
#define NPY_RAVEL_AXIS \
(PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_MIN_INT : 32)
#define NPY_MAXARGS \
(PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? 64 : 32)
#endif
/*
* Access inline functions for descriptor fields. Except for the first
* few fields, these needed to be moved (elsize, alignment) for
* additional space. Or they are descriptor specific and are not generally
* available anymore (metadata, c_metadata, subarray, names, fields).
*
* Most of these are defined via the `DESCR_ACCESSOR` macro helper.
*/
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION || NPY_ABI_VERSION < 0x02000000
/* Compiling for 1.x or 2.x only, direct field access is OK: */
static inline void
PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size)
{
dtype->elsize = size;
}
static inline npy_uint64
PyDataType_FLAGS(const PyArray_Descr *dtype)
{
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
return dtype->flags;
#else
return (unsigned char)dtype->flags; /* Need unsigned cast on 1.x */
#endif
}
#define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \
static inline type \
PyDataType_##FIELD(const PyArray_Descr *dtype) { \
if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \
return (type)0; \
} \
return ((_PyArray_LegacyDescr *)dtype)->field; \
}
#else /* compiling for both 1.x and 2.x */
static inline void
PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size)
{
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
((_PyArray_DescrNumPy2 *)dtype)->elsize = size;
}
else {
((PyArray_DescrProto *)dtype)->elsize = (int)size;
}
}
static inline npy_uint64
PyDataType_FLAGS(const PyArray_Descr *dtype)
{
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
return ((_PyArray_DescrNumPy2 *)dtype)->flags;
}
else {
return (unsigned char)((PyArray_DescrProto *)dtype)->flags;
}
}
/* Cast to LegacyDescr always fine but needed when `legacy_only` */
#define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \
static inline type \
PyDataType_##FIELD(const PyArray_Descr *dtype) { \
if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \
return (type)0; \
} \
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { \
return ((_PyArray_LegacyDescr *)dtype)->field; \
} \
else { \
return ((PyArray_DescrProto *)dtype)->field; \
} \
}
#endif
DESCR_ACCESSOR(ELSIZE, elsize, npy_intp, 0)
DESCR_ACCESSOR(ALIGNMENT, alignment, npy_intp, 0)
DESCR_ACCESSOR(METADATA, metadata, PyObject *, 1)
DESCR_ACCESSOR(SUBARRAY, subarray, PyArray_ArrayDescr *, 1)
DESCR_ACCESSOR(NAMES, names, PyObject *, 1)
DESCR_ACCESSOR(FIELDS, fields, PyObject *, 1)
DESCR_ACCESSOR(C_METADATA, c_metadata, NpyAuxData *, 1)
#undef DESCR_ACCESSOR
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
static inline PyArray_ArrFuncs *
PyDataType_GetArrFuncs(const PyArray_Descr *descr)
{
return _PyDataType_GetArrFuncs(descr);
}
#elif NPY_ABI_VERSION < 0x02000000
static inline PyArray_ArrFuncs *
PyDataType_GetArrFuncs(const PyArray_Descr *descr)
{
return descr->f;
}
#else
static inline PyArray_ArrFuncs *
PyDataType_GetArrFuncs(const PyArray_Descr *descr)
{
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
return _PyDataType_GetArrFuncs(descr);
}
else {
return ((PyArray_DescrProto *)descr)->f;
}
}
#endif
#endif /* not internal build */
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_ */

View File

@ -0,0 +1,28 @@
/* This header is designed to be copy-pasted into downstream packages, since it provides
a compatibility layer between the old C struct complex types and the new native C99
complex types. The new macros are in numpy/npy_math.h, which is why it is included here. */
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_
#include <numpy/npy_math.h>
#ifndef NPY_CSETREALF
#define NPY_CSETREALF(c, r) (c)->real = (r)
#endif
#ifndef NPY_CSETIMAGF
#define NPY_CSETIMAGF(c, i) (c)->imag = (i)
#endif
#ifndef NPY_CSETREAL
#define NPY_CSETREAL(c, r) (c)->real = (r)
#endif
#ifndef NPY_CSETIMAG
#define NPY_CSETIMAG(c, i) (c)->imag = (i)
#endif
#ifndef NPY_CSETREALL
#define NPY_CSETREALL(c, r) (c)->real = (r)
#endif
#ifndef NPY_CSETIMAGL
#define NPY_CSETIMAGL(c, i) (c)->imag = (i)
#endif
#endif

View File

@ -0,0 +1,374 @@
/*
* This is a convenience header file providing compatibility utilities
* for supporting different minor versions of Python 3.
* It was originally used to support the transition from Python 2,
* hence the "3k" naming.
*
* If you want to use this for your own projects, it's recommended to make a
* copy of it. We don't provide backwards compatibility guarantees.
*/
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_
#include <Python.h>
#include <stdio.h>
#include "npy_common.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Python13 removes _PyLong_AsInt */
static inline int
Npy__PyLong_AsInt(PyObject *obj)
{
int overflow;
long result = PyLong_AsLongAndOverflow(obj, &overflow);
/* INT_MAX and INT_MIN are defined in Python.h */
if (overflow || result > INT_MAX || result < INT_MIN) {
/* XXX: could be cute and give a different
message for overflow == -1 */
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C int");
return -1;
}
return (int)result;
}
#if defined _MSC_VER && _MSC_VER >= 1900
#include <stdlib.h>
/*
* Macros to protect CRT calls against instant termination when passed an
* invalid parameter (https://bugs.python.org/issue23524).
*/
extern _invalid_parameter_handler _Py_silent_invalid_parameter_handler;
#define NPY_BEGIN_SUPPRESS_IPH { _invalid_parameter_handler _Py_old_handler = \
_set_thread_local_invalid_parameter_handler(_Py_silent_invalid_parameter_handler);
#define NPY_END_SUPPRESS_IPH _set_thread_local_invalid_parameter_handler(_Py_old_handler); }
#else
#define NPY_BEGIN_SUPPRESS_IPH
#define NPY_END_SUPPRESS_IPH
#endif /* _MSC_VER >= 1900 */
/*
* PyFile_* compatibility
*/
/*
* Get a FILE* handle to the file represented by the Python object
*/
static inline FILE*
npy_PyFile_Dup2(PyObject *file, char *mode, npy_off_t *orig_pos)
{
int fd, fd2, unbuf;
Py_ssize_t fd2_tmp;
PyObject *ret, *os, *io, *io_raw;
npy_off_t pos;
FILE *handle;
/* Flush first to ensure things end up in the file in the correct order */
ret = PyObject_CallMethod(file, "flush", "");
if (ret == NULL) {
return NULL;
}
Py_DECREF(ret);
fd = PyObject_AsFileDescriptor(file);
if (fd == -1) {
return NULL;
}
/*
* The handle needs to be dup'd because we have to call fclose
* at the end
*/
os = PyImport_ImportModule("os");
if (os == NULL) {
return NULL;
}
ret = PyObject_CallMethod(os, "dup", "i", fd);
Py_DECREF(os);
if (ret == NULL) {
return NULL;
}
fd2_tmp = PyNumber_AsSsize_t(ret, PyExc_IOError);
Py_DECREF(ret);
if (fd2_tmp == -1 && PyErr_Occurred()) {
return NULL;
}
if (fd2_tmp < INT_MIN || fd2_tmp > INT_MAX) {
PyErr_SetString(PyExc_IOError,
"Getting an 'int' from os.dup() failed");
return NULL;
}
fd2 = (int)fd2_tmp;
/* Convert to FILE* handle */
#ifdef _WIN32
NPY_BEGIN_SUPPRESS_IPH
handle = _fdopen(fd2, mode);
NPY_END_SUPPRESS_IPH
#else
handle = fdopen(fd2, mode);
#endif
if (handle == NULL) {
PyErr_SetString(PyExc_IOError,
"Getting a FILE* from a Python file object via "
"_fdopen failed. If you built NumPy, you probably "
"linked with the wrong debug/release runtime");
return NULL;
}
/* Record the original raw file handle position */
*orig_pos = npy_ftell(handle);
if (*orig_pos == -1) {
/* The io module is needed to determine if buffering is used */
io = PyImport_ImportModule("io");
if (io == NULL) {
fclose(handle);
return NULL;
}
/* File object instances of RawIOBase are unbuffered */
io_raw = PyObject_GetAttrString(io, "RawIOBase");
Py_DECREF(io);
if (io_raw == NULL) {
fclose(handle);
return NULL;
}
unbuf = PyObject_IsInstance(file, io_raw);
Py_DECREF(io_raw);
if (unbuf == 1) {
/* Succeed if the IO is unbuffered */
return handle;
}
else {
PyErr_SetString(PyExc_IOError, "obtaining file position failed");
fclose(handle);
return NULL;
}
}
/* Seek raw handle to the Python-side position */
ret = PyObject_CallMethod(file, "tell", "");
if (ret == NULL) {
fclose(handle);
return NULL;
}
pos = PyLong_AsLongLong(ret);
Py_DECREF(ret);
if (PyErr_Occurred()) {
fclose(handle);
return NULL;
}
if (npy_fseek(handle, pos, SEEK_SET) == -1) {
PyErr_SetString(PyExc_IOError, "seeking file failed");
fclose(handle);
return NULL;
}
return handle;
}
/*
* Close the dup-ed file handle, and seek the Python one to the current position
*/
static inline int
npy_PyFile_DupClose2(PyObject *file, FILE* handle, npy_off_t orig_pos)
{
int fd, unbuf;
PyObject *ret, *io, *io_raw;
npy_off_t position;
position = npy_ftell(handle);
/* Close the FILE* handle */
fclose(handle);
/*
* Restore original file handle position, in order to not confuse
* Python-side data structures
*/
fd = PyObject_AsFileDescriptor(file);
if (fd == -1) {
return -1;
}
if (npy_lseek(fd, orig_pos, SEEK_SET) == -1) {
/* The io module is needed to determine if buffering is used */
io = PyImport_ImportModule("io");
if (io == NULL) {
return -1;
}
/* File object instances of RawIOBase are unbuffered */
io_raw = PyObject_GetAttrString(io, "RawIOBase");
Py_DECREF(io);
if (io_raw == NULL) {
return -1;
}
unbuf = PyObject_IsInstance(file, io_raw);
Py_DECREF(io_raw);
if (unbuf == 1) {
/* Succeed if the IO is unbuffered */
return 0;
}
else {
PyErr_SetString(PyExc_IOError, "seeking file failed");
return -1;
}
}
if (position == -1) {
PyErr_SetString(PyExc_IOError, "obtaining file position failed");
return -1;
}
/* Seek Python-side handle to the FILE* handle position */
ret = PyObject_CallMethod(file, "seek", NPY_OFF_T_PYFMT "i", position, 0);
if (ret == NULL) {
return -1;
}
Py_DECREF(ret);
return 0;
}
static inline PyObject*
npy_PyFile_OpenFile(PyObject *filename, const char *mode)
{
PyObject *open;
open = PyDict_GetItemString(PyEval_GetBuiltins(), "open");
if (open == NULL) {
return NULL;
}
return PyObject_CallFunction(open, "Os", filename, mode);
}
static inline int
npy_PyFile_CloseFile(PyObject *file)
{
PyObject *ret;
ret = PyObject_CallMethod(file, "close", NULL);
if (ret == NULL) {
return -1;
}
Py_DECREF(ret);
return 0;
}
/* This is a copy of _PyErr_ChainExceptions, which
* is no longer exported from Python3.12
*/
static inline void
npy_PyErr_ChainExceptions(PyObject *exc, PyObject *val, PyObject *tb)
{
if (exc == NULL)
return;
if (PyErr_Occurred()) {
PyObject *exc2, *val2, *tb2;
PyErr_Fetch(&exc2, &val2, &tb2);
PyErr_NormalizeException(&exc, &val, &tb);
if (tb != NULL) {
PyException_SetTraceback(val, tb);
Py_DECREF(tb);
}
Py_DECREF(exc);
PyErr_NormalizeException(&exc2, &val2, &tb2);
PyException_SetContext(val2, val);
PyErr_Restore(exc2, val2, tb2);
}
else {
PyErr_Restore(exc, val, tb);
}
}
/* This is a copy of _PyErr_ChainExceptions, with:
* __cause__ used instead of __context__
*/
static inline void
npy_PyErr_ChainExceptionsCause(PyObject *exc, PyObject *val, PyObject *tb)
{
if (exc == NULL)
return;
if (PyErr_Occurred()) {
PyObject *exc2, *val2, *tb2;
PyErr_Fetch(&exc2, &val2, &tb2);
PyErr_NormalizeException(&exc, &val, &tb);
if (tb != NULL) {
PyException_SetTraceback(val, tb);
Py_DECREF(tb);
}
Py_DECREF(exc);
PyErr_NormalizeException(&exc2, &val2, &tb2);
PyException_SetCause(val2, val);
PyErr_Restore(exc2, val2, tb2);
}
else {
PyErr_Restore(exc, val, tb);
}
}
/*
* PyCObject functions adapted to PyCapsules.
*
* The main job here is to get rid of the improved error handling
* of PyCapsules. It's a shame...
*/
static inline PyObject *
NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
{
PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
if (ret == NULL) {
PyErr_Clear();
}
return ret;
}
static inline PyObject *
NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context, void (*dtor)(PyObject *))
{
PyObject *ret = NpyCapsule_FromVoidPtr(ptr, dtor);
if (ret != NULL && PyCapsule_SetContext(ret, context) != 0) {
PyErr_Clear();
Py_DECREF(ret);
ret = NULL;
}
return ret;
}
static inline void *
NpyCapsule_AsVoidPtr(PyObject *obj)
{
void *ret = PyCapsule_GetPointer(obj, NULL);
if (ret == NULL) {
PyErr_Clear();
}
return ret;
}
static inline void *
NpyCapsule_GetDesc(PyObject *obj)
{
return PyCapsule_GetContext(obj);
}
static inline int
NpyCapsule_Check(PyObject *ptr)
{
return PyCapsule_CheckExact(ptr);
}
#ifdef __cplusplus
}
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,129 @@
/*
* This set (target) cpu specific macros:
* - Possible values:
* NPY_CPU_X86
* NPY_CPU_AMD64
* NPY_CPU_PPC
* NPY_CPU_PPC64
* NPY_CPU_PPC64LE
* NPY_CPU_SPARC
* NPY_CPU_S390
* NPY_CPU_IA64
* NPY_CPU_HPPA
* NPY_CPU_ALPHA
* NPY_CPU_ARMEL
* NPY_CPU_ARMEB
* NPY_CPU_SH_LE
* NPY_CPU_SH_BE
* NPY_CPU_ARCEL
* NPY_CPU_ARCEB
* NPY_CPU_RISCV64
* NPY_CPU_LOONGARCH
* NPY_CPU_WASM
*/
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_
#include "numpyconfig.h"
#if defined( __i386__ ) || defined(i386) || defined(_M_IX86)
/*
* __i386__ is defined by gcc and Intel compiler on Linux,
* _M_IX86 by VS compiler,
* i386 by Sun compilers on opensolaris at least
*/
#define NPY_CPU_X86
#elif defined(__x86_64__) || defined(__amd64__) || defined(__x86_64) || defined(_M_AMD64)
/*
* both __x86_64__ and __amd64__ are defined by gcc
* __x86_64 defined by sun compiler on opensolaris at least
* _M_AMD64 defined by MS compiler
*/
#define NPY_CPU_AMD64
#elif defined(__powerpc64__) && defined(__LITTLE_ENDIAN__)
#define NPY_CPU_PPC64LE
#elif defined(__powerpc64__) && defined(__BIG_ENDIAN__)
#define NPY_CPU_PPC64
#elif defined(__ppc__) || defined(__powerpc__) || defined(_ARCH_PPC)
/*
* __ppc__ is defined by gcc, I remember having seen __powerpc__ once,
* but can't find it ATM
* _ARCH_PPC is used by at least gcc on AIX
* As __powerpc__ and _ARCH_PPC are also defined by PPC64 check
* for those specifically first before defaulting to ppc
*/
#define NPY_CPU_PPC
#elif defined(__sparc__) || defined(__sparc)
/* __sparc__ is defined by gcc and Forte (e.g. Sun) compilers */
#define NPY_CPU_SPARC
#elif defined(__s390__)
#define NPY_CPU_S390
#elif defined(__ia64)
#define NPY_CPU_IA64
#elif defined(__hppa)
#define NPY_CPU_HPPA
#elif defined(__alpha__)
#define NPY_CPU_ALPHA
#elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM64)
/* _M_ARM64 is defined in MSVC for ARM64 compilation on Windows */
#if defined(__ARMEB__) || defined(__AARCH64EB__)
#if defined(__ARM_32BIT_STATE)
#define NPY_CPU_ARMEB_AARCH32
#elif defined(__ARM_64BIT_STATE)
#define NPY_CPU_ARMEB_AARCH64
#else
#define NPY_CPU_ARMEB
#endif
#elif defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
#if defined(__ARM_32BIT_STATE)
#define NPY_CPU_ARMEL_AARCH32
#elif defined(__ARM_64BIT_STATE) || defined(_M_ARM64) || defined(__AARCH64EL__)
#define NPY_CPU_ARMEL_AARCH64
#else
#define NPY_CPU_ARMEL
#endif
#else
# error Unknown ARM CPU, please report this to numpy maintainers with \
information about your platform (OS, CPU and compiler)
#endif
#elif defined(__sh__) && defined(__LITTLE_ENDIAN__)
#define NPY_CPU_SH_LE
#elif defined(__sh__) && defined(__BIG_ENDIAN__)
#define NPY_CPU_SH_BE
#elif defined(__MIPSEL__)
#define NPY_CPU_MIPSEL
#elif defined(__MIPSEB__)
#define NPY_CPU_MIPSEB
#elif defined(__or1k__)
#define NPY_CPU_OR1K
#elif defined(__mc68000__)
#define NPY_CPU_M68K
#elif defined(__arc__) && defined(__LITTLE_ENDIAN__)
#define NPY_CPU_ARCEL
#elif defined(__arc__) && defined(__BIG_ENDIAN__)
#define NPY_CPU_ARCEB
#elif defined(__riscv) && defined(__riscv_xlen) && __riscv_xlen == 64
#define NPY_CPU_RISCV64
#elif defined(__loongarch__)
#define NPY_CPU_LOONGARCH
#elif defined(__EMSCRIPTEN__)
/* __EMSCRIPTEN__ is defined by emscripten: an LLVM-to-Web compiler */
#define NPY_CPU_WASM
#else
#error Unknown CPU, please report this to numpy maintainers with \
information about your platform (OS, CPU and compiler)
#endif
/*
* Except for the following architectures, memory access is limited to the natural
* alignment of data types otherwise it may lead to bus error or performance regression.
* For more details about unaligned access, see https://www.kernel.org/doc/Documentation/unaligned-memory-access.txt.
*/
#if defined(NPY_CPU_X86) || defined(NPY_CPU_AMD64) || defined(__aarch64__) || defined(__powerpc64__)
#define NPY_ALIGNMENT_REQUIRED 0
#endif
#ifndef NPY_ALIGNMENT_REQUIRED
#define NPY_ALIGNMENT_REQUIRED 1
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_ */

View File

@ -0,0 +1,77 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_
/*
* NPY_BYTE_ORDER is set to the same value as BYTE_ORDER set by glibc in
* endian.h
*/
#if defined(NPY_HAVE_ENDIAN_H) || defined(NPY_HAVE_SYS_ENDIAN_H)
/* Use endian.h if available */
#if defined(NPY_HAVE_ENDIAN_H)
#include <endian.h>
#elif defined(NPY_HAVE_SYS_ENDIAN_H)
#include <sys/endian.h>
#endif
#if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && defined(LITTLE_ENDIAN)
#define NPY_BYTE_ORDER BYTE_ORDER
#define NPY_LITTLE_ENDIAN LITTLE_ENDIAN
#define NPY_BIG_ENDIAN BIG_ENDIAN
#elif defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && defined(_LITTLE_ENDIAN)
#define NPY_BYTE_ORDER _BYTE_ORDER
#define NPY_LITTLE_ENDIAN _LITTLE_ENDIAN
#define NPY_BIG_ENDIAN _BIG_ENDIAN
#elif defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && defined(__LITTLE_ENDIAN)
#define NPY_BYTE_ORDER __BYTE_ORDER
#define NPY_LITTLE_ENDIAN __LITTLE_ENDIAN
#define NPY_BIG_ENDIAN __BIG_ENDIAN
#endif
#endif
#ifndef NPY_BYTE_ORDER
/* Set endianness info using target CPU */
#include "npy_cpu.h"
#define NPY_LITTLE_ENDIAN 1234
#define NPY_BIG_ENDIAN 4321
#if defined(NPY_CPU_X86) \
|| defined(NPY_CPU_AMD64) \
|| defined(NPY_CPU_IA64) \
|| defined(NPY_CPU_ALPHA) \
|| defined(NPY_CPU_ARMEL) \
|| defined(NPY_CPU_ARMEL_AARCH32) \
|| defined(NPY_CPU_ARMEL_AARCH64) \
|| defined(NPY_CPU_SH_LE) \
|| defined(NPY_CPU_MIPSEL) \
|| defined(NPY_CPU_PPC64LE) \
|| defined(NPY_CPU_ARCEL) \
|| defined(NPY_CPU_RISCV64) \
|| defined(NPY_CPU_LOONGARCH) \
|| defined(NPY_CPU_WASM)
#define NPY_BYTE_ORDER NPY_LITTLE_ENDIAN
#elif defined(NPY_CPU_PPC) \
|| defined(NPY_CPU_SPARC) \
|| defined(NPY_CPU_S390) \
|| defined(NPY_CPU_HPPA) \
|| defined(NPY_CPU_PPC64) \
|| defined(NPY_CPU_ARMEB) \
|| defined(NPY_CPU_ARMEB_AARCH32) \
|| defined(NPY_CPU_ARMEB_AARCH64) \
|| defined(NPY_CPU_SH_BE) \
|| defined(NPY_CPU_MIPSEB) \
|| defined(NPY_CPU_OR1K) \
|| defined(NPY_CPU_M68K) \
|| defined(NPY_CPU_ARCEB)
#define NPY_BYTE_ORDER NPY_BIG_ENDIAN
#else
#error Unknown CPU: can not set endianness
#endif
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_ */

View File

@ -0,0 +1,602 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_
#include <numpy/npy_common.h>
#include <math.h>
/* By adding static inline specifiers to npy_math function definitions when
appropriate, compiler is given the opportunity to optimize */
#if NPY_INLINE_MATH
#define NPY_INPLACE static inline
#else
#define NPY_INPLACE
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define PyArray_MAX(a,b) (((a)>(b))?(a):(b))
#define PyArray_MIN(a,b) (((a)<(b))?(a):(b))
/*
* NAN and INFINITY like macros (same behavior as glibc for NAN, same as C99
* for INFINITY)
*
* XXX: I should test whether INFINITY and NAN are available on the platform
*/
static inline float __npy_inff(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x7f800000UL};
return __bint.__f;
}
static inline float __npy_nanf(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x7fc00000UL};
return __bint.__f;
}
static inline float __npy_pzerof(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x00000000UL};
return __bint.__f;
}
static inline float __npy_nzerof(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x80000000UL};
return __bint.__f;
}
#define NPY_INFINITYF __npy_inff()
#define NPY_NANF __npy_nanf()
#define NPY_PZEROF __npy_pzerof()
#define NPY_NZEROF __npy_nzerof()
#define NPY_INFINITY ((npy_double)NPY_INFINITYF)
#define NPY_NAN ((npy_double)NPY_NANF)
#define NPY_PZERO ((npy_double)NPY_PZEROF)
#define NPY_NZERO ((npy_double)NPY_NZEROF)
#define NPY_INFINITYL ((npy_longdouble)NPY_INFINITYF)
#define NPY_NANL ((npy_longdouble)NPY_NANF)
#define NPY_PZEROL ((npy_longdouble)NPY_PZEROF)
#define NPY_NZEROL ((npy_longdouble)NPY_NZEROF)
/*
* Useful constants
*/
#define NPY_E 2.718281828459045235360287471352662498 /* e */
#define NPY_LOG2E 1.442695040888963407359924681001892137 /* log_2 e */
#define NPY_LOG10E 0.434294481903251827651128918916605082 /* log_10 e */
#define NPY_LOGE2 0.693147180559945309417232121458176568 /* log_e 2 */
#define NPY_LOGE10 2.302585092994045684017991454684364208 /* log_e 10 */
#define NPY_PI 3.141592653589793238462643383279502884 /* pi */
#define NPY_PI_2 1.570796326794896619231321691639751442 /* pi/2 */
#define NPY_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
#define NPY_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
#define NPY_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
#define NPY_EULER 0.577215664901532860606512090082402431 /* Euler constant */
#define NPY_SQRT2 1.414213562373095048801688724209698079 /* sqrt(2) */
#define NPY_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
#define NPY_Ef 2.718281828459045235360287471352662498F /* e */
#define NPY_LOG2Ef 1.442695040888963407359924681001892137F /* log_2 e */
#define NPY_LOG10Ef 0.434294481903251827651128918916605082F /* log_10 e */
#define NPY_LOGE2f 0.693147180559945309417232121458176568F /* log_e 2 */
#define NPY_LOGE10f 2.302585092994045684017991454684364208F /* log_e 10 */
#define NPY_PIf 3.141592653589793238462643383279502884F /* pi */
#define NPY_PI_2f 1.570796326794896619231321691639751442F /* pi/2 */
#define NPY_PI_4f 0.785398163397448309615660845819875721F /* pi/4 */
#define NPY_1_PIf 0.318309886183790671537767526745028724F /* 1/pi */
#define NPY_2_PIf 0.636619772367581343075535053490057448F /* 2/pi */
#define NPY_EULERf 0.577215664901532860606512090082402431F /* Euler constant */
#define NPY_SQRT2f 1.414213562373095048801688724209698079F /* sqrt(2) */
#define NPY_SQRT1_2f 0.707106781186547524400844362104849039F /* 1/sqrt(2) */
#define NPY_El 2.718281828459045235360287471352662498L /* e */
#define NPY_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
#define NPY_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
#define NPY_LOGE2l 0.693147180559945309417232121458176568L /* log_e 2 */
#define NPY_LOGE10l 2.302585092994045684017991454684364208L /* log_e 10 */
#define NPY_PIl 3.141592653589793238462643383279502884L /* pi */
#define NPY_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
#define NPY_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
#define NPY_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
#define NPY_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
#define NPY_EULERl 0.577215664901532860606512090082402431L /* Euler constant */
#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
/*
* Integer functions.
*/
NPY_INPLACE npy_uint npy_gcdu(npy_uint a, npy_uint b);
NPY_INPLACE npy_uint npy_lcmu(npy_uint a, npy_uint b);
NPY_INPLACE npy_ulong npy_gcdul(npy_ulong a, npy_ulong b);
NPY_INPLACE npy_ulong npy_lcmul(npy_ulong a, npy_ulong b);
NPY_INPLACE npy_ulonglong npy_gcdull(npy_ulonglong a, npy_ulonglong b);
NPY_INPLACE npy_ulonglong npy_lcmull(npy_ulonglong a, npy_ulonglong b);
NPY_INPLACE npy_int npy_gcd(npy_int a, npy_int b);
NPY_INPLACE npy_int npy_lcm(npy_int a, npy_int b);
NPY_INPLACE npy_long npy_gcdl(npy_long a, npy_long b);
NPY_INPLACE npy_long npy_lcml(npy_long a, npy_long b);
NPY_INPLACE npy_longlong npy_gcdll(npy_longlong a, npy_longlong b);
NPY_INPLACE npy_longlong npy_lcmll(npy_longlong a, npy_longlong b);
NPY_INPLACE npy_ubyte npy_rshiftuhh(npy_ubyte a, npy_ubyte b);
NPY_INPLACE npy_ubyte npy_lshiftuhh(npy_ubyte a, npy_ubyte b);
NPY_INPLACE npy_ushort npy_rshiftuh(npy_ushort a, npy_ushort b);
NPY_INPLACE npy_ushort npy_lshiftuh(npy_ushort a, npy_ushort b);
NPY_INPLACE npy_uint npy_rshiftu(npy_uint a, npy_uint b);
NPY_INPLACE npy_uint npy_lshiftu(npy_uint a, npy_uint b);
NPY_INPLACE npy_ulong npy_rshiftul(npy_ulong a, npy_ulong b);
NPY_INPLACE npy_ulong npy_lshiftul(npy_ulong a, npy_ulong b);
NPY_INPLACE npy_ulonglong npy_rshiftull(npy_ulonglong a, npy_ulonglong b);
NPY_INPLACE npy_ulonglong npy_lshiftull(npy_ulonglong a, npy_ulonglong b);
NPY_INPLACE npy_byte npy_rshifthh(npy_byte a, npy_byte b);
NPY_INPLACE npy_byte npy_lshifthh(npy_byte a, npy_byte b);
NPY_INPLACE npy_short npy_rshifth(npy_short a, npy_short b);
NPY_INPLACE npy_short npy_lshifth(npy_short a, npy_short b);
NPY_INPLACE npy_int npy_rshift(npy_int a, npy_int b);
NPY_INPLACE npy_int npy_lshift(npy_int a, npy_int b);
NPY_INPLACE npy_long npy_rshiftl(npy_long a, npy_long b);
NPY_INPLACE npy_long npy_lshiftl(npy_long a, npy_long b);
NPY_INPLACE npy_longlong npy_rshiftll(npy_longlong a, npy_longlong b);
NPY_INPLACE npy_longlong npy_lshiftll(npy_longlong a, npy_longlong b);
NPY_INPLACE uint8_t npy_popcountuhh(npy_ubyte a);
NPY_INPLACE uint8_t npy_popcountuh(npy_ushort a);
NPY_INPLACE uint8_t npy_popcountu(npy_uint a);
NPY_INPLACE uint8_t npy_popcountul(npy_ulong a);
NPY_INPLACE uint8_t npy_popcountull(npy_ulonglong a);
NPY_INPLACE uint8_t npy_popcounthh(npy_byte a);
NPY_INPLACE uint8_t npy_popcounth(npy_short a);
NPY_INPLACE uint8_t npy_popcount(npy_int a);
NPY_INPLACE uint8_t npy_popcountl(npy_long a);
NPY_INPLACE uint8_t npy_popcountll(npy_longlong a);
/*
* C99 double math funcs that need fixups or are blocklist-able
*/
NPY_INPLACE double npy_sin(double x);
NPY_INPLACE double npy_cos(double x);
NPY_INPLACE double npy_tan(double x);
NPY_INPLACE double npy_hypot(double x, double y);
NPY_INPLACE double npy_log2(double x);
NPY_INPLACE double npy_atan2(double x, double y);
/* Mandatory C99 double math funcs, no blocklisting or fixups */
/* defined for legacy reasons, should be deprecated at some point */
#define npy_sinh sinh
#define npy_cosh cosh
#define npy_tanh tanh
#define npy_asin asin
#define npy_acos acos
#define npy_atan atan
#define npy_log log
#define npy_log10 log10
#define npy_cbrt cbrt
#define npy_fabs fabs
#define npy_ceil ceil
#define npy_fmod fmod
#define npy_floor floor
#define npy_expm1 expm1
#define npy_log1p log1p
#define npy_acosh acosh
#define npy_asinh asinh
#define npy_atanh atanh
#define npy_rint rint
#define npy_trunc trunc
#define npy_exp2 exp2
#define npy_frexp frexp
#define npy_ldexp ldexp
#define npy_copysign copysign
#define npy_exp exp
#define npy_sqrt sqrt
#define npy_pow pow
#define npy_modf modf
#define npy_nextafter nextafter
double npy_spacing(double x);
/*
* IEEE 754 fpu handling
*/
/* use builtins to avoid function calls in tight loops
* only available if npy_config.h is available (= numpys own build) */
#ifdef HAVE___BUILTIN_ISNAN
#define npy_isnan(x) __builtin_isnan(x)
#else
#define npy_isnan(x) isnan(x)
#endif
/* only available if npy_config.h is available (= numpys own build) */
#ifdef HAVE___BUILTIN_ISFINITE
#define npy_isfinite(x) __builtin_isfinite(x)
#else
#define npy_isfinite(x) isfinite((x))
#endif
/* only available if npy_config.h is available (= numpys own build) */
#ifdef HAVE___BUILTIN_ISINF
#define npy_isinf(x) __builtin_isinf(x)
#else
#define npy_isinf(x) isinf((x))
#endif
#define npy_signbit(x) signbit((x))
/*
* float C99 math funcs that need fixups or are blocklist-able
*/
NPY_INPLACE float npy_sinf(float x);
NPY_INPLACE float npy_cosf(float x);
NPY_INPLACE float npy_tanf(float x);
NPY_INPLACE float npy_expf(float x);
NPY_INPLACE float npy_sqrtf(float x);
NPY_INPLACE float npy_hypotf(float x, float y);
NPY_INPLACE float npy_log2f(float x);
NPY_INPLACE float npy_atan2f(float x, float y);
NPY_INPLACE float npy_powf(float x, float y);
NPY_INPLACE float npy_modff(float x, float* y);
/* Mandatory C99 float math funcs, no blocklisting or fixups */
/* defined for legacy reasons, should be deprecated at some point */
#define npy_sinhf sinhf
#define npy_coshf coshf
#define npy_tanhf tanhf
#define npy_asinf asinf
#define npy_acosf acosf
#define npy_atanf atanf
#define npy_logf logf
#define npy_log10f log10f
#define npy_cbrtf cbrtf
#define npy_fabsf fabsf
#define npy_ceilf ceilf
#define npy_fmodf fmodf
#define npy_floorf floorf
#define npy_expm1f expm1f
#define npy_log1pf log1pf
#define npy_asinhf asinhf
#define npy_acoshf acoshf
#define npy_atanhf atanhf
#define npy_rintf rintf
#define npy_truncf truncf
#define npy_exp2f exp2f
#define npy_frexpf frexpf
#define npy_ldexpf ldexpf
#define npy_copysignf copysignf
#define npy_nextafterf nextafterf
float npy_spacingf(float x);
/*
* long double C99 double math funcs that need fixups or are blocklist-able
*/
NPY_INPLACE npy_longdouble npy_sinl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_cosl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_tanl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_expl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_sqrtl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_hypotl(npy_longdouble x, npy_longdouble y);
NPY_INPLACE npy_longdouble npy_log2l(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_atan2l(npy_longdouble x, npy_longdouble y);
NPY_INPLACE npy_longdouble npy_powl(npy_longdouble x, npy_longdouble y);
NPY_INPLACE npy_longdouble npy_modfl(npy_longdouble x, npy_longdouble* y);
/* Mandatory C99 double math funcs, no blocklisting or fixups */
/* defined for legacy reasons, should be deprecated at some point */
#define npy_sinhl sinhl
#define npy_coshl coshl
#define npy_tanhl tanhl
#define npy_fabsl fabsl
#define npy_floorl floorl
#define npy_ceill ceill
#define npy_rintl rintl
#define npy_truncl truncl
#define npy_cbrtl cbrtl
#define npy_log10l log10l
#define npy_logl logl
#define npy_expm1l expm1l
#define npy_asinl asinl
#define npy_acosl acosl
#define npy_atanl atanl
#define npy_asinhl asinhl
#define npy_acoshl acoshl
#define npy_atanhl atanhl
#define npy_log1pl log1pl
#define npy_exp2l exp2l
#define npy_fmodl fmodl
#define npy_frexpl frexpl
#define npy_ldexpl ldexpl
#define npy_copysignl copysignl
#define npy_nextafterl nextafterl
npy_longdouble npy_spacingl(npy_longdouble x);
/*
* Non standard functions
*/
NPY_INPLACE double npy_deg2rad(double x);
NPY_INPLACE double npy_rad2deg(double x);
NPY_INPLACE double npy_logaddexp(double x, double y);
NPY_INPLACE double npy_logaddexp2(double x, double y);
NPY_INPLACE double npy_divmod(double x, double y, double *modulus);
NPY_INPLACE double npy_heaviside(double x, double h0);
NPY_INPLACE float npy_deg2radf(float x);
NPY_INPLACE float npy_rad2degf(float x);
NPY_INPLACE float npy_logaddexpf(float x, float y);
NPY_INPLACE float npy_logaddexp2f(float x, float y);
NPY_INPLACE float npy_divmodf(float x, float y, float *modulus);
NPY_INPLACE float npy_heavisidef(float x, float h0);
NPY_INPLACE npy_longdouble npy_deg2radl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_rad2degl(npy_longdouble x);
NPY_INPLACE npy_longdouble npy_logaddexpl(npy_longdouble x, npy_longdouble y);
NPY_INPLACE npy_longdouble npy_logaddexp2l(npy_longdouble x, npy_longdouble y);
NPY_INPLACE npy_longdouble npy_divmodl(npy_longdouble x, npy_longdouble y,
npy_longdouble *modulus);
NPY_INPLACE npy_longdouble npy_heavisidel(npy_longdouble x, npy_longdouble h0);
#define npy_degrees npy_rad2deg
#define npy_degreesf npy_rad2degf
#define npy_degreesl npy_rad2degl
#define npy_radians npy_deg2rad
#define npy_radiansf npy_deg2radf
#define npy_radiansl npy_deg2radl
/*
* Complex declarations
*/
static inline double npy_creal(const npy_cdouble z)
{
#if defined(__cplusplus)
return ((double *) &z)[0];
#else
return creal(z);
#endif
}
static inline void npy_csetreal(npy_cdouble *z, const double r)
{
((double *) z)[0] = r;
}
static inline double npy_cimag(const npy_cdouble z)
{
#if defined(__cplusplus)
return ((double *) &z)[1];
#else
return cimag(z);
#endif
}
static inline void npy_csetimag(npy_cdouble *z, const double i)
{
((double *) z)[1] = i;
}
static inline float npy_crealf(const npy_cfloat z)
{
#if defined(__cplusplus)
return ((float *) &z)[0];
#else
return crealf(z);
#endif
}
static inline void npy_csetrealf(npy_cfloat *z, const float r)
{
((float *) z)[0] = r;
}
static inline float npy_cimagf(const npy_cfloat z)
{
#if defined(__cplusplus)
return ((float *) &z)[1];
#else
return cimagf(z);
#endif
}
static inline void npy_csetimagf(npy_cfloat *z, const float i)
{
((float *) z)[1] = i;
}
static inline npy_longdouble npy_creall(const npy_clongdouble z)
{
#if defined(__cplusplus)
return ((longdouble_t *) &z)[0];
#else
return creall(z);
#endif
}
static inline void npy_csetreall(npy_clongdouble *z, const longdouble_t r)
{
((longdouble_t *) z)[0] = r;
}
static inline npy_longdouble npy_cimagl(const npy_clongdouble z)
{
#if defined(__cplusplus)
return ((longdouble_t *) &z)[1];
#else
return cimagl(z);
#endif
}
static inline void npy_csetimagl(npy_clongdouble *z, const longdouble_t i)
{
((longdouble_t *) z)[1] = i;
}
#define NPY_CSETREAL(z, r) npy_csetreal(z, r)
#define NPY_CSETIMAG(z, i) npy_csetimag(z, i)
#define NPY_CSETREALF(z, r) npy_csetrealf(z, r)
#define NPY_CSETIMAGF(z, i) npy_csetimagf(z, i)
#define NPY_CSETREALL(z, r) npy_csetreall(z, r)
#define NPY_CSETIMAGL(z, i) npy_csetimagl(z, i)
static inline npy_cdouble npy_cpack(double x, double y)
{
npy_cdouble z;
npy_csetreal(&z, x);
npy_csetimag(&z, y);
return z;
}
static inline npy_cfloat npy_cpackf(float x, float y)
{
npy_cfloat z;
npy_csetrealf(&z, x);
npy_csetimagf(&z, y);
return z;
}
static inline npy_clongdouble npy_cpackl(npy_longdouble x, npy_longdouble y)
{
npy_clongdouble z;
npy_csetreall(&z, x);
npy_csetimagl(&z, y);
return z;
}
/*
* Double precision complex functions
*/
double npy_cabs(npy_cdouble z);
double npy_carg(npy_cdouble z);
npy_cdouble npy_cexp(npy_cdouble z);
npy_cdouble npy_clog(npy_cdouble z);
npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y);
npy_cdouble npy_csqrt(npy_cdouble z);
npy_cdouble npy_ccos(npy_cdouble z);
npy_cdouble npy_csin(npy_cdouble z);
npy_cdouble npy_ctan(npy_cdouble z);
npy_cdouble npy_ccosh(npy_cdouble z);
npy_cdouble npy_csinh(npy_cdouble z);
npy_cdouble npy_ctanh(npy_cdouble z);
npy_cdouble npy_cacos(npy_cdouble z);
npy_cdouble npy_casin(npy_cdouble z);
npy_cdouble npy_catan(npy_cdouble z);
npy_cdouble npy_cacosh(npy_cdouble z);
npy_cdouble npy_casinh(npy_cdouble z);
npy_cdouble npy_catanh(npy_cdouble z);
/*
* Single precision complex functions
*/
float npy_cabsf(npy_cfloat z);
float npy_cargf(npy_cfloat z);
npy_cfloat npy_cexpf(npy_cfloat z);
npy_cfloat npy_clogf(npy_cfloat z);
npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y);
npy_cfloat npy_csqrtf(npy_cfloat z);
npy_cfloat npy_ccosf(npy_cfloat z);
npy_cfloat npy_csinf(npy_cfloat z);
npy_cfloat npy_ctanf(npy_cfloat z);
npy_cfloat npy_ccoshf(npy_cfloat z);
npy_cfloat npy_csinhf(npy_cfloat z);
npy_cfloat npy_ctanhf(npy_cfloat z);
npy_cfloat npy_cacosf(npy_cfloat z);
npy_cfloat npy_casinf(npy_cfloat z);
npy_cfloat npy_catanf(npy_cfloat z);
npy_cfloat npy_cacoshf(npy_cfloat z);
npy_cfloat npy_casinhf(npy_cfloat z);
npy_cfloat npy_catanhf(npy_cfloat z);
/*
* Extended precision complex functions
*/
npy_longdouble npy_cabsl(npy_clongdouble z);
npy_longdouble npy_cargl(npy_clongdouble z);
npy_clongdouble npy_cexpl(npy_clongdouble z);
npy_clongdouble npy_clogl(npy_clongdouble z);
npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y);
npy_clongdouble npy_csqrtl(npy_clongdouble z);
npy_clongdouble npy_ccosl(npy_clongdouble z);
npy_clongdouble npy_csinl(npy_clongdouble z);
npy_clongdouble npy_ctanl(npy_clongdouble z);
npy_clongdouble npy_ccoshl(npy_clongdouble z);
npy_clongdouble npy_csinhl(npy_clongdouble z);
npy_clongdouble npy_ctanhl(npy_clongdouble z);
npy_clongdouble npy_cacosl(npy_clongdouble z);
npy_clongdouble npy_casinl(npy_clongdouble z);
npy_clongdouble npy_catanl(npy_clongdouble z);
npy_clongdouble npy_cacoshl(npy_clongdouble z);
npy_clongdouble npy_casinhl(npy_clongdouble z);
npy_clongdouble npy_catanhl(npy_clongdouble z);
/*
* Functions that set the floating point error
* status word.
*/
/*
* platform-dependent code translates floating point
* status to an integer sum of these values
*/
#define NPY_FPE_DIVIDEBYZERO 1
#define NPY_FPE_OVERFLOW 2
#define NPY_FPE_UNDERFLOW 4
#define NPY_FPE_INVALID 8
int npy_clear_floatstatus_barrier(char*);
int npy_get_floatstatus_barrier(char*);
/*
* use caution with these - clang and gcc8.1 are known to reorder calls
* to this form of the function which can defeat the check. The _barrier
* form of the call is preferable, where the argument is
* (char*)&local_variable
*/
int npy_clear_floatstatus(void);
int npy_get_floatstatus(void);
void npy_set_floatstatus_divbyzero(void);
void npy_set_floatstatus_overflow(void);
void npy_set_floatstatus_underflow(void);
void npy_set_floatstatus_invalid(void);
#ifdef __cplusplus
}
#endif
#if NPY_INLINE_MATH
#include "npy_math_internal.h"
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_ */

View File

@ -0,0 +1,20 @@
/*
* This include file is provided for inclusion in Cython *.pyd files where
* one would like to define the NPY_NO_DEPRECATED_API macro. It can be
* included by
*
* cdef extern from "npy_no_deprecated_api.h": pass
*
*/
#ifndef NPY_NO_DEPRECATED_API
/* put this check here since there may be multiple includes in C extensions. */
#if defined(NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_) || \
defined(NUMPY_CORE_INCLUDE_NUMPY_NPY_DEPRECATED_API_H) || \
defined(NUMPY_CORE_INCLUDE_NUMPY_OLD_DEFINES_H_)
#error "npy_no_deprecated_api.h" must be first among numpy includes.
#else
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
#endif
#endif /* NPY_NO_DEPRECATED_API */

View File

@ -0,0 +1,42 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_
#if defined(linux) || defined(__linux) || defined(__linux__)
#define NPY_OS_LINUX
#elif defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__)
#define NPY_OS_BSD
#ifdef __FreeBSD__
#define NPY_OS_FREEBSD
#elif defined(__NetBSD__)
#define NPY_OS_NETBSD
#elif defined(__OpenBSD__)
#define NPY_OS_OPENBSD
#elif defined(__DragonFly__)
#define NPY_OS_DRAGONFLY
#endif
#elif defined(sun) || defined(__sun)
#define NPY_OS_SOLARIS
#elif defined(__CYGWIN__)
#define NPY_OS_CYGWIN
/* We are on Windows.*/
#elif defined(_WIN32)
/* We are using MinGW (64-bit or 32-bit)*/
#if defined(__MINGW32__) || defined(__MINGW64__)
#define NPY_OS_MINGW
/* Otherwise, if _WIN64 is defined, we are targeting 64-bit Windows*/
#elif defined(_WIN64)
#define NPY_OS_WIN64
/* Otherwise assume we are targeting 32-bit Windows*/
#else
#define NPY_OS_WIN32
#endif
#elif defined(__APPLE__)
#define NPY_OS_DARWIN
#elif defined(__HAIKU__)
#define NPY_OS_HAIKU
#else
#define NPY_OS_UNKNOWN
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_ */

View File

@ -0,0 +1,178 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_
#include "_numpyconfig.h"
/*
* On Mac OS X, because there is only one configuration stage for all the archs
* in universal builds, any macro which depends on the arch needs to be
* hardcoded.
*
* Note that distutils/pip will attempt a universal2 build when Python itself
* is built as universal2, hence this hardcoding is needed even if we do not
* support universal2 wheels anymore (see gh-22796).
* This code block can be removed after we have dropped the setup.py based
* build completely.
*/
#ifdef __APPLE__
#undef NPY_SIZEOF_LONG
#ifdef __LP64__
#define NPY_SIZEOF_LONG 8
#else
#define NPY_SIZEOF_LONG 4
#endif
#undef NPY_SIZEOF_LONGDOUBLE
#undef NPY_SIZEOF_COMPLEX_LONGDOUBLE
#ifdef HAVE_LDOUBLE_IEEE_DOUBLE_LE
#undef HAVE_LDOUBLE_IEEE_DOUBLE_LE
#endif
#ifdef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE
#undef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE
#endif
#if defined(__arm64__)
#define NPY_SIZEOF_LONGDOUBLE 8
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 16
#define HAVE_LDOUBLE_IEEE_DOUBLE_LE 1
#elif defined(__x86_64)
#define NPY_SIZEOF_LONGDOUBLE 16
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
#define HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE 1
#elif defined (__i386)
#define NPY_SIZEOF_LONGDOUBLE 12
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 24
#elif defined(__ppc__) || defined (__ppc64__)
#define NPY_SIZEOF_LONGDOUBLE 16
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
#else
#error "unknown architecture"
#endif
#endif
/**
* To help with both NPY_TARGET_VERSION and the NPY_NO_DEPRECATED_API macro,
* we include API version numbers for specific versions of NumPy.
* To exclude all API that was deprecated as of 1.7, add the following before
* #including any NumPy headers:
* #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
* The same is true for NPY_TARGET_VERSION, although NumPy will default to
* a backwards compatible build anyway.
*/
#define NPY_1_7_API_VERSION 0x00000007
#define NPY_1_8_API_VERSION 0x00000008
#define NPY_1_9_API_VERSION 0x00000009
#define NPY_1_10_API_VERSION 0x0000000a
#define NPY_1_11_API_VERSION 0x0000000a
#define NPY_1_12_API_VERSION 0x0000000a
#define NPY_1_13_API_VERSION 0x0000000b
#define NPY_1_14_API_VERSION 0x0000000c
#define NPY_1_15_API_VERSION 0x0000000c
#define NPY_1_16_API_VERSION 0x0000000d
#define NPY_1_17_API_VERSION 0x0000000d
#define NPY_1_18_API_VERSION 0x0000000d
#define NPY_1_19_API_VERSION 0x0000000d
#define NPY_1_20_API_VERSION 0x0000000e
#define NPY_1_21_API_VERSION 0x0000000e
#define NPY_1_22_API_VERSION 0x0000000f
#define NPY_1_23_API_VERSION 0x00000010
#define NPY_1_24_API_VERSION 0x00000010
#define NPY_1_25_API_VERSION 0x00000011
#define NPY_2_0_API_VERSION 0x00000012
#define NPY_2_1_API_VERSION 0x00000013
/*
* Binary compatibility version number. This number is increased
* whenever the C-API is changed such that binary compatibility is
* broken, i.e. whenever a recompile of extension modules is needed.
*/
#define NPY_VERSION NPY_ABI_VERSION
/*
* Minor API version we are compiling to be compatible with. The version
* Number is always increased when the API changes via: `NPY_API_VERSION`
* (and should maybe just track the NumPy version).
*
* If we have an internal build, we always target the current version of
* course.
*
* For downstream users, we default to an older version to provide them with
* maximum compatibility by default. Downstream can choose to extend that
* default, or narrow it down if they wish to use newer API. If you adjust
* this, consider the Python version support (example for 1.25.x):
*
* NumPy 1.25.x supports Python: 3.9 3.10 3.11 (3.12)
* NumPy 1.19.x supports Python: 3.6 3.7 3.8 3.9
* NumPy 1.17.x supports Python: 3.5 3.6 3.7 3.8
* NumPy 1.15.x supports Python: ... 3.6 3.7
*
* Users of the stable ABI may wish to target the last Python that is not
* end of life. This would be 3.8 at NumPy 1.25 release time.
* 1.17 as default was the choice of oldest-support-numpy at the time and
* has in practice no limit (compared to 1.19). Even earlier becomes legacy.
*/
#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
/* NumPy internal build, always use current version. */
#define NPY_FEATURE_VERSION NPY_API_VERSION
#elif defined(NPY_TARGET_VERSION) && NPY_TARGET_VERSION
/* user provided a target version, use it */
#define NPY_FEATURE_VERSION NPY_TARGET_VERSION
#else
/* Use the default (increase when dropping Python 3.10 support) */
#define NPY_FEATURE_VERSION NPY_1_21_API_VERSION
#endif
/* Sanity check the (requested) feature version */
#if NPY_FEATURE_VERSION > NPY_API_VERSION
#error "NPY_TARGET_VERSION higher than NumPy headers!"
#elif NPY_FEATURE_VERSION < NPY_1_15_API_VERSION
/* No support for irrelevant old targets, no need for error, but warn. */
#ifndef _MSC_VER
#warning "Requested NumPy target lower than supported NumPy 1.15."
#else
#define _WARN___STR2__(x) #x
#define _WARN___STR1__(x) _WARN___STR2__(x)
#define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
#pragma message(_WARN___LOC__"Requested NumPy target lower than supported NumPy 1.15.")
#endif
#endif
/*
* We define a human readable translation to the Python version of NumPy
* for error messages (and also to allow grepping the binaries for conda).
*/
#if NPY_FEATURE_VERSION == NPY_1_7_API_VERSION
#define NPY_FEATURE_VERSION_STRING "1.7"
#elif NPY_FEATURE_VERSION == NPY_1_8_API_VERSION
#define NPY_FEATURE_VERSION_STRING "1.8"
#elif NPY_FEATURE_VERSION == NPY_1_9_API_VERSION
#define NPY_FEATURE_VERSION_STRING "1.9"
#elif NPY_FEATURE_VERSION == NPY_1_10_API_VERSION /* also 1.11, 1.12 */
#define NPY_FEATURE_VERSION_STRING "1.10"
#elif NPY_FEATURE_VERSION == NPY_1_13_API_VERSION
#define NPY_FEATURE_VERSION_STRING "1.13"
#elif NPY_FEATURE_VERSION == NPY_1_14_API_VERSION /* also 1.15 */
#define NPY_FEATURE_VERSION_STRING "1.14"
#elif NPY_FEATURE_VERSION == NPY_1_16_API_VERSION /* also 1.17, 1.18, 1.19 */
#define NPY_FEATURE_VERSION_STRING "1.16"
#elif NPY_FEATURE_VERSION == NPY_1_20_API_VERSION /* also 1.21 */
#define NPY_FEATURE_VERSION_STRING "1.20"
#elif NPY_FEATURE_VERSION == NPY_1_22_API_VERSION
#define NPY_FEATURE_VERSION_STRING "1.22"
#elif NPY_FEATURE_VERSION == NPY_1_23_API_VERSION /* also 1.24 */
#define NPY_FEATURE_VERSION_STRING "1.23"
#elif NPY_FEATURE_VERSION == NPY_1_25_API_VERSION
#define NPY_FEATURE_VERSION_STRING "1.25"
#elif NPY_FEATURE_VERSION == NPY_2_0_API_VERSION
#define NPY_FEATURE_VERSION_STRING "2.0"
#elif NPY_FEATURE_VERSION == NPY_2_1_API_VERSION
#define NPY_FEATURE_VERSION_STRING "2.1"
#else
#error "Missing version string define for new NumPy version."
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_ */

View File

@ -0,0 +1,21 @@
zlib License
------------
Copyright (C) 2010 - 2019 ridiculous_fish, <libdivide@ridiculousfish.com>
Copyright (C) 2016 - 2019 Kim Walisch, <kim.walisch@gmail.com>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

View File

@ -0,0 +1,20 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_
#define NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_
#pragma once
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
/* Must match the declaration in numpy/random/<any>.pxd */
typedef struct bitgen {
void *state;
uint64_t (*next_uint64)(void *st);
uint32_t (*next_uint32)(void *st);
double (*next_double)(void *st);
uint64_t (*next_raw)(void *st);
} bitgen_t;
#endif /* NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_ */

View File

@ -0,0 +1,209 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_
#define NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <Python.h>
#include "numpy/npy_common.h"
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include "numpy/npy_math.h"
#include "numpy/random/bitgen.h"
/*
* RAND_INT_TYPE is used to share integer generators with RandomState which
* used long in place of int64_t. If changing a distribution that uses
* RAND_INT_TYPE, then the original unmodified copy must be retained for
* use in RandomState by copying to the legacy distributions source file.
*/
#ifdef NP_RANDOM_LEGACY
#define RAND_INT_TYPE long
#define RAND_INT_MAX LONG_MAX
#else
#define RAND_INT_TYPE int64_t
#define RAND_INT_MAX INT64_MAX
#endif
#ifdef _MSC_VER
#define DECLDIR __declspec(dllexport)
#else
#define DECLDIR extern
#endif
#ifndef MIN
#define MIN(x, y) (((x) < (y)) ? x : y)
#define MAX(x, y) (((x) > (y)) ? x : y)
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846264338328
#endif
typedef struct s_binomial_t {
int has_binomial; /* !=0: following parameters initialized for binomial */
double psave;
RAND_INT_TYPE nsave;
double r;
double q;
double fm;
RAND_INT_TYPE m;
double p1;
double xm;
double xl;
double xr;
double c;
double laml;
double lamr;
double p2;
double p3;
double p4;
} binomial_t;
DECLDIR float random_standard_uniform_f(bitgen_t *bitgen_state);
DECLDIR double random_standard_uniform(bitgen_t *bitgen_state);
DECLDIR void random_standard_uniform_fill(bitgen_t *, npy_intp, double *);
DECLDIR void random_standard_uniform_fill_f(bitgen_t *, npy_intp, float *);
DECLDIR int64_t random_positive_int64(bitgen_t *bitgen_state);
DECLDIR int32_t random_positive_int32(bitgen_t *bitgen_state);
DECLDIR int64_t random_positive_int(bitgen_t *bitgen_state);
DECLDIR uint64_t random_uint(bitgen_t *bitgen_state);
DECLDIR double random_standard_exponential(bitgen_t *bitgen_state);
DECLDIR float random_standard_exponential_f(bitgen_t *bitgen_state);
DECLDIR void random_standard_exponential_fill(bitgen_t *, npy_intp, double *);
DECLDIR void random_standard_exponential_fill_f(bitgen_t *, npy_intp, float *);
DECLDIR void random_standard_exponential_inv_fill(bitgen_t *, npy_intp, double *);
DECLDIR void random_standard_exponential_inv_fill_f(bitgen_t *, npy_intp, float *);
DECLDIR double random_standard_normal(bitgen_t *bitgen_state);
DECLDIR float random_standard_normal_f(bitgen_t *bitgen_state);
DECLDIR void random_standard_normal_fill(bitgen_t *, npy_intp, double *);
DECLDIR void random_standard_normal_fill_f(bitgen_t *, npy_intp, float *);
DECLDIR double random_standard_gamma(bitgen_t *bitgen_state, double shape);
DECLDIR float random_standard_gamma_f(bitgen_t *bitgen_state, float shape);
DECLDIR double random_normal(bitgen_t *bitgen_state, double loc, double scale);
DECLDIR double random_gamma(bitgen_t *bitgen_state, double shape, double scale);
DECLDIR float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale);
DECLDIR double random_exponential(bitgen_t *bitgen_state, double scale);
DECLDIR double random_uniform(bitgen_t *bitgen_state, double lower, double range);
DECLDIR double random_beta(bitgen_t *bitgen_state, double a, double b);
DECLDIR double random_chisquare(bitgen_t *bitgen_state, double df);
DECLDIR double random_f(bitgen_t *bitgen_state, double dfnum, double dfden);
DECLDIR double random_standard_cauchy(bitgen_t *bitgen_state);
DECLDIR double random_pareto(bitgen_t *bitgen_state, double a);
DECLDIR double random_weibull(bitgen_t *bitgen_state, double a);
DECLDIR double random_power(bitgen_t *bitgen_state, double a);
DECLDIR double random_laplace(bitgen_t *bitgen_state, double loc, double scale);
DECLDIR double random_gumbel(bitgen_t *bitgen_state, double loc, double scale);
DECLDIR double random_logistic(bitgen_t *bitgen_state, double loc, double scale);
DECLDIR double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma);
DECLDIR double random_rayleigh(bitgen_t *bitgen_state, double mode);
DECLDIR double random_standard_t(bitgen_t *bitgen_state, double df);
DECLDIR double random_noncentral_chisquare(bitgen_t *bitgen_state, double df,
double nonc);
DECLDIR double random_noncentral_f(bitgen_t *bitgen_state, double dfnum,
double dfden, double nonc);
DECLDIR double random_wald(bitgen_t *bitgen_state, double mean, double scale);
DECLDIR double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa);
DECLDIR double random_triangular(bitgen_t *bitgen_state, double left, double mode,
double right);
DECLDIR RAND_INT_TYPE random_poisson(bitgen_t *bitgen_state, double lam);
DECLDIR RAND_INT_TYPE random_negative_binomial(bitgen_t *bitgen_state, double n,
double p);
DECLDIR int64_t random_binomial(bitgen_t *bitgen_state, double p,
int64_t n, binomial_t *binomial);
DECLDIR int64_t random_logseries(bitgen_t *bitgen_state, double p);
DECLDIR int64_t random_geometric(bitgen_t *bitgen_state, double p);
DECLDIR RAND_INT_TYPE random_geometric_search(bitgen_t *bitgen_state, double p);
DECLDIR RAND_INT_TYPE random_zipf(bitgen_t *bitgen_state, double a);
DECLDIR int64_t random_hypergeometric(bitgen_t *bitgen_state,
int64_t good, int64_t bad, int64_t sample);
DECLDIR uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max);
/* Generate random uint64 numbers in closed interval [off, off + rng]. */
DECLDIR uint64_t random_bounded_uint64(bitgen_t *bitgen_state, uint64_t off,
uint64_t rng, uint64_t mask,
bool use_masked);
/* Generate random uint32 numbers in closed interval [off, off + rng]. */
DECLDIR uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state,
uint32_t off, uint32_t rng,
uint32_t mask, bool use_masked,
int *bcnt, uint32_t *buf);
DECLDIR uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state,
uint16_t off, uint16_t rng,
uint16_t mask, bool use_masked,
int *bcnt, uint32_t *buf);
DECLDIR uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state, uint8_t off,
uint8_t rng, uint8_t mask,
bool use_masked, int *bcnt,
uint32_t *buf);
DECLDIR npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state, npy_bool off,
npy_bool rng, npy_bool mask,
bool use_masked, int *bcnt,
uint32_t *buf);
DECLDIR void random_bounded_uint64_fill(bitgen_t *bitgen_state, uint64_t off,
uint64_t rng, npy_intp cnt,
bool use_masked, uint64_t *out);
DECLDIR void random_bounded_uint32_fill(bitgen_t *bitgen_state, uint32_t off,
uint32_t rng, npy_intp cnt,
bool use_masked, uint32_t *out);
DECLDIR void random_bounded_uint16_fill(bitgen_t *bitgen_state, uint16_t off,
uint16_t rng, npy_intp cnt,
bool use_masked, uint16_t *out);
DECLDIR void random_bounded_uint8_fill(bitgen_t *bitgen_state, uint8_t off,
uint8_t rng, npy_intp cnt,
bool use_masked, uint8_t *out);
DECLDIR void random_bounded_bool_fill(bitgen_t *bitgen_state, npy_bool off,
npy_bool rng, npy_intp cnt,
bool use_masked, npy_bool *out);
DECLDIR void random_multinomial(bitgen_t *bitgen_state, RAND_INT_TYPE n, RAND_INT_TYPE *mnix,
double *pix, npy_intp d, binomial_t *binomial);
/* multivariate hypergeometric, "count" method */
DECLDIR int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state,
int64_t total,
size_t num_colors, int64_t *colors,
int64_t nsample,
size_t num_variates, int64_t *variates);
/* multivariate hypergeometric, "marginals" method */
DECLDIR void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state,
int64_t total,
size_t num_colors, int64_t *colors,
int64_t nsample,
size_t num_variates, int64_t *variates);
/* Common to legacy-distributions.c and distributions.c but not exported */
RAND_INT_TYPE random_binomial_btpe(bitgen_t *bitgen_state,
RAND_INT_TYPE n,
double p,
binomial_t *binomial);
RAND_INT_TYPE random_binomial_inversion(bitgen_t *bitgen_state,
RAND_INT_TYPE n,
double p,
binomial_t *binomial);
double random_loggam(double x);
static inline double next_double(bitgen_t *bitgen_state) {
return bitgen_state->next_double(bitgen_state->state);
}
#ifdef __cplusplus
}
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,345 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_
#define NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_
#include <numpy/npy_math.h>
#include <numpy/npy_common.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* The legacy generic inner loop for a standard element-wise or
* generalized ufunc.
*/
typedef void (*PyUFuncGenericFunction)
(char **args,
npy_intp const *dimensions,
npy_intp const *strides,
void *innerloopdata);
/*
* The most generic one-dimensional inner loop for
* a masked standard element-wise ufunc. "Masked" here means that it skips
* doing calculations on any items for which the maskptr array has a true
* value.
*/
typedef void (PyUFunc_MaskedStridedInnerLoopFunc)(
char **dataptrs, npy_intp *strides,
char *maskptr, npy_intp mask_stride,
npy_intp count,
NpyAuxData *innerloopdata);
/* Forward declaration for the type resolver and loop selector typedefs */
struct _tagPyUFuncObject;
/*
* Given the operands for calling a ufunc, should determine the
* calculation input and output data types and return an inner loop function.
* This function should validate that the casting rule is being followed,
* and fail if it is not.
*
* For backwards compatibility, the regular type resolution function does not
* support auxiliary data with object semantics. The type resolution call
* which returns a masked generic function returns a standard NpyAuxData
* object, for which the NPY_AUXDATA_FREE and NPY_AUXDATA_CLONE macros
* work.
*
* ufunc: The ufunc object.
* casting: The 'casting' parameter provided to the ufunc.
* operands: An array of length (ufunc->nin + ufunc->nout),
* with the output parameters possibly NULL.
* type_tup: Either NULL, or the type_tup passed to the ufunc.
* out_dtypes: An array which should be populated with new
* references to (ufunc->nin + ufunc->nout) new
* dtypes, one for each input and output. These
* dtypes should all be in native-endian format.
*
* Should return 0 on success, -1 on failure (with exception set),
* or -2 if Py_NotImplemented should be returned.
*/
typedef int (PyUFunc_TypeResolutionFunc)(
struct _tagPyUFuncObject *ufunc,
NPY_CASTING casting,
PyArrayObject **operands,
PyObject *type_tup,
PyArray_Descr **out_dtypes);
/*
* This is the signature for the functions that may be assigned to the
* `process_core_dims_func` field of the PyUFuncObject structure.
* Implementation of this function is optional. This function is only used
* by generalized ufuncs (i.e. those with the field `core_enabled` set to 1).
* The function is called by the ufunc during the processing of the arguments
* of a call of the ufunc. The function can check the core dimensions of the
* input and output arrays and return -1 with an exception set if any
* requirements are not satisfied. If the caller of the ufunc didn't provide
* output arrays, the core dimensions associated with the output arrays (i.e.
* those that are not also used in input arrays) will have the value -1 in
* `core_dim_sizes`. This function can replace any output core dimensions
* that are -1 with a value that is appropriate for the ufunc.
*
* Parameter Description
* --------------- ------------------------------------------------------
* ufunc The ufunc object
* core_dim_sizes An array with length `ufunc->core_num_dim_ix`.
* The core dimensions of the arrays passed to the ufunc
* will have been set. If the caller of the ufunc didn't
* provide the output array(s), the output-only core
* dimensions will have the value -1.
*
* The function must not change any element in `core_dim_sizes` that is
* not -1 on input. Doing so will result in incorrect output from the
* ufunc, and could result in a crash of the Python interpreter.
*
* The function must return 0 on success, -1 on failure (with an exception
* set).
*/
typedef int (PyUFunc_ProcessCoreDimsFunc)(
struct _tagPyUFuncObject *ufunc,
npy_intp *core_dim_sizes);
typedef struct _tagPyUFuncObject {
PyObject_HEAD
/*
* nin: Number of inputs
* nout: Number of outputs
* nargs: Always nin + nout (Why is it stored?)
*/
int nin, nout, nargs;
/*
* Identity for reduction, any of PyUFunc_One, PyUFunc_Zero
* PyUFunc_MinusOne, PyUFunc_None, PyUFunc_ReorderableNone,
* PyUFunc_IdentityValue.
*/
int identity;
/* Array of one-dimensional core loops */
PyUFuncGenericFunction *functions;
/* Array of funcdata that gets passed into the functions */
void *const *data;
/* The number of elements in 'functions' and 'data' */
int ntypes;
/* Used to be unused field 'check_return' */
int reserved1;
/* The name of the ufunc */
const char *name;
/* Array of type numbers, of size ('nargs' * 'ntypes') */
const char *types;
/* Documentation string */
const char *doc;
void *ptr;
PyObject *obj;
PyObject *userloops;
/* generalized ufunc parameters */
/* 0 for scalar ufunc; 1 for generalized ufunc */
int core_enabled;
/* number of distinct dimension names in signature */
int core_num_dim_ix;
/*
* dimension indices of input/output argument k are stored in
* core_dim_ixs[core_offsets[k]..core_offsets[k]+core_num_dims[k]-1]
*/
/* numbers of core dimensions of each argument */
int *core_num_dims;
/*
* dimension indices in a flatted form; indices
* are in the range of [0,core_num_dim_ix)
*/
int *core_dim_ixs;
/*
* positions of 1st core dimensions of each
* argument in core_dim_ixs, equivalent to cumsum(core_num_dims)
*/
int *core_offsets;
/* signature string for printing purpose */
char *core_signature;
/*
* A function which resolves the types and fills an array
* with the dtypes for the inputs and outputs.
*/
PyUFunc_TypeResolutionFunc *type_resolver;
/* Was the legacy loop resolver */
void *reserved2;
/*
* This was blocked off to be the "new" inner loop selector in 1.7,
* but this was never implemented. (This is also why the above
* selector is called the "legacy" selector.)
*/
#ifndef Py_LIMITED_API
vectorcallfunc vectorcall;
#else
void *vectorcall;
#endif
/* Was previously the `PyUFunc_MaskedInnerLoopSelectionFunc` */
void *reserved3;
/*
* List of flags for each operand when ufunc is called by nditer object.
* These flags will be used in addition to the default flags for each
* operand set by nditer object.
*/
npy_uint32 *op_flags;
/*
* List of global flags used when ufunc is called by nditer object.
* These flags will be used in addition to the default global flags
* set by nditer object.
*/
npy_uint32 iter_flags;
/* New in NPY_API_VERSION 0x0000000D and above */
#if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION
/*
* for each core_num_dim_ix distinct dimension names,
* the possible "frozen" size (-1 if not frozen).
*/
npy_intp *core_dim_sizes;
/*
* for each distinct core dimension, a set of UFUNC_CORE_DIM* flags
*/
npy_uint32 *core_dim_flags;
/* Identity for reduction, when identity == PyUFunc_IdentityValue */
PyObject *identity_value;
#endif /* NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION */
/* New in NPY_API_VERSION 0x0000000F and above */
#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION
/* New private fields related to dispatching */
void *_dispatch_cache;
/* A PyListObject of `(tuple of DTypes, ArrayMethod/Promoter)` */
PyObject *_loops;
#endif
#if NPY_FEATURE_VERSION >= NPY_2_1_API_VERSION
/*
* Optional function to process core dimensions of a gufunc.
*/
PyUFunc_ProcessCoreDimsFunc *process_core_dims_func;
#endif
} PyUFuncObject;
#include "arrayobject.h"
/* Generalized ufunc; 0x0001 reserved for possible use as CORE_ENABLED */
/* the core dimension's size will be determined by the operands. */
#define UFUNC_CORE_DIM_SIZE_INFERRED 0x0002
/* the core dimension may be absent */
#define UFUNC_CORE_DIM_CAN_IGNORE 0x0004
/* flags inferred during execution */
#define UFUNC_CORE_DIM_MISSING 0x00040000
#define UFUNC_OBJ_ISOBJECT 1
#define UFUNC_OBJ_NEEDS_API 2
#if NPY_ALLOW_THREADS
#define NPY_LOOP_BEGIN_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) _save = PyEval_SaveThread();} while (0);
#define NPY_LOOP_END_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) PyEval_RestoreThread(_save);} while (0);
#else
#define NPY_LOOP_BEGIN_THREADS
#define NPY_LOOP_END_THREADS
#endif
/*
* UFunc has unit of 0, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_Zero 0
/*
* UFunc has unit of 1, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_One 1
/*
* UFunc has unit of -1, and the order of operations can be reordered
* This case allows reduction with multiple axes at once. Intended for
* bitwise_and reduction.
*/
#define PyUFunc_MinusOne 2
/*
* UFunc has no unit, and the order of operations cannot be reordered.
* This case does not allow reduction with multiple axes at once.
*/
#define PyUFunc_None -1
/*
* UFunc has no unit, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_ReorderableNone -2
/*
* UFunc unit is an identity_value, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_IdentityValue -3
#define UFUNC_REDUCE 0
#define UFUNC_ACCUMULATE 1
#define UFUNC_REDUCEAT 2
#define UFUNC_OUTER 3
typedef struct {
int nin;
int nout;
PyObject *callable;
} PyUFunc_PyFuncData;
/* A linked-list of function information for
user-defined 1-d loops.
*/
typedef struct _loop1d_info {
PyUFuncGenericFunction func;
void *data;
int *arg_types;
struct _loop1d_info *next;
int nargs;
PyArray_Descr **arg_dtypes;
} PyUFunc_Loop1d;
#define UFUNC_PYVALS_NAME "UFUNC_PYVALS"
/*
* THESE MACROS ARE DEPRECATED.
* Use npy_set_floatstatus_* in the npymath library.
*/
#define UFUNC_FPE_DIVIDEBYZERO NPY_FPE_DIVIDEBYZERO
#define UFUNC_FPE_OVERFLOW NPY_FPE_OVERFLOW
#define UFUNC_FPE_UNDERFLOW NPY_FPE_UNDERFLOW
#define UFUNC_FPE_INVALID NPY_FPE_INVALID
#define generate_divbyzero_error() npy_set_floatstatus_divbyzero()
#define generate_overflow_error() npy_set_floatstatus_overflow()
/* Make sure it gets defined if it isn't already */
#ifndef UFUNC_NOFPE
/* Clear the floating point exception default of Borland C++ */
#if defined(__BORLANDC__)
#define UFUNC_NOFPE _control87(MCW_EM, MCW_EM);
#else
#define UFUNC_NOFPE
#endif
#endif
#include "__ufunc_api.h"
#ifdef __cplusplus
}
#endif
#endif /* NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_ */

View File

@ -0,0 +1,37 @@
#ifndef NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_
#define NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_
#ifndef __COMP_NPY_UNUSED
#if defined(__GNUC__)
#define __COMP_NPY_UNUSED __attribute__ ((__unused__))
#elif defined(__ICC)
#define __COMP_NPY_UNUSED __attribute__ ((__unused__))
#elif defined(__clang__)
#define __COMP_NPY_UNUSED __attribute__ ((unused))
#else
#define __COMP_NPY_UNUSED
#endif
#endif
#if defined(__GNUC__) || defined(__ICC) || defined(__clang__)
#define NPY_DECL_ALIGNED(x) __attribute__ ((aligned (x)))
#elif defined(_MSC_VER)
#define NPY_DECL_ALIGNED(x) __declspec(align(x))
#else
#define NPY_DECL_ALIGNED(x)
#endif
/* Use this to tag a variable as not used. It will remove unused variable
* warning on support platforms (see __COM_NPY_UNUSED) and mangle the variable
* to avoid accidental use */
#define NPY_UNUSED(x) __NPY_UNUSED_TAGGED ## x __COMP_NPY_UNUSED
#define NPY_EXPAND(x) x
#define NPY_STRINGIFY(x) #x
#define NPY_TOSTRING(x) NPY_STRINGIFY(x)
#define NPY_CAT__(a, b) a ## b
#define NPY_CAT_(a, b) NPY_CAT__(a, b)
#define NPY_CAT(a, b) NPY_CAT_(a, b)
#endif /* NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_ */

View File

@ -0,0 +1,12 @@
[meta]
Name = mlib
Description = Math library used with this version of numpy
Version = 1.0
[default]
Libs=-lm
Cflags=
[msvc]
Libs=m.lib
Cflags=

View File

@ -0,0 +1,20 @@
[meta]
Name=npymath
Description=Portable, core math library implementing C99 standard
Version=0.1
[variables]
pkgname=numpy._core
prefix=${pkgdir}
libdir=${prefix}/lib
includedir=${prefix}/include
[default]
Libs=-L${libdir} -lnpymath
Cflags=-I${includedir}
Requires=mlib
[msvc]
Libs=/LIBPATH:${libdir} npymath.lib
Cflags=/INCLUDE:${includedir}
Requires=mlib

View File

@ -0,0 +1,7 @@
prefix=${pcfiledir}/../..
includedir=${prefix}/include
Name: numpy
Description: NumPy is the fundamental package for scientific computing with Python.
Version: 2.1.3
Cflags: -I${includedir}

View File

@ -0,0 +1,352 @@
from contextlib import nullcontext
import operator
import numpy as np
from .._utils import set_module
from .numeric import uint8, ndarray, dtype
__all__ = ['memmap']
dtypedescr = dtype
valid_filemodes = ["r", "c", "r+", "w+"]
writeable_filemodes = ["r+", "w+"]
mode_equivalents = {
"readonly":"r",
"copyonwrite":"c",
"readwrite":"r+",
"write":"w+"
}
@set_module('numpy')
class memmap(ndarray):
"""Create a memory-map to an array stored in a *binary* file on disk.
Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. NumPy's
memmap's are array-like objects. This differs from Python's ``mmap``
module, which uses file-like objects.
This subclass of ndarray has some unpleasant interactions with
some operations, because it doesn't quite fit properly as a subclass.
An alternative to using this subclass is to create the ``mmap``
object yourself, then create an ndarray with ndarray.__new__ directly,
passing the object created in its 'buffer=' parameter.
This class may at some point be turned into a factory function
which returns a view into an mmap buffer.
Flush the memmap instance to write the changes to the file. Currently there
is no API to close the underlying ``mmap``. It is tricky to ensure the
resource is actually closed, since it may be shared between different
memmap instances.
Parameters
----------
filename : str, file-like object, or pathlib.Path instance
The file name or file object to be used as the array data buffer.
dtype : data-type, optional
The data-type used to interpret the file contents.
Default is `uint8`.
mode : {'r+', 'r', 'w+', 'c'}, optional
The file is opened in this mode:
+------+-------------------------------------------------------------+
| 'r' | Open existing file for reading only. |
+------+-------------------------------------------------------------+
| 'r+' | Open existing file for reading and writing. |
+------+-------------------------------------------------------------+
| 'w+' | Create or overwrite existing file for reading and writing. |
| | If ``mode == 'w+'`` then `shape` must also be specified. |
+------+-------------------------------------------------------------+
| 'c' | Copy-on-write: assignments affect data in memory, but |
| | changes are not saved to disk. The file on disk is |
| | read-only. |
+------+-------------------------------------------------------------+
Default is 'r+'.
offset : int, optional
In the file, array data starts at this offset. Since `offset` is
measured in bytes, it should normally be a multiple of the byte-size
of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of
file are valid; The file will be extended to accommodate the
additional data. By default, ``memmap`` will start at the beginning of
the file, even if ``filename`` is a file pointer ``fp`` and
``fp.tell() != 0``.
shape : int or sequence of ints, optional
The desired shape of the array. If ``mode == 'r'`` and the number
of remaining bytes after `offset` is not a multiple of the byte-size
of `dtype`, you must specify `shape`. By default, the returned array
will be 1-D with the number of elements determined by file size
and data-type.
.. versionchanged:: 2.0
The shape parameter can now be any integer sequence type, previously
types were limited to tuple and int.
order : {'C', 'F'}, optional
Specify the order of the ndarray memory layout:
:term:`row-major`, C-style or :term:`column-major`,
Fortran-style. This only has an effect if the shape is
greater than 1-D. The default order is 'C'.
Attributes
----------
filename : str or pathlib.Path instance
Path to the mapped file.
offset : int
Offset position in the file.
mode : str
File mode.
Methods
-------
flush
Flush any changes in memory to file on disk.
When you delete a memmap object, flush is called first to write
changes to disk.
See also
--------
lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
Notes
-----
The memmap object can be used anywhere an ndarray is accepted.
Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
``True``.
Memory-mapped files cannot be larger than 2GB on 32-bit systems.
When a memmap causes a file to be created or extended beyond its
current size in the filesystem, the contents of the new part are
unspecified. On systems with POSIX filesystem semantics, the extended
part will be filled with zero bytes.
Examples
--------
>>> import numpy as np
>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))
This example uses a temporary file so that doctest doesn't write
files to your directory. You would use a 'normal' filename.
>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')
Create a memmap with dtype and shape that matches our data:
>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]], dtype=float32)
Write data to memmap array:
>>> fp[:] = data[:]
>>> fp
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
>>> fp.filename == path.abspath(filename)
True
Flushes memory changes to disk in order to read them back
>>> fp.flush()
Load the memmap and verify data was stored:
>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Read-only memmap:
>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False
Copy-on-write memmap:
>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True
It's possible to assign to copy-on-write array, but values are only
written into the memory copy of the array, and not written to disk:
>>> fpc
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap([[ 0., 0., 0., 0.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
File on disk is unchanged:
>>> fpr
memmap([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)
Offset into a memmap:
>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
"""
__array_priority__ = -100.0
def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
shape=None, order='C'):
# Import here to minimize 'import numpy' overhead
import mmap
import os.path
try:
mode = mode_equivalents[mode]
except KeyError as e:
if mode not in valid_filemodes:
raise ValueError(
"mode must be one of {!r} (got {!r})"
.format(valid_filemodes + list(mode_equivalents.keys()), mode)
) from None
if mode == 'w+' and shape is None:
raise ValueError("shape must be given if mode == 'w+'")
if hasattr(filename, 'read'):
f_ctx = nullcontext(filename)
else:
f_ctx = open(
os.fspath(filename),
('r' if mode == 'c' else mode)+'b'
)
with f_ctx as fid:
fid.seek(0, 2)
flen = fid.tell()
descr = dtypedescr(dtype)
_dbytes = descr.itemsize
if shape is None:
bytes = flen - offset
if bytes % _dbytes:
raise ValueError("Size of available data is not a "
"multiple of the data-type size.")
size = bytes // _dbytes
shape = (size,)
else:
if type(shape) not in (tuple, list):
try:
shape = [operator.index(shape)]
except TypeError:
pass
shape = tuple(shape)
size = np.intp(1) # avoid default choice of np.int_, which might overflow
for k in shape:
size *= k
bytes = int(offset + size*_dbytes)
if mode in ('w+', 'r+') and flen < bytes:
fid.seek(bytes - 1, 0)
fid.write(b'\0')
fid.flush()
if mode == 'c':
acc = mmap.ACCESS_COPY
elif mode == 'r':
acc = mmap.ACCESS_READ
else:
acc = mmap.ACCESS_WRITE
start = offset - offset % mmap.ALLOCATIONGRANULARITY
bytes -= start
array_offset = offset - start
mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
offset=array_offset, order=order)
self._mmap = mm
self.offset = offset
self.mode = mode
if isinstance(filename, os.PathLike):
# special case - if we were constructed with a pathlib.path,
# then filename is a path object, not a string
self.filename = filename.resolve()
elif hasattr(fid, "name") and isinstance(fid.name, str):
# py3 returns int for TemporaryFile().name
self.filename = os.path.abspath(fid.name)
# same as memmap copies (e.g. memmap + 1)
else:
self.filename = None
return self
def __array_finalize__(self, obj):
if hasattr(obj, '_mmap') and np.may_share_memory(self, obj):
self._mmap = obj._mmap
self.filename = obj.filename
self.offset = obj.offset
self.mode = obj.mode
else:
self._mmap = None
self.filename = None
self.offset = None
self.mode = None
def flush(self):
"""
Write any changes in the array to the file on disk.
For further information, see `memmap`.
Parameters
----------
None
See Also
--------
memmap
"""
if self.base is not None and hasattr(self.base, 'flush'):
self.base.flush()
def __array_wrap__(self, arr, context=None, return_scalar=False):
arr = super().__array_wrap__(arr, context)
# Return a memmap if a memmap was given as the output of the
# ufunc. Leave the arr class unchanged if self is not a memmap
# to keep original memmap subclasses behavior
if self is arr or type(self) is not memmap:
return arr
# Return scalar instead of 0d memmap, e.g. for np.sum with
# axis=None (note that subclasses will not reach here)
if return_scalar:
return arr[()]
# Return ndarray otherwise
return arr.view(np.ndarray)
def __getitem__(self, index):
res = super().__getitem__(index)
if type(res) is memmap and res._mmap is None:
return res.view(type=ndarray)
return res

Some files were not shown because too many files have changed in this diff Show More