Updated script that can be controled by Nodejs web app
This commit is contained in:
162
lib/python3.13/site-packages/numpy/__config__.py
Normal file
162
lib/python3.13/site-packages/numpy/__config__.py
Normal file
@ -0,0 +1,162 @@
|
||||
# This file is generated by numpy's build process
|
||||
# It contains system_info results at the time of building this package.
|
||||
from enum import Enum
|
||||
from numpy._core._multiarray_umath import (
|
||||
__cpu_features__,
|
||||
__cpu_baseline__,
|
||||
__cpu_dispatch__,
|
||||
)
|
||||
|
||||
__all__ = ["show"]
|
||||
_built_with_meson = True
|
||||
|
||||
|
||||
class DisplayModes(Enum):
|
||||
stdout = "stdout"
|
||||
dicts = "dicts"
|
||||
|
||||
|
||||
def _cleanup(d):
|
||||
"""
|
||||
Removes empty values in a `dict` recursively
|
||||
This ensures we remove values that Meson could not provide to CONFIG
|
||||
"""
|
||||
if isinstance(d, dict):
|
||||
return {k: _cleanup(v) for k, v in d.items() if v and _cleanup(v)}
|
||||
else:
|
||||
return d
|
||||
|
||||
|
||||
CONFIG = _cleanup(
|
||||
{
|
||||
"Compilers": {
|
||||
"c": {
|
||||
"name": "clang",
|
||||
"linker": r"ld64",
|
||||
"version": "15.0.0",
|
||||
"commands": r"cc",
|
||||
"args": r"",
|
||||
"linker args": r"",
|
||||
},
|
||||
"cython": {
|
||||
"name": "cython",
|
||||
"linker": r"cython",
|
||||
"version": "3.0.11",
|
||||
"commands": r"cython",
|
||||
"args": r"",
|
||||
"linker args": r"",
|
||||
},
|
||||
"c++": {
|
||||
"name": "clang",
|
||||
"linker": r"ld64",
|
||||
"version": "15.0.0",
|
||||
"commands": r"c++",
|
||||
"args": r"",
|
||||
"linker args": r"",
|
||||
},
|
||||
},
|
||||
"Machine Information": {
|
||||
"host": {
|
||||
"cpu": "x86_64",
|
||||
"family": "x86_64",
|
||||
"endian": "little",
|
||||
"system": "darwin",
|
||||
},
|
||||
"build": {
|
||||
"cpu": "x86_64",
|
||||
"family": "x86_64",
|
||||
"endian": "little",
|
||||
"system": "darwin",
|
||||
},
|
||||
"cross-compiled": bool("False".lower().replace("false", "")),
|
||||
},
|
||||
"Build Dependencies": {
|
||||
"blas": {
|
||||
"name": "accelerate",
|
||||
"found": bool("True".lower().replace("false", "")),
|
||||
"version": "unknown",
|
||||
"detection method": "system",
|
||||
"include directory": r"unknown",
|
||||
"lib directory": r"unknown",
|
||||
"openblas configuration": r"unknown",
|
||||
"pc file directory": r"unknown",
|
||||
},
|
||||
"lapack": {
|
||||
"name": "accelerate",
|
||||
"found": bool("True".lower().replace("false", "")),
|
||||
"version": "unknown",
|
||||
"detection method": "system",
|
||||
"include directory": r"unknown",
|
||||
"lib directory": r"unknown",
|
||||
"openblas configuration": r"unknown",
|
||||
"pc file directory": r"unknown",
|
||||
},
|
||||
},
|
||||
"Python Information": {
|
||||
"path": r"/private/var/folders/nj/wh528zms06j9t8y7bmlvpmjm0000gn/T/build-env-_j0z15p5/bin/python",
|
||||
"version": "3.13",
|
||||
},
|
||||
"SIMD Extensions": {
|
||||
"baseline": __cpu_baseline__,
|
||||
"found": [
|
||||
feature for feature in __cpu_dispatch__ if __cpu_features__[feature]
|
||||
],
|
||||
"not found": [
|
||||
feature for feature in __cpu_dispatch__ if not __cpu_features__[feature]
|
||||
],
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def _check_pyyaml():
|
||||
import yaml
|
||||
|
||||
return yaml
|
||||
|
||||
|
||||
def show(mode=DisplayModes.stdout.value):
|
||||
"""
|
||||
Show libraries and system information on which NumPy was built
|
||||
and is being used
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mode : {`'stdout'`, `'dicts'`}, optional.
|
||||
Indicates how to display the config information.
|
||||
`'stdout'` prints to console, `'dicts'` returns a dictionary
|
||||
of the configuration.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : {`dict`, `None`}
|
||||
If mode is `'dicts'`, a dict is returned, else None
|
||||
|
||||
See Also
|
||||
--------
|
||||
get_include : Returns the directory containing NumPy C
|
||||
header files.
|
||||
|
||||
Notes
|
||||
-----
|
||||
1. The `'stdout'` mode will give more readable
|
||||
output if ``pyyaml`` is installed
|
||||
|
||||
"""
|
||||
if mode == DisplayModes.stdout.value:
|
||||
try: # Non-standard library, check import
|
||||
yaml = _check_pyyaml()
|
||||
|
||||
print(yaml.dump(CONFIG))
|
||||
except ModuleNotFoundError:
|
||||
import warnings
|
||||
import json
|
||||
|
||||
warnings.warn("Install `pyyaml` for better output", stacklevel=1)
|
||||
print(json.dumps(CONFIG, indent=2))
|
||||
elif mode == DisplayModes.dicts.value:
|
||||
return CONFIG
|
||||
else:
|
||||
raise AttributeError(
|
||||
f"Invalid `mode`, use one of: {', '.join([e.value for e in DisplayModes])}"
|
||||
)
|
1225
lib/python3.13/site-packages/numpy/__init__.cython-30.pxd
Normal file
1225
lib/python3.13/site-packages/numpy/__init__.cython-30.pxd
Normal file
File diff suppressed because it is too large
Load Diff
1140
lib/python3.13/site-packages/numpy/__init__.pxd
Normal file
1140
lib/python3.13/site-packages/numpy/__init__.pxd
Normal file
File diff suppressed because it is too large
Load Diff
542
lib/python3.13/site-packages/numpy/__init__.py
Normal file
542
lib/python3.13/site-packages/numpy/__init__.py
Normal file
@ -0,0 +1,542 @@
|
||||
"""
|
||||
NumPy
|
||||
=====
|
||||
|
||||
Provides
|
||||
1. An array object of arbitrary homogeneous items
|
||||
2. Fast mathematical operations over arrays
|
||||
3. Linear Algebra, Fourier Transforms, Random Number Generation
|
||||
|
||||
How to use the documentation
|
||||
----------------------------
|
||||
Documentation is available in two forms: docstrings provided
|
||||
with the code, and a loose standing reference guide, available from
|
||||
`the NumPy homepage <https://numpy.org>`_.
|
||||
|
||||
We recommend exploring the docstrings using
|
||||
`IPython <https://ipython.org>`_, an advanced Python shell with
|
||||
TAB-completion and introspection capabilities. See below for further
|
||||
instructions.
|
||||
|
||||
The docstring examples assume that `numpy` has been imported as ``np``::
|
||||
|
||||
>>> import numpy as np
|
||||
|
||||
Code snippets are indicated by three greater-than signs::
|
||||
|
||||
>>> x = 42
|
||||
>>> x = x + 1
|
||||
|
||||
Use the built-in ``help`` function to view a function's docstring::
|
||||
|
||||
>>> help(np.sort)
|
||||
... # doctest: +SKIP
|
||||
|
||||
For some objects, ``np.info(obj)`` may provide additional help. This is
|
||||
particularly true if you see the line "Help on ufunc object:" at the top
|
||||
of the help() page. Ufuncs are implemented in C, not Python, for speed.
|
||||
The native Python help() does not know how to view their help, but our
|
||||
np.info() function does.
|
||||
|
||||
Available subpackages
|
||||
---------------------
|
||||
lib
|
||||
Basic functions used by several sub-packages.
|
||||
random
|
||||
Core Random Tools
|
||||
linalg
|
||||
Core Linear Algebra Tools
|
||||
fft
|
||||
Core FFT routines
|
||||
polynomial
|
||||
Polynomial tools
|
||||
testing
|
||||
NumPy testing tools
|
||||
distutils
|
||||
Enhancements to distutils with support for
|
||||
Fortran compilers support and more (for Python <= 3.11)
|
||||
|
||||
Utilities
|
||||
---------
|
||||
test
|
||||
Run numpy unittests
|
||||
show_config
|
||||
Show numpy build configuration
|
||||
__version__
|
||||
NumPy version string
|
||||
|
||||
Viewing documentation using IPython
|
||||
-----------------------------------
|
||||
|
||||
Start IPython and import `numpy` usually under the alias ``np``: `import
|
||||
numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste
|
||||
examples into the shell. To see which functions are available in `numpy`,
|
||||
type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
|
||||
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
|
||||
down the list. To view the docstring for a function, use
|
||||
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
|
||||
the source code).
|
||||
|
||||
Copies vs. in-place operation
|
||||
-----------------------------
|
||||
Most of the functions in `numpy` return a copy of the array argument
|
||||
(e.g., `np.sort`). In-place versions of these functions are often
|
||||
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
|
||||
Exceptions to this rule are documented.
|
||||
|
||||
"""
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from ._globals import _NoValue, _CopyMode
|
||||
from ._expired_attrs_2_0 import __expired_attributes__
|
||||
|
||||
|
||||
# If a version with git hash was stored, use that instead
|
||||
from . import version
|
||||
from .version import __version__
|
||||
|
||||
# We first need to detect if we're being called as part of the numpy setup
|
||||
# procedure itself in a reliable manner.
|
||||
try:
|
||||
__NUMPY_SETUP__
|
||||
except NameError:
|
||||
__NUMPY_SETUP__ = False
|
||||
|
||||
if __NUMPY_SETUP__:
|
||||
sys.stderr.write('Running from numpy source directory.\n')
|
||||
else:
|
||||
# Allow distributors to run custom init code before importing numpy._core
|
||||
from . import _distributor_init
|
||||
|
||||
try:
|
||||
from numpy.__config__ import show as show_config
|
||||
except ImportError as e:
|
||||
msg = """Error importing numpy: you should not try to import numpy from
|
||||
its source directory; please exit the numpy source tree, and relaunch
|
||||
your python interpreter from there."""
|
||||
raise ImportError(msg) from e
|
||||
|
||||
from . import _core
|
||||
from ._core import (
|
||||
False_, ScalarType, True_, _get_promotion_state, _no_nep50_warning,
|
||||
_set_promotion_state, abs, absolute, acos, acosh, add, all, allclose,
|
||||
amax, amin, any, arange, arccos, arccosh, arcsin, arcsinh,
|
||||
arctan, arctan2, arctanh, argmax, argmin, argpartition, argsort,
|
||||
argwhere, around, array, array2string, array_equal, array_equiv,
|
||||
array_repr, array_str, asanyarray, asarray, ascontiguousarray,
|
||||
asfortranarray, asin, asinh, atan, atanh, atan2, astype, atleast_1d,
|
||||
atleast_2d, atleast_3d, base_repr, binary_repr, bitwise_and,
|
||||
bitwise_count, bitwise_invert, bitwise_left_shift, bitwise_not,
|
||||
bitwise_or, bitwise_right_shift, bitwise_xor, block, bool, bool_,
|
||||
broadcast, busday_count, busday_offset, busdaycalendar, byte, bytes_,
|
||||
can_cast, cbrt, cdouble, ceil, character, choose, clip, clongdouble,
|
||||
complex128, complex64, complexfloating, compress, concat, concatenate,
|
||||
conj, conjugate, convolve, copysign, copyto, correlate, cos, cosh,
|
||||
count_nonzero, cross, csingle, cumprod, cumsum, cumulative_prod,
|
||||
cumulative_sum, datetime64, datetime_as_string, datetime_data,
|
||||
deg2rad, degrees, diagonal, divide, divmod, dot, double, dtype, e,
|
||||
einsum, einsum_path, empty, empty_like, equal, errstate, euler_gamma,
|
||||
exp, exp2, expm1, fabs, finfo, flatiter, flatnonzero, flexible,
|
||||
float16, float32, float64, float_power, floating, floor, floor_divide,
|
||||
fmax, fmin, fmod, format_float_positional, format_float_scientific,
|
||||
frexp, from_dlpack, frombuffer, fromfile, fromfunction, fromiter,
|
||||
frompyfunc, fromstring, full, full_like, gcd, generic, geomspace,
|
||||
get_printoptions, getbufsize, geterr, geterrcall, greater,
|
||||
greater_equal, half, heaviside, hstack, hypot, identity, iinfo, iinfo,
|
||||
indices, inexact, inf, inner, int16, int32, int64, int8, int_, intc,
|
||||
integer, intp, invert, is_busday, isclose, isdtype, isfinite,
|
||||
isfortran, isinf, isnan, isnat, isscalar, issubdtype, lcm, ldexp,
|
||||
left_shift, less, less_equal, lexsort, linspace, little_endian, log,
|
||||
log10, log1p, log2, logaddexp, logaddexp2, logical_and, logical_not,
|
||||
logical_or, logical_xor, logspace, long, longdouble, longlong, matmul,
|
||||
matrix_transpose, max, maximum, may_share_memory, mean, memmap, min,
|
||||
min_scalar_type, minimum, mod, modf, moveaxis, multiply, nan, ndarray,
|
||||
ndim, nditer, negative, nested_iters, newaxis, nextafter, nonzero,
|
||||
not_equal, number, object_, ones, ones_like, outer, partition,
|
||||
permute_dims, pi, positive, pow, power, printoptions, prod,
|
||||
promote_types, ptp, put, putmask, rad2deg, radians, ravel, recarray,
|
||||
reciprocal, record, remainder, repeat, require, reshape, resize,
|
||||
result_type, right_shift, rint, roll, rollaxis, round, sctypeDict,
|
||||
searchsorted, set_printoptions, setbufsize, seterr, seterrcall, shape,
|
||||
shares_memory, short, sign, signbit, signedinteger, sin, single, sinh,
|
||||
size, sort, spacing, sqrt, square, squeeze, stack, std,
|
||||
str_, subtract, sum, swapaxes, take, tan, tanh, tensordot,
|
||||
timedelta64, trace, transpose, true_divide, trunc, typecodes, ubyte,
|
||||
ufunc, uint, uint16, uint32, uint64, uint8, uintc, uintp, ulong,
|
||||
ulonglong, unsignedinteger, unstack, ushort, var, vdot, vecdot, void,
|
||||
vstack, where, zeros, zeros_like
|
||||
)
|
||||
|
||||
# NOTE: It's still under discussion whether these aliases
|
||||
# should be removed.
|
||||
for ta in ["float96", "float128", "complex192", "complex256"]:
|
||||
try:
|
||||
globals()[ta] = getattr(_core, ta)
|
||||
except AttributeError:
|
||||
pass
|
||||
del ta
|
||||
|
||||
from . import lib
|
||||
from .lib import scimath as emath
|
||||
from .lib._histograms_impl import (
|
||||
histogram, histogram_bin_edges, histogramdd
|
||||
)
|
||||
from .lib._nanfunctions_impl import (
|
||||
nanargmax, nanargmin, nancumprod, nancumsum, nanmax, nanmean,
|
||||
nanmedian, nanmin, nanpercentile, nanprod, nanquantile, nanstd,
|
||||
nansum, nanvar
|
||||
)
|
||||
from .lib._function_base_impl import (
|
||||
select, piecewise, trim_zeros, copy, iterable, percentile, diff,
|
||||
gradient, angle, unwrap, sort_complex, flip, rot90, extract, place,
|
||||
vectorize, asarray_chkfinite, average, bincount, digitize, cov,
|
||||
corrcoef, median, sinc, hamming, hanning, bartlett, blackman,
|
||||
kaiser, trapezoid, trapz, i0, meshgrid, delete, insert, append,
|
||||
interp, quantile
|
||||
)
|
||||
from .lib._twodim_base_impl import (
|
||||
diag, diagflat, eye, fliplr, flipud, tri, triu, tril, vander,
|
||||
histogram2d, mask_indices, tril_indices, tril_indices_from,
|
||||
triu_indices, triu_indices_from
|
||||
)
|
||||
from .lib._shape_base_impl import (
|
||||
apply_over_axes, apply_along_axis, array_split, column_stack, dsplit,
|
||||
dstack, expand_dims, hsplit, kron, put_along_axis, row_stack, split,
|
||||
take_along_axis, tile, vsplit
|
||||
)
|
||||
from .lib._type_check_impl import (
|
||||
iscomplexobj, isrealobj, imag, iscomplex, isreal, nan_to_num, real,
|
||||
real_if_close, typename, mintypecode, common_type
|
||||
)
|
||||
from .lib._arraysetops_impl import (
|
||||
ediff1d, in1d, intersect1d, isin, setdiff1d, setxor1d, union1d,
|
||||
unique, unique_all, unique_counts, unique_inverse, unique_values
|
||||
)
|
||||
from .lib._ufunclike_impl import fix, isneginf, isposinf
|
||||
from .lib._arraypad_impl import pad
|
||||
from .lib._utils_impl import (
|
||||
show_runtime, get_include, info
|
||||
)
|
||||
from .lib._stride_tricks_impl import (
|
||||
broadcast_arrays, broadcast_shapes, broadcast_to
|
||||
)
|
||||
from .lib._polynomial_impl import (
|
||||
poly, polyint, polyder, polyadd, polysub, polymul, polydiv, polyval,
|
||||
polyfit, poly1d, roots
|
||||
)
|
||||
from .lib._npyio_impl import (
|
||||
savetxt, loadtxt, genfromtxt, load, save, savez, packbits,
|
||||
savez_compressed, unpackbits, fromregex
|
||||
)
|
||||
from .lib._index_tricks_impl import (
|
||||
diag_indices_from, diag_indices, fill_diagonal, ndindex, ndenumerate,
|
||||
ix_, c_, r_, s_, ogrid, mgrid, unravel_index, ravel_multi_index,
|
||||
index_exp
|
||||
)
|
||||
|
||||
from . import matrixlib as _mat
|
||||
from .matrixlib import (
|
||||
asmatrix, bmat, matrix
|
||||
)
|
||||
|
||||
# public submodules are imported lazily, therefore are accessible from
|
||||
# __getattr__. Note that `distutils` (deprecated) and `array_api`
|
||||
# (experimental label) are not added here, because `from numpy import *`
|
||||
# must not raise any warnings - that's too disruptive.
|
||||
__numpy_submodules__ = {
|
||||
"linalg", "fft", "dtypes", "random", "polynomial", "ma",
|
||||
"exceptions", "lib", "ctypeslib", "testing", "typing",
|
||||
"f2py", "test", "rec", "char", "core", "strings",
|
||||
}
|
||||
|
||||
# We build warning messages for former attributes
|
||||
_msg = (
|
||||
"module 'numpy' has no attribute '{n}'.\n"
|
||||
"`np.{n}` was a deprecated alias for the builtin `{n}`. "
|
||||
"To avoid this error in existing code, use `{n}` by itself. "
|
||||
"Doing this will not modify any behavior and is safe. {extended_msg}\n"
|
||||
"The aliases was originally deprecated in NumPy 1.20; for more "
|
||||
"details and guidance see the original release note at:\n"
|
||||
" https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
|
||||
|
||||
_specific_msg = (
|
||||
"If you specifically wanted the numpy scalar type, use `np.{}` here.")
|
||||
|
||||
_int_extended_msg = (
|
||||
"When replacing `np.{}`, you may wish to use e.g. `np.int64` "
|
||||
"or `np.int32` to specify the precision. If you wish to review "
|
||||
"your current use, check the release note link for "
|
||||
"additional information.")
|
||||
|
||||
_type_info = [
|
||||
("object", ""), # The NumPy scalar only exists by name.
|
||||
("float", _specific_msg.format("float64")),
|
||||
("complex", _specific_msg.format("complex128")),
|
||||
("str", _specific_msg.format("str_")),
|
||||
("int", _int_extended_msg.format("int"))]
|
||||
|
||||
__former_attrs__ = {
|
||||
n: _msg.format(n=n, extended_msg=extended_msg)
|
||||
for n, extended_msg in _type_info
|
||||
}
|
||||
|
||||
|
||||
# Some of these could be defined right away, but most were aliases to
|
||||
# the Python objects and only removed in NumPy 1.24. Defining them should
|
||||
# probably wait for NumPy 1.26 or 2.0.
|
||||
# When defined, these should possibly not be added to `__all__` to avoid
|
||||
# import with `from numpy import *`.
|
||||
__future_scalars__ = {"str", "bytes", "object"}
|
||||
|
||||
__array_api_version__ = "2023.12"
|
||||
|
||||
from ._array_api_info import __array_namespace_info__
|
||||
|
||||
# now that numpy core module is imported, can initialize limits
|
||||
_core.getlimits._register_known_types()
|
||||
|
||||
__all__ = list(
|
||||
__numpy_submodules__ |
|
||||
set(_core.__all__) |
|
||||
set(_mat.__all__) |
|
||||
set(lib._histograms_impl.__all__) |
|
||||
set(lib._nanfunctions_impl.__all__) |
|
||||
set(lib._function_base_impl.__all__) |
|
||||
set(lib._twodim_base_impl.__all__) |
|
||||
set(lib._shape_base_impl.__all__) |
|
||||
set(lib._type_check_impl.__all__) |
|
||||
set(lib._arraysetops_impl.__all__) |
|
||||
set(lib._ufunclike_impl.__all__) |
|
||||
set(lib._arraypad_impl.__all__) |
|
||||
set(lib._utils_impl.__all__) |
|
||||
set(lib._stride_tricks_impl.__all__) |
|
||||
set(lib._polynomial_impl.__all__) |
|
||||
set(lib._npyio_impl.__all__) |
|
||||
set(lib._index_tricks_impl.__all__) |
|
||||
{"emath", "show_config", "__version__", "__array_namespace_info__"}
|
||||
)
|
||||
|
||||
# Filter out Cython harmless warnings
|
||||
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
||||
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
||||
|
||||
def __getattr__(attr):
|
||||
# Warn for expired attributes
|
||||
import warnings
|
||||
|
||||
if attr == "linalg":
|
||||
import numpy.linalg as linalg
|
||||
return linalg
|
||||
elif attr == "fft":
|
||||
import numpy.fft as fft
|
||||
return fft
|
||||
elif attr == "dtypes":
|
||||
import numpy.dtypes as dtypes
|
||||
return dtypes
|
||||
elif attr == "random":
|
||||
import numpy.random as random
|
||||
return random
|
||||
elif attr == "polynomial":
|
||||
import numpy.polynomial as polynomial
|
||||
return polynomial
|
||||
elif attr == "ma":
|
||||
import numpy.ma as ma
|
||||
return ma
|
||||
elif attr == "ctypeslib":
|
||||
import numpy.ctypeslib as ctypeslib
|
||||
return ctypeslib
|
||||
elif attr == "exceptions":
|
||||
import numpy.exceptions as exceptions
|
||||
return exceptions
|
||||
elif attr == "testing":
|
||||
import numpy.testing as testing
|
||||
return testing
|
||||
elif attr == "matlib":
|
||||
import numpy.matlib as matlib
|
||||
return matlib
|
||||
elif attr == "f2py":
|
||||
import numpy.f2py as f2py
|
||||
return f2py
|
||||
elif attr == "typing":
|
||||
import numpy.typing as typing
|
||||
return typing
|
||||
elif attr == "rec":
|
||||
import numpy.rec as rec
|
||||
return rec
|
||||
elif attr == "char":
|
||||
import numpy.char as char
|
||||
return char
|
||||
elif attr == "array_api":
|
||||
raise AttributeError("`numpy.array_api` is not available from "
|
||||
"numpy 2.0 onwards", name=None)
|
||||
elif attr == "core":
|
||||
import numpy.core as core
|
||||
return core
|
||||
elif attr == "strings":
|
||||
import numpy.strings as strings
|
||||
return strings
|
||||
elif attr == "distutils":
|
||||
if 'distutils' in __numpy_submodules__:
|
||||
import numpy.distutils as distutils
|
||||
return distutils
|
||||
else:
|
||||
raise AttributeError("`numpy.distutils` is not available from "
|
||||
"Python 3.12 onwards", name=None)
|
||||
|
||||
if attr in __future_scalars__:
|
||||
# And future warnings for those that will change, but also give
|
||||
# the AttributeError
|
||||
warnings.warn(
|
||||
f"In the future `np.{attr}` will be defined as the "
|
||||
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
|
||||
|
||||
if attr in __former_attrs__:
|
||||
raise AttributeError(__former_attrs__[attr], name=None)
|
||||
|
||||
if attr in __expired_attributes__:
|
||||
raise AttributeError(
|
||||
f"`np.{attr}` was removed in the NumPy 2.0 release. "
|
||||
f"{__expired_attributes__[attr]}",
|
||||
name=None
|
||||
)
|
||||
|
||||
if attr == "chararray":
|
||||
warnings.warn(
|
||||
"`np.chararray` is deprecated and will be removed from "
|
||||
"the main namespace in the future. Use an array with a string "
|
||||
"or bytes dtype instead.", DeprecationWarning, stacklevel=2)
|
||||
import numpy.char as char
|
||||
return char.chararray
|
||||
|
||||
raise AttributeError("module {!r} has no attribute "
|
||||
"{!r}".format(__name__, attr))
|
||||
|
||||
def __dir__():
|
||||
public_symbols = (
|
||||
globals().keys() | __numpy_submodules__
|
||||
)
|
||||
public_symbols -= {
|
||||
"matrixlib", "matlib", "tests", "conftest", "version",
|
||||
"compat", "distutils", "array_api"
|
||||
}
|
||||
return list(public_symbols)
|
||||
|
||||
# Pytest testing
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
||||
|
||||
def _sanity_check():
|
||||
"""
|
||||
Quick sanity checks for common bugs caused by environment.
|
||||
There are some cases e.g. with wrong BLAS ABI that cause wrong
|
||||
results under specific runtime conditions that are not necessarily
|
||||
achieved during test suite runs, and it is useful to catch those early.
|
||||
|
||||
See https://github.com/numpy/numpy/issues/8577 and other
|
||||
similar bug reports.
|
||||
|
||||
"""
|
||||
try:
|
||||
x = ones(2, dtype=float32)
|
||||
if not abs(x.dot(x) - float32(2.0)) < 1e-5:
|
||||
raise AssertionError()
|
||||
except AssertionError:
|
||||
msg = ("The current Numpy installation ({!r}) fails to "
|
||||
"pass simple sanity checks. This can be caused for example "
|
||||
"by incorrect BLAS library being linked in, or by mixing "
|
||||
"package managers (pip, conda, apt, ...). Search closed "
|
||||
"numpy issues for similar problems.")
|
||||
raise RuntimeError(msg.format(__file__)) from None
|
||||
|
||||
_sanity_check()
|
||||
del _sanity_check
|
||||
|
||||
def _mac_os_check():
|
||||
"""
|
||||
Quick Sanity check for Mac OS look for accelerate build bugs.
|
||||
Testing numpy polyfit calls init_dgelsd(LAPACK)
|
||||
"""
|
||||
try:
|
||||
c = array([3., 2., 1.])
|
||||
x = linspace(0, 2, 5)
|
||||
y = polyval(c, x)
|
||||
_ = polyfit(x, y, 2, cov=True)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
if sys.platform == "darwin":
|
||||
from . import exceptions
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
_mac_os_check()
|
||||
# Throw runtime error, if the test failed Check for warning and error_message
|
||||
if len(w) > 0:
|
||||
for _wn in w:
|
||||
if _wn.category is exceptions.RankWarning:
|
||||
# Ignore other warnings, they may not be relevant (see gh-25433).
|
||||
error_message = f"{_wn.category.__name__}: {str(_wn.message)}"
|
||||
msg = (
|
||||
"Polyfit sanity test emitted a warning, most likely due "
|
||||
"to using a buggy Accelerate backend."
|
||||
"\nIf you compiled yourself, more information is available at:"
|
||||
"\nhttps://numpy.org/devdocs/building/index.html"
|
||||
"\nOtherwise report this to the vendor "
|
||||
"that provided NumPy.\n\n{}\n".format(error_message))
|
||||
raise RuntimeError(msg)
|
||||
del _wn
|
||||
del w
|
||||
del _mac_os_check
|
||||
|
||||
def hugepage_setup():
|
||||
"""
|
||||
We usually use madvise hugepages support, but on some old kernels it
|
||||
is slow and thus better avoided. Specifically kernel version 4.6
|
||||
had a bug fix which probably fixed this:
|
||||
https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
|
||||
"""
|
||||
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
|
||||
if sys.platform == "linux" and use_hugepage is None:
|
||||
# If there is an issue with parsing the kernel version,
|
||||
# set use_hugepage to 0. Usage of LooseVersion will handle
|
||||
# the kernel version parsing better, but avoided since it
|
||||
# will increase the import time.
|
||||
# See: #16679 for related discussion.
|
||||
try:
|
||||
use_hugepage = 1
|
||||
kernel_version = os.uname().release.split(".")[:2]
|
||||
kernel_version = tuple(int(v) for v in kernel_version)
|
||||
if kernel_version < (4, 6):
|
||||
use_hugepage = 0
|
||||
except ValueError:
|
||||
use_hugepage = 0
|
||||
elif use_hugepage is None:
|
||||
# This is not Linux, so it should not matter, just enable anyway
|
||||
use_hugepage = 1
|
||||
else:
|
||||
use_hugepage = int(use_hugepage)
|
||||
return use_hugepage
|
||||
|
||||
# Note that this will currently only make a difference on Linux
|
||||
_core.multiarray._set_madvise_hugepage(hugepage_setup())
|
||||
del hugepage_setup
|
||||
|
||||
# Give a warning if NumPy is reloaded or imported on a sub-interpreter
|
||||
# We do this from python, since the C-module may not be reloaded and
|
||||
# it is tidier organized.
|
||||
_core.multiarray._multiarray_umath._reload_guard()
|
||||
|
||||
# TODO: Remove the environment variable entirely now that it is "weak"
|
||||
_core._set_promotion_state(
|
||||
os.environ.get("NPY_PROMOTION_STATE", "weak"))
|
||||
|
||||
# Tell PyInstaller where to find hook-numpy.py
|
||||
def _pyinstaller_hooks_dir():
|
||||
from pathlib import Path
|
||||
return [str(Path(__file__).with_name("_pyinstaller").resolve())]
|
||||
|
||||
|
||||
# Remove symbols imported for internal use
|
||||
del os, sys, warnings
|
4095
lib/python3.13/site-packages/numpy/__init__.pyi
Normal file
4095
lib/python3.13/site-packages/numpy/__init__.pyi
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
346
lib/python3.13/site-packages/numpy/_array_api_info.py
Normal file
346
lib/python3.13/site-packages/numpy/_array_api_info.py
Normal file
@ -0,0 +1,346 @@
|
||||
"""
|
||||
Array API Inspection namespace
|
||||
|
||||
This is the namespace for inspection functions as defined by the array API
|
||||
standard. See
|
||||
https://data-apis.org/array-api/latest/API_specification/inspection.html for
|
||||
more details.
|
||||
|
||||
"""
|
||||
from numpy._core import (
|
||||
dtype,
|
||||
bool,
|
||||
intp,
|
||||
int8,
|
||||
int16,
|
||||
int32,
|
||||
int64,
|
||||
uint8,
|
||||
uint16,
|
||||
uint32,
|
||||
uint64,
|
||||
float32,
|
||||
float64,
|
||||
complex64,
|
||||
complex128,
|
||||
)
|
||||
|
||||
|
||||
class __array_namespace_info__:
|
||||
"""
|
||||
Get the array API inspection namespace for NumPy.
|
||||
|
||||
The array API inspection namespace defines the following functions:
|
||||
|
||||
- capabilities()
|
||||
- default_device()
|
||||
- default_dtypes()
|
||||
- dtypes()
|
||||
- devices()
|
||||
|
||||
See
|
||||
https://data-apis.org/array-api/latest/API_specification/inspection.html
|
||||
for more details.
|
||||
|
||||
Returns
|
||||
-------
|
||||
info : ModuleType
|
||||
The array API inspection namespace for NumPy.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> info = np.__array_namespace_info__()
|
||||
>>> info.default_dtypes()
|
||||
{'real floating': numpy.float64,
|
||||
'complex floating': numpy.complex128,
|
||||
'integral': numpy.int64,
|
||||
'indexing': numpy.int64}
|
||||
|
||||
"""
|
||||
|
||||
__module__ = 'numpy'
|
||||
|
||||
def capabilities(self):
|
||||
"""
|
||||
Return a dictionary of array API library capabilities.
|
||||
|
||||
The resulting dictionary has the following keys:
|
||||
|
||||
- **"boolean indexing"**: boolean indicating whether an array library
|
||||
supports boolean indexing. Always ``True`` for NumPy.
|
||||
|
||||
- **"data-dependent shapes"**: boolean indicating whether an array
|
||||
library supports data-dependent output shapes. Always ``True`` for
|
||||
NumPy.
|
||||
|
||||
See
|
||||
https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html
|
||||
for more details.
|
||||
|
||||
See Also
|
||||
--------
|
||||
__array_namespace_info__.default_device,
|
||||
__array_namespace_info__.default_dtypes,
|
||||
__array_namespace_info__.dtypes,
|
||||
__array_namespace_info__.devices
|
||||
|
||||
Returns
|
||||
-------
|
||||
capabilities : dict
|
||||
A dictionary of array API library capabilities.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> info = np.__array_namespace_info__()
|
||||
>>> info.capabilities()
|
||||
{'boolean indexing': True,
|
||||
'data-dependent shapes': True}
|
||||
|
||||
"""
|
||||
return {
|
||||
"boolean indexing": True,
|
||||
"data-dependent shapes": True,
|
||||
# 'max rank' will be part of the 2024.12 standard
|
||||
# "max rank": 64,
|
||||
}
|
||||
|
||||
def default_device(self):
|
||||
"""
|
||||
The default device used for new NumPy arrays.
|
||||
|
||||
For NumPy, this always returns ``'cpu'``.
|
||||
|
||||
See Also
|
||||
--------
|
||||
__array_namespace_info__.capabilities,
|
||||
__array_namespace_info__.default_dtypes,
|
||||
__array_namespace_info__.dtypes,
|
||||
__array_namespace_info__.devices
|
||||
|
||||
Returns
|
||||
-------
|
||||
device : str
|
||||
The default device used for new NumPy arrays.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> info = np.__array_namespace_info__()
|
||||
>>> info.default_device()
|
||||
'cpu'
|
||||
|
||||
"""
|
||||
return "cpu"
|
||||
|
||||
def default_dtypes(self, *, device=None):
|
||||
"""
|
||||
The default data types used for new NumPy arrays.
|
||||
|
||||
For NumPy, this always returns the following dictionary:
|
||||
|
||||
- **"real floating"**: ``numpy.float64``
|
||||
- **"complex floating"**: ``numpy.complex128``
|
||||
- **"integral"**: ``numpy.intp``
|
||||
- **"indexing"**: ``numpy.intp``
|
||||
|
||||
Parameters
|
||||
----------
|
||||
device : str, optional
|
||||
The device to get the default data types for. For NumPy, only
|
||||
``'cpu'`` is allowed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dtypes : dict
|
||||
A dictionary describing the default data types used for new NumPy
|
||||
arrays.
|
||||
|
||||
See Also
|
||||
--------
|
||||
__array_namespace_info__.capabilities,
|
||||
__array_namespace_info__.default_device,
|
||||
__array_namespace_info__.dtypes,
|
||||
__array_namespace_info__.devices
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> info = np.__array_namespace_info__()
|
||||
>>> info.default_dtypes()
|
||||
{'real floating': numpy.float64,
|
||||
'complex floating': numpy.complex128,
|
||||
'integral': numpy.int64,
|
||||
'indexing': numpy.int64}
|
||||
|
||||
"""
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(
|
||||
'Device not understood. Only "cpu" is allowed, but received:'
|
||||
f' {device}'
|
||||
)
|
||||
return {
|
||||
"real floating": dtype(float64),
|
||||
"complex floating": dtype(complex128),
|
||||
"integral": dtype(intp),
|
||||
"indexing": dtype(intp),
|
||||
}
|
||||
|
||||
def dtypes(self, *, device=None, kind=None):
|
||||
"""
|
||||
The array API data types supported by NumPy.
|
||||
|
||||
Note that this function only returns data types that are defined by
|
||||
the array API.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
device : str, optional
|
||||
The device to get the data types for. For NumPy, only ``'cpu'`` is
|
||||
allowed.
|
||||
kind : str or tuple of str, optional
|
||||
The kind of data types to return. If ``None``, all data types are
|
||||
returned. If a string, only data types of that kind are returned.
|
||||
If a tuple, a dictionary containing the union of the given kinds
|
||||
is returned. The following kinds are supported:
|
||||
|
||||
- ``'bool'``: boolean data types (i.e., ``bool``).
|
||||
- ``'signed integer'``: signed integer data types (i.e., ``int8``,
|
||||
``int16``, ``int32``, ``int64``).
|
||||
- ``'unsigned integer'``: unsigned integer data types (i.e.,
|
||||
``uint8``, ``uint16``, ``uint32``, ``uint64``).
|
||||
- ``'integral'``: integer data types. Shorthand for ``('signed
|
||||
integer', 'unsigned integer')``.
|
||||
- ``'real floating'``: real-valued floating-point data types
|
||||
(i.e., ``float32``, ``float64``).
|
||||
- ``'complex floating'``: complex floating-point data types (i.e.,
|
||||
``complex64``, ``complex128``).
|
||||
- ``'numeric'``: numeric data types. Shorthand for ``('integral',
|
||||
'real floating', 'complex floating')``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dtypes : dict
|
||||
A dictionary mapping the names of data types to the corresponding
|
||||
NumPy data types.
|
||||
|
||||
See Also
|
||||
--------
|
||||
__array_namespace_info__.capabilities,
|
||||
__array_namespace_info__.default_device,
|
||||
__array_namespace_info__.default_dtypes,
|
||||
__array_namespace_info__.devices
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> info = np.__array_namespace_info__()
|
||||
>>> info.dtypes(kind='signed integer')
|
||||
{'int8': numpy.int8,
|
||||
'int16': numpy.int16,
|
||||
'int32': numpy.int32,
|
||||
'int64': numpy.int64}
|
||||
|
||||
"""
|
||||
if device not in ["cpu", None]:
|
||||
raise ValueError(
|
||||
'Device not understood. Only "cpu" is allowed, but received:'
|
||||
f' {device}'
|
||||
)
|
||||
if kind is None:
|
||||
return {
|
||||
"bool": dtype(bool),
|
||||
"int8": dtype(int8),
|
||||
"int16": dtype(int16),
|
||||
"int32": dtype(int32),
|
||||
"int64": dtype(int64),
|
||||
"uint8": dtype(uint8),
|
||||
"uint16": dtype(uint16),
|
||||
"uint32": dtype(uint32),
|
||||
"uint64": dtype(uint64),
|
||||
"float32": dtype(float32),
|
||||
"float64": dtype(float64),
|
||||
"complex64": dtype(complex64),
|
||||
"complex128": dtype(complex128),
|
||||
}
|
||||
if kind == "bool":
|
||||
return {"bool": bool}
|
||||
if kind == "signed integer":
|
||||
return {
|
||||
"int8": dtype(int8),
|
||||
"int16": dtype(int16),
|
||||
"int32": dtype(int32),
|
||||
"int64": dtype(int64),
|
||||
}
|
||||
if kind == "unsigned integer":
|
||||
return {
|
||||
"uint8": dtype(uint8),
|
||||
"uint16": dtype(uint16),
|
||||
"uint32": dtype(uint32),
|
||||
"uint64": dtype(uint64),
|
||||
}
|
||||
if kind == "integral":
|
||||
return {
|
||||
"int8": dtype(int8),
|
||||
"int16": dtype(int16),
|
||||
"int32": dtype(int32),
|
||||
"int64": dtype(int64),
|
||||
"uint8": dtype(uint8),
|
||||
"uint16": dtype(uint16),
|
||||
"uint32": dtype(uint32),
|
||||
"uint64": dtype(uint64),
|
||||
}
|
||||
if kind == "real floating":
|
||||
return {
|
||||
"float32": dtype(float32),
|
||||
"float64": dtype(float64),
|
||||
}
|
||||
if kind == "complex floating":
|
||||
return {
|
||||
"complex64": dtype(complex64),
|
||||
"complex128": dtype(complex128),
|
||||
}
|
||||
if kind == "numeric":
|
||||
return {
|
||||
"int8": dtype(int8),
|
||||
"int16": dtype(int16),
|
||||
"int32": dtype(int32),
|
||||
"int64": dtype(int64),
|
||||
"uint8": dtype(uint8),
|
||||
"uint16": dtype(uint16),
|
||||
"uint32": dtype(uint32),
|
||||
"uint64": dtype(uint64),
|
||||
"float32": dtype(float32),
|
||||
"float64": dtype(float64),
|
||||
"complex64": dtype(complex64),
|
||||
"complex128": dtype(complex128),
|
||||
}
|
||||
if isinstance(kind, tuple):
|
||||
res = {}
|
||||
for k in kind:
|
||||
res.update(self.dtypes(kind=k))
|
||||
return res
|
||||
raise ValueError(f"unsupported kind: {kind!r}")
|
||||
|
||||
def devices(self):
|
||||
"""
|
||||
The devices supported by NumPy.
|
||||
|
||||
For NumPy, this always returns ``['cpu']``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
devices : list of str
|
||||
The devices supported by NumPy.
|
||||
|
||||
See Also
|
||||
--------
|
||||
__array_namespace_info__.capabilities,
|
||||
__array_namespace_info__.default_device,
|
||||
__array_namespace_info__.default_dtypes,
|
||||
__array_namespace_info__.dtypes
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> info = np.__array_namespace_info__()
|
||||
>>> info.devices()
|
||||
['cpu']
|
||||
|
||||
"""
|
||||
return ["cpu"]
|
213
lib/python3.13/site-packages/numpy/_array_api_info.pyi
Normal file
213
lib/python3.13/site-packages/numpy/_array_api_info.pyi
Normal file
@ -0,0 +1,213 @@
|
||||
import sys
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
ClassVar,
|
||||
Literal,
|
||||
TypeAlias,
|
||||
TypedDict,
|
||||
TypeVar,
|
||||
final,
|
||||
overload,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
if sys.version_info >= (3, 11):
|
||||
from typing import Never
|
||||
elif TYPE_CHECKING:
|
||||
from typing_extensions import Never
|
||||
else:
|
||||
# `NoReturn` and `Never` are equivalent (but not equal) for type-checkers,
|
||||
# but are used in different places by convention
|
||||
from typing import NoReturn as Never
|
||||
|
||||
_Device: TypeAlias = Literal["cpu"]
|
||||
_DeviceLike: TypeAlias = None | _Device
|
||||
|
||||
_Capabilities = TypedDict(
|
||||
"_Capabilities",
|
||||
{
|
||||
"boolean indexing": Literal[True],
|
||||
"data-dependent shapes": Literal[True],
|
||||
},
|
||||
)
|
||||
|
||||
_DefaultDTypes = TypedDict(
|
||||
"_DefaultDTypes",
|
||||
{
|
||||
"real floating": np.dtype[np.float64],
|
||||
"complex floating": np.dtype[np.complex128],
|
||||
"integral": np.dtype[np.intp],
|
||||
"indexing": np.dtype[np.intp],
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
_KindBool: TypeAlias = Literal["bool"]
|
||||
_KindInt: TypeAlias = Literal["signed integer"]
|
||||
_KindUInt: TypeAlias = Literal["unsigned integer"]
|
||||
_KindInteger: TypeAlias = Literal["integral"]
|
||||
_KindFloat: TypeAlias = Literal["real floating"]
|
||||
_KindComplex: TypeAlias = Literal["complex floating"]
|
||||
_KindNumber: TypeAlias = Literal["numeric"]
|
||||
_Kind: TypeAlias = (
|
||||
_KindBool
|
||||
| _KindInt
|
||||
| _KindUInt
|
||||
| _KindInteger
|
||||
| _KindFloat
|
||||
| _KindComplex
|
||||
| _KindNumber
|
||||
)
|
||||
|
||||
|
||||
_T1 = TypeVar("_T1")
|
||||
_T2 = TypeVar("_T2")
|
||||
_T3 = TypeVar("_T3")
|
||||
_Permute1: TypeAlias = _T1 | tuple[_T1]
|
||||
_Permute2: TypeAlias = tuple[_T1, _T2] | tuple[_T2, _T1]
|
||||
_Permute3: TypeAlias = (
|
||||
tuple[_T1, _T2, _T3] | tuple[_T1, _T3, _T2]
|
||||
| tuple[_T2, _T1, _T3] | tuple[_T2, _T3, _T1]
|
||||
| tuple[_T3, _T1, _T2] | tuple[_T3, _T2, _T1]
|
||||
)
|
||||
|
||||
class _DTypesBool(TypedDict):
|
||||
bool: np.dtype[np.bool]
|
||||
|
||||
class _DTypesInt(TypedDict):
|
||||
int8: np.dtype[np.int8]
|
||||
int16: np.dtype[np.int16]
|
||||
int32: np.dtype[np.int32]
|
||||
int64: np.dtype[np.int64]
|
||||
|
||||
class _DTypesUInt(TypedDict):
|
||||
uint8: np.dtype[np.uint8]
|
||||
uint16: np.dtype[np.uint16]
|
||||
uint32: np.dtype[np.uint32]
|
||||
uint64: np.dtype[np.uint64]
|
||||
|
||||
class _DTypesInteger(_DTypesInt, _DTypesUInt):
|
||||
...
|
||||
|
||||
class _DTypesFloat(TypedDict):
|
||||
float32: np.dtype[np.float32]
|
||||
float64: np.dtype[np.float64]
|
||||
|
||||
class _DTypesComplex(TypedDict):
|
||||
complex64: np.dtype[np.complex64]
|
||||
complex128: np.dtype[np.complex128]
|
||||
|
||||
class _DTypesNumber(_DTypesInteger, _DTypesFloat, _DTypesComplex):
|
||||
...
|
||||
|
||||
class _DTypes(_DTypesBool, _DTypesNumber):
|
||||
...
|
||||
|
||||
class _DTypesUnion(TypedDict, total=False):
|
||||
bool: np.dtype[np.bool]
|
||||
int8: np.dtype[np.int8]
|
||||
int16: np.dtype[np.int16]
|
||||
int32: np.dtype[np.int32]
|
||||
int64: np.dtype[np.int64]
|
||||
uint8: np.dtype[np.uint8]
|
||||
uint16: np.dtype[np.uint16]
|
||||
uint32: np.dtype[np.uint32]
|
||||
uint64: np.dtype[np.uint64]
|
||||
float32: np.dtype[np.float32]
|
||||
float64: np.dtype[np.float64]
|
||||
complex64: np.dtype[np.complex64]
|
||||
complex128: np.dtype[np.complex128]
|
||||
|
||||
_EmptyDict: TypeAlias = dict[Never, Never]
|
||||
|
||||
|
||||
@final
|
||||
class __array_namespace_info__:
|
||||
__module__: ClassVar[Literal['numpy']]
|
||||
|
||||
def capabilities(self) -> _Capabilities: ...
|
||||
def default_device(self) -> _Device: ...
|
||||
def default_dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
) -> _DefaultDTypes: ...
|
||||
def devices(self) -> list[_Device]: ...
|
||||
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: None = ...,
|
||||
) -> _DTypes: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: _Permute1[_KindBool],
|
||||
) -> _DTypesBool: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: _Permute1[_KindInt],
|
||||
) -> _DTypesInt: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: _Permute1[_KindUInt],
|
||||
) -> _DTypesUInt: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: _Permute1[_KindFloat],
|
||||
) -> _DTypesFloat: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: _Permute1[_KindComplex],
|
||||
) -> _DTypesComplex: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: (
|
||||
_Permute1[_KindInteger]
|
||||
| _Permute2[_KindInt, _KindUInt]
|
||||
),
|
||||
) -> _DTypesInteger: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: (
|
||||
_Permute1[_KindNumber]
|
||||
| _Permute3[_KindInteger, _KindFloat, _KindComplex]
|
||||
),
|
||||
) -> _DTypesNumber: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: tuple[()],
|
||||
) -> _EmptyDict: ...
|
||||
@overload
|
||||
def dtypes(
|
||||
self,
|
||||
*,
|
||||
device: _DeviceLike = ...,
|
||||
kind: tuple[_Kind, ...],
|
||||
) -> _DTypesUnion: ...
|
39
lib/python3.13/site-packages/numpy/_configtool.py
Normal file
39
lib/python3.13/site-packages/numpy/_configtool.py
Normal file
@ -0,0 +1,39 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
from .version import __version__
|
||||
from .lib._utils_impl import get_include
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--version",
|
||||
action="version",
|
||||
version=__version__,
|
||||
help="Print the version and exit.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cflags",
|
||||
action="store_true",
|
||||
help="Compile flag needed when using the NumPy headers.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pkgconfigdir",
|
||||
action="store_true",
|
||||
help=("Print the pkgconfig directory in which `numpy.pc` is stored "
|
||||
"(useful for setting $PKG_CONFIG_PATH)."),
|
||||
)
|
||||
args = parser.parse_args()
|
||||
if not sys.argv[1:]:
|
||||
parser.print_help()
|
||||
if args.cflags:
|
||||
print("-I" + get_include())
|
||||
if args.pkgconfigdir:
|
||||
_path = Path(get_include()) / '..' / 'lib' / 'pkgconfig'
|
||||
print(_path.resolve())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
180
lib/python3.13/site-packages/numpy/_core/__init__.py
Normal file
180
lib/python3.13/site-packages/numpy/_core/__init__.py
Normal file
@ -0,0 +1,180 @@
|
||||
"""
|
||||
Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
|
||||
|
||||
Please note that this module is private. All functions and objects
|
||||
are available in the main ``numpy`` namespace - use that instead.
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
from numpy.version import version as __version__
|
||||
|
||||
|
||||
# disables OpenBLAS affinity setting of the main thread that limits
|
||||
# python threads or processes to one core
|
||||
env_added = []
|
||||
for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
|
||||
if envkey not in os.environ:
|
||||
os.environ[envkey] = '1'
|
||||
env_added.append(envkey)
|
||||
|
||||
try:
|
||||
from . import multiarray
|
||||
except ImportError as exc:
|
||||
import sys
|
||||
msg = """
|
||||
|
||||
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
|
||||
|
||||
Importing the numpy C-extensions failed. This error can happen for
|
||||
many reasons, often due to issues with your setup or how NumPy was
|
||||
installed.
|
||||
|
||||
We have compiled some common reasons and troubleshooting tips at:
|
||||
|
||||
https://numpy.org/devdocs/user/troubleshooting-importerror.html
|
||||
|
||||
Please note and check the following:
|
||||
|
||||
* The Python version is: Python%d.%d from "%s"
|
||||
* The NumPy version is: "%s"
|
||||
|
||||
and make sure that they are the versions you expect.
|
||||
Please carefully study the documentation linked above for further help.
|
||||
|
||||
Original error was: %s
|
||||
""" % (sys.version_info[0], sys.version_info[1], sys.executable,
|
||||
__version__, exc)
|
||||
raise ImportError(msg)
|
||||
finally:
|
||||
for envkey in env_added:
|
||||
del os.environ[envkey]
|
||||
del envkey
|
||||
del env_added
|
||||
del os
|
||||
|
||||
from . import umath
|
||||
|
||||
# Check that multiarray,umath are pure python modules wrapping
|
||||
# _multiarray_umath and not either of the old c-extension modules
|
||||
if not (hasattr(multiarray, '_multiarray_umath') and
|
||||
hasattr(umath, '_multiarray_umath')):
|
||||
import sys
|
||||
path = sys.modules['numpy'].__path__
|
||||
msg = ("Something is wrong with the numpy installation. "
|
||||
"While importing we detected an older version of "
|
||||
"numpy in {}. One method of fixing this is to repeatedly uninstall "
|
||||
"numpy until none is found, then reinstall this version.")
|
||||
raise ImportError(msg.format(path))
|
||||
|
||||
from . import numerictypes as nt
|
||||
from .numerictypes import sctypes, sctypeDict
|
||||
multiarray.set_typeDict(nt.sctypeDict)
|
||||
from . import numeric
|
||||
from .numeric import *
|
||||
from . import fromnumeric
|
||||
from .fromnumeric import *
|
||||
from .records import record, recarray
|
||||
# Note: module name memmap is overwritten by a class with same name
|
||||
from .memmap import *
|
||||
from . import function_base
|
||||
from .function_base import *
|
||||
from . import _machar
|
||||
from . import getlimits
|
||||
from .getlimits import *
|
||||
from . import shape_base
|
||||
from .shape_base import *
|
||||
from . import einsumfunc
|
||||
from .einsumfunc import *
|
||||
del nt
|
||||
|
||||
from .numeric import absolute as abs
|
||||
|
||||
# do this after everything else, to minimize the chance of this misleadingly
|
||||
# appearing in an import-time traceback
|
||||
from . import _add_newdocs
|
||||
from . import _add_newdocs_scalars
|
||||
# add these for module-freeze analysis (like PyInstaller)
|
||||
from . import _dtype_ctypes
|
||||
from . import _internal
|
||||
from . import _dtype
|
||||
from . import _methods
|
||||
|
||||
acos = numeric.arccos
|
||||
acosh = numeric.arccosh
|
||||
asin = numeric.arcsin
|
||||
asinh = numeric.arcsinh
|
||||
atan = numeric.arctan
|
||||
atanh = numeric.arctanh
|
||||
atan2 = numeric.arctan2
|
||||
concat = numeric.concatenate
|
||||
bitwise_left_shift = numeric.left_shift
|
||||
bitwise_invert = numeric.invert
|
||||
bitwise_right_shift = numeric.right_shift
|
||||
permute_dims = numeric.transpose
|
||||
pow = numeric.power
|
||||
|
||||
__all__ = [
|
||||
"abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2",
|
||||
"bitwise_invert", "bitwise_left_shift", "bitwise_right_shift", "concat",
|
||||
"pow", "permute_dims", "memmap", "sctypeDict", "record", "recarray"
|
||||
]
|
||||
__all__ += numeric.__all__
|
||||
__all__ += function_base.__all__
|
||||
__all__ += getlimits.__all__
|
||||
__all__ += shape_base.__all__
|
||||
__all__ += einsumfunc.__all__
|
||||
|
||||
|
||||
def _ufunc_reduce(func):
|
||||
# Report the `__name__`. pickle will try to find the module. Note that
|
||||
# pickle supports for this `__name__` to be a `__qualname__`. It may
|
||||
# make sense to add a `__qualname__` to ufuncs, to allow this more
|
||||
# explicitly (Numba has ufuncs as attributes).
|
||||
# See also: https://github.com/dask/distributed/issues/3450
|
||||
return func.__name__
|
||||
|
||||
|
||||
def _DType_reconstruct(scalar_type):
|
||||
# This is a work-around to pickle type(np.dtype(np.float64)), etc.
|
||||
# and it should eventually be replaced with a better solution, e.g. when
|
||||
# DTypes become HeapTypes.
|
||||
return type(dtype(scalar_type))
|
||||
|
||||
|
||||
def _DType_reduce(DType):
|
||||
# As types/classes, most DTypes can simply be pickled by their name:
|
||||
if not DType._legacy or DType.__module__ == "numpy.dtypes":
|
||||
return DType.__name__
|
||||
|
||||
# However, user defined legacy dtypes (like rational) do not end up in
|
||||
# `numpy.dtypes` as module and do not have a public class at all.
|
||||
# For these, we pickle them by reconstructing them from the scalar type:
|
||||
scalar_type = DType.type
|
||||
return _DType_reconstruct, (scalar_type,)
|
||||
|
||||
|
||||
def __getattr__(name):
|
||||
# Deprecated 2022-11-22, NumPy 1.25.
|
||||
if name == "MachAr":
|
||||
import warnings
|
||||
warnings.warn(
|
||||
"The `np._core.MachAr` is considered private API (NumPy 1.24)",
|
||||
DeprecationWarning, stacklevel=2,
|
||||
)
|
||||
return _machar.MachAr
|
||||
raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
|
||||
|
||||
|
||||
import copyreg
|
||||
|
||||
copyreg.pickle(ufunc, _ufunc_reduce)
|
||||
copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
|
||||
|
||||
# Unclutter namespace (must keep _*_reconstruct for unpickling)
|
||||
del copyreg, _ufunc_reduce, _DType_reduce
|
||||
|
||||
from numpy._pytesttester import PytestTester
|
||||
test = PytestTester(__name__)
|
||||
del PytestTester
|
2
lib/python3.13/site-packages/numpy/_core/__init__.pyi
Normal file
2
lib/python3.13/site-packages/numpy/_core/__init__.pyi
Normal file
@ -0,0 +1,2 @@
|
||||
# NOTE: The `np._core` namespace is deliberately kept empty due to it
|
||||
# being private
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
7089
lib/python3.13/site-packages/numpy/_core/_add_newdocs.py
Normal file
7089
lib/python3.13/site-packages/numpy/_core/_add_newdocs.py
Normal file
File diff suppressed because it is too large
Load Diff
389
lib/python3.13/site-packages/numpy/_core/_add_newdocs_scalars.py
Normal file
389
lib/python3.13/site-packages/numpy/_core/_add_newdocs_scalars.py
Normal file
@ -0,0 +1,389 @@
|
||||
"""
|
||||
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
|
||||
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
|
||||
platform-dependent information.
|
||||
"""
|
||||
import sys
|
||||
import os
|
||||
from numpy._core import dtype
|
||||
from numpy._core import numerictypes as _numerictypes
|
||||
from numpy._core.function_base import add_newdoc
|
||||
|
||||
##############################################################################
|
||||
#
|
||||
# Documentation for concrete scalar classes
|
||||
#
|
||||
##############################################################################
|
||||
|
||||
def numeric_type_aliases(aliases):
|
||||
def type_aliases_gen():
|
||||
for alias, doc in aliases:
|
||||
try:
|
||||
alias_type = getattr(_numerictypes, alias)
|
||||
except AttributeError:
|
||||
# The set of aliases that actually exist varies between platforms
|
||||
pass
|
||||
else:
|
||||
yield (alias_type, alias, doc)
|
||||
return list(type_aliases_gen())
|
||||
|
||||
|
||||
possible_aliases = numeric_type_aliases([
|
||||
('int8', '8-bit signed integer (``-128`` to ``127``)'),
|
||||
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
|
||||
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
|
||||
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
|
||||
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
|
||||
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
|
||||
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
|
||||
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
|
||||
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
|
||||
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
|
||||
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
|
||||
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
|
||||
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
|
||||
('float96', '96-bit extended-precision floating-point number type'),
|
||||
('float128', '128-bit extended-precision floating-point number type'),
|
||||
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
|
||||
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
|
||||
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
|
||||
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
|
||||
])
|
||||
|
||||
|
||||
def _get_platform_and_machine():
|
||||
try:
|
||||
system, _, _, _, machine = os.uname()
|
||||
except AttributeError:
|
||||
system = sys.platform
|
||||
if system == 'win32':
|
||||
machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
|
||||
or os.environ.get('PROCESSOR_ARCHITECTURE', '')
|
||||
else:
|
||||
machine = 'unknown'
|
||||
return system, machine
|
||||
|
||||
|
||||
_system, _machine = _get_platform_and_machine()
|
||||
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
|
||||
|
||||
|
||||
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
|
||||
# note: `:field: value` is rST syntax which renders as field lists.
|
||||
o = getattr(_numerictypes, obj)
|
||||
|
||||
character_code = dtype(o).char
|
||||
canonical_name_doc = "" if obj == o.__name__ else \
|
||||
f":Canonical name: `numpy.{obj}`\n "
|
||||
if fixed_aliases:
|
||||
alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
|
||||
for alias in fixed_aliases)
|
||||
else:
|
||||
alias_doc = ''
|
||||
alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
|
||||
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
|
||||
|
||||
docstring = f"""
|
||||
{doc.strip()}
|
||||
|
||||
:Character code: ``'{character_code}'``
|
||||
{canonical_name_doc}{alias_doc}
|
||||
"""
|
||||
|
||||
add_newdoc('numpy._core.numerictypes', obj, docstring)
|
||||
|
||||
|
||||
_bool_docstring = (
|
||||
"""
|
||||
Boolean type (True or False), stored as a byte.
|
||||
|
||||
.. warning::
|
||||
|
||||
The :class:`bool` type is not a subclass of the :class:`int_` type
|
||||
(the :class:`bool` is not even a number type). This is different
|
||||
than Python's default implementation of :class:`bool` as a
|
||||
sub-class of :class:`int`.
|
||||
"""
|
||||
)
|
||||
|
||||
add_newdoc_for_scalar_type('bool', [], _bool_docstring)
|
||||
|
||||
add_newdoc_for_scalar_type('bool_', [], _bool_docstring)
|
||||
|
||||
add_newdoc_for_scalar_type('byte', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``char``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('short', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``short``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('intc', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``int``.
|
||||
""")
|
||||
|
||||
# TODO: These docs probably need an if to highlight the default rather than
|
||||
# the C-types (and be correct).
|
||||
add_newdoc_for_scalar_type('int_', [],
|
||||
"""
|
||||
Default signed integer type, 64bit on 64bit systems and 32bit on 32bit
|
||||
systems.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('longlong', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``long long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ubyte', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned char``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ushort', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned short``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('uintc', [],
|
||||
"""
|
||||
Unsigned integer type, compatible with C ``unsigned int``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('uint', [],
|
||||
"""
|
||||
Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit
|
||||
systems.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('ulonglong', [],
|
||||
"""
|
||||
Signed integer type, compatible with C ``unsigned long long``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('half', [],
|
||||
"""
|
||||
Half-precision floating-point number type.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('single', [],
|
||||
"""
|
||||
Single-precision floating-point number type, compatible with C ``float``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('double', [],
|
||||
"""
|
||||
Double-precision floating-point number type, compatible with Python
|
||||
:class:`float` and C ``double``.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('longdouble', [],
|
||||
"""
|
||||
Extended-precision floating-point number type, compatible with C
|
||||
``long double`` but not necessarily with IEEE 754 quadruple-precision.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('csingle', [],
|
||||
"""
|
||||
Complex number type composed of two single-precision floating-point
|
||||
numbers.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('cdouble', [],
|
||||
"""
|
||||
Complex number type composed of two double-precision floating-point
|
||||
numbers, compatible with Python :class:`complex`.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('clongdouble', [],
|
||||
"""
|
||||
Complex number type composed of two extended-precision floating-point
|
||||
numbers.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('object_', [],
|
||||
"""
|
||||
Any Python object.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('str_', [],
|
||||
r"""
|
||||
A unicode string.
|
||||
|
||||
This type strips trailing null codepoints.
|
||||
|
||||
>>> s = np.str_("abc\x00")
|
||||
>>> s
|
||||
'abc'
|
||||
|
||||
Unlike the builtin :class:`str`, this supports the
|
||||
:ref:`python:bufferobjects`, exposing its contents as UCS4:
|
||||
|
||||
>>> m = memoryview(np.str_("abc"))
|
||||
>>> m.format
|
||||
'3w'
|
||||
>>> m.tobytes()
|
||||
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('bytes_', [],
|
||||
r"""
|
||||
A byte string.
|
||||
|
||||
When used in arrays, this type strips trailing null bytes.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('void', [],
|
||||
r"""
|
||||
np.void(length_or_data, /, dtype=None)
|
||||
|
||||
Create a new structured or unstructured void scalar.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length_or_data : int, array-like, bytes-like, object
|
||||
One of multiple meanings (see notes). The length or
|
||||
bytes data of an unstructured void. Or alternatively,
|
||||
the data to be stored in the new scalar when `dtype`
|
||||
is provided.
|
||||
This can be an array-like, in which case an array may
|
||||
be returned.
|
||||
dtype : dtype, optional
|
||||
If provided the dtype of the new scalar. This dtype must
|
||||
be "void" dtype (i.e. a structured or unstructured void,
|
||||
see also :ref:`defining-structured-types`).
|
||||
|
||||
.. versionadded:: 1.24
|
||||
|
||||
Notes
|
||||
-----
|
||||
For historical reasons and because void scalars can represent both
|
||||
arbitrary byte data and structured dtypes, the void constructor
|
||||
has three calling conventions:
|
||||
|
||||
1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
|
||||
``\0`` bytes. The 5 can be a Python or NumPy integer.
|
||||
2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
|
||||
The dtype itemsize will match the byte string length, here ``"V10"``.
|
||||
3. When a ``dtype=`` is passed the call is roughly the same as an
|
||||
array creation. However, a void scalar rather than array is returned.
|
||||
|
||||
Please see the examples which show all three different conventions.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.void(5)
|
||||
np.void(b'\x00\x00\x00\x00\x00')
|
||||
>>> np.void(b'abcd')
|
||||
np.void(b'\x61\x62\x63\x64')
|
||||
>>> np.void((3.2, b'eggs'), dtype="d,S5")
|
||||
np.void((3.2, b'eggs'), dtype=[('f0', '<f8'), ('f1', 'S5')])
|
||||
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
|
||||
np.void((3, 3), dtype=[('x', 'i1'), ('y', 'i1')])
|
||||
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('datetime64', [],
|
||||
"""
|
||||
If created from a 64-bit integer, it represents an offset from
|
||||
``1970-01-01T00:00:00``.
|
||||
If created from string, the string can be in ISO 8601 date
|
||||
or datetime format.
|
||||
|
||||
When parsing a string to create a datetime object, if the string contains
|
||||
a trailing timezone (A 'Z' or a timezone offset), the timezone will be
|
||||
dropped and a User Warning is given.
|
||||
|
||||
Datetime64 objects should be considered to be UTC and therefore have an
|
||||
offset of +0000.
|
||||
|
||||
>>> np.datetime64(10, 'Y')
|
||||
np.datetime64('1980')
|
||||
>>> np.datetime64('1980', 'Y')
|
||||
np.datetime64('1980')
|
||||
>>> np.datetime64(10, 'D')
|
||||
np.datetime64('1970-01-11')
|
||||
|
||||
See :ref:`arrays.datetime` for more information.
|
||||
""")
|
||||
|
||||
add_newdoc_for_scalar_type('timedelta64', [],
|
||||
"""
|
||||
A timedelta stored as a 64-bit integer.
|
||||
|
||||
See :ref:`arrays.datetime` for more information.
|
||||
""")
|
||||
|
||||
add_newdoc('numpy._core.numerictypes', "integer", ('is_integer',
|
||||
"""
|
||||
integer.is_integer() -> bool
|
||||
|
||||
Return ``True`` if the number is finite with integral value.
|
||||
|
||||
.. versionadded:: 1.22
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.int64(-2).is_integer()
|
||||
True
|
||||
>>> np.uint32(5).is_integer()
|
||||
True
|
||||
"""))
|
||||
|
||||
# TODO: work out how to put this on the base class, np.floating
|
||||
for float_name in ('half', 'single', 'double', 'longdouble'):
|
||||
add_newdoc('numpy._core.numerictypes', float_name, ('as_integer_ratio',
|
||||
"""
|
||||
{ftype}.as_integer_ratio() -> (int, int)
|
||||
|
||||
Return a pair of integers, whose ratio is exactly equal to the original
|
||||
floating point number, and with a positive denominator.
|
||||
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
|
||||
|
||||
>>> np.{ftype}(10.0).as_integer_ratio()
|
||||
(10, 1)
|
||||
>>> np.{ftype}(0.0).as_integer_ratio()
|
||||
(0, 1)
|
||||
>>> np.{ftype}(-.25).as_integer_ratio()
|
||||
(-1, 4)
|
||||
""".format(ftype=float_name)))
|
||||
|
||||
add_newdoc('numpy._core.numerictypes', float_name, ('is_integer',
|
||||
f"""
|
||||
{float_name}.is_integer() -> bool
|
||||
|
||||
Return ``True`` if the floating point number is finite with integral
|
||||
value, and ``False`` otherwise.
|
||||
|
||||
.. versionadded:: 1.22
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.{float_name}(-2.0).is_integer()
|
||||
True
|
||||
>>> np.{float_name}(3.2).is_integer()
|
||||
False
|
||||
"""))
|
||||
|
||||
for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
|
||||
'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
|
||||
# Add negative examples for signed cases by checking typecode
|
||||
add_newdoc('numpy._core.numerictypes', int_name, ('bit_count',
|
||||
f"""
|
||||
{int_name}.bit_count() -> int
|
||||
|
||||
Computes the number of 1-bits in the absolute value of the input.
|
||||
Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.{int_name}(127).bit_count()
|
||||
7""" +
|
||||
(f"""
|
||||
>>> np.{int_name}(-127).bit_count()
|
||||
7
|
||||
""" if dtype(int_name).char.islower() else "")))
|
135
lib/python3.13/site-packages/numpy/_core/_asarray.py
Normal file
135
lib/python3.13/site-packages/numpy/_core/_asarray.py
Normal file
@ -0,0 +1,135 @@
|
||||
"""
|
||||
Functions in the ``as*array`` family that promote array-likes into arrays.
|
||||
|
||||
`require` fits this category despite its name not matching this pattern.
|
||||
"""
|
||||
from .overrides import (
|
||||
array_function_dispatch,
|
||||
set_array_function_like_doc,
|
||||
set_module,
|
||||
)
|
||||
from .multiarray import array, asanyarray
|
||||
|
||||
|
||||
__all__ = ["require"]
|
||||
|
||||
|
||||
POSSIBLE_FLAGS = {
|
||||
'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
|
||||
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
|
||||
'A': 'A', 'ALIGNED': 'A',
|
||||
'W': 'W', 'WRITEABLE': 'W',
|
||||
'O': 'O', 'OWNDATA': 'O',
|
||||
'E': 'E', 'ENSUREARRAY': 'E'
|
||||
}
|
||||
|
||||
|
||||
@set_array_function_like_doc
|
||||
@set_module('numpy')
|
||||
def require(a, dtype=None, requirements=None, *, like=None):
|
||||
"""
|
||||
Return an ndarray of the provided type that satisfies requirements.
|
||||
|
||||
This function is useful to be sure that an array with the correct flags
|
||||
is returned for passing to compiled code (perhaps through ctypes).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
The object to be converted to a type-and-requirement-satisfying array.
|
||||
dtype : data-type
|
||||
The required data-type. If None preserve the current dtype. If your
|
||||
application requires the data to be in native byteorder, include
|
||||
a byteorder specification as a part of the dtype specification.
|
||||
requirements : str or sequence of str
|
||||
The requirements list can be any of the following
|
||||
|
||||
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
|
||||
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
|
||||
* 'ALIGNED' ('A') - ensure a data-type aligned array
|
||||
* 'WRITEABLE' ('W') - ensure a writable array
|
||||
* 'OWNDATA' ('O') - ensure an array that owns its own data
|
||||
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
|
||||
${ARRAY_FUNCTION_LIKE}
|
||||
|
||||
.. versionadded:: 1.20.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
Array with specified requirements and type if given.
|
||||
|
||||
See Also
|
||||
--------
|
||||
asarray : Convert input to an ndarray.
|
||||
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
|
||||
ascontiguousarray : Convert input to a contiguous array.
|
||||
asfortranarray : Convert input to an ndarray with column-major
|
||||
memory order.
|
||||
ndarray.flags : Information about the memory layout of the array.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The returned array will be guaranteed to have the listed requirements
|
||||
by making a copy if needed.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> x = np.arange(6).reshape(2,3)
|
||||
>>> x.flags
|
||||
C_CONTIGUOUS : True
|
||||
F_CONTIGUOUS : False
|
||||
OWNDATA : False
|
||||
WRITEABLE : True
|
||||
ALIGNED : True
|
||||
WRITEBACKIFCOPY : False
|
||||
|
||||
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
|
||||
>>> y.flags
|
||||
C_CONTIGUOUS : False
|
||||
F_CONTIGUOUS : True
|
||||
OWNDATA : True
|
||||
WRITEABLE : True
|
||||
ALIGNED : True
|
||||
WRITEBACKIFCOPY : False
|
||||
|
||||
"""
|
||||
if like is not None:
|
||||
return _require_with_like(
|
||||
like,
|
||||
a,
|
||||
dtype=dtype,
|
||||
requirements=requirements,
|
||||
)
|
||||
|
||||
if not requirements:
|
||||
return asanyarray(a, dtype=dtype)
|
||||
|
||||
requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
|
||||
|
||||
if 'E' in requirements:
|
||||
requirements.remove('E')
|
||||
subok = False
|
||||
else:
|
||||
subok = True
|
||||
|
||||
order = 'A'
|
||||
if requirements >= {'C', 'F'}:
|
||||
raise ValueError('Cannot specify both "C" and "F" order')
|
||||
elif 'F' in requirements:
|
||||
order = 'F'
|
||||
requirements.remove('F')
|
||||
elif 'C' in requirements:
|
||||
order = 'C'
|
||||
requirements.remove('C')
|
||||
|
||||
arr = array(a, dtype=dtype, order=order, copy=None, subok=subok)
|
||||
|
||||
for prop in requirements:
|
||||
if not arr.flags[prop]:
|
||||
return arr.copy(order)
|
||||
return arr
|
||||
|
||||
|
||||
_require_with_like = array_function_dispatch()(require)
|
41
lib/python3.13/site-packages/numpy/_core/_asarray.pyi
Normal file
41
lib/python3.13/site-packages/numpy/_core/_asarray.pyi
Normal file
@ -0,0 +1,41 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, TypeVar, overload, Literal
|
||||
|
||||
from numpy._typing import NDArray, DTypeLike, _SupportsArrayFunc
|
||||
|
||||
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
||||
|
||||
_Requirements = Literal[
|
||||
"C", "C_CONTIGUOUS", "CONTIGUOUS",
|
||||
"F", "F_CONTIGUOUS", "FORTRAN",
|
||||
"A", "ALIGNED",
|
||||
"W", "WRITEABLE",
|
||||
"O", "OWNDATA"
|
||||
]
|
||||
_E = Literal["E", "ENSUREARRAY"]
|
||||
_RequirementsWithE = _Requirements | _E
|
||||
|
||||
@overload
|
||||
def require(
|
||||
a: _ArrayType,
|
||||
dtype: None = ...,
|
||||
requirements: None | _Requirements | Iterable[_Requirements] = ...,
|
||||
*,
|
||||
like: _SupportsArrayFunc = ...
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def require(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
requirements: _E | Iterable[_RequirementsWithE] = ...,
|
||||
*,
|
||||
like: _SupportsArrayFunc = ...
|
||||
) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def require(
|
||||
a: object,
|
||||
dtype: DTypeLike = ...,
|
||||
requirements: None | _Requirements | Iterable[_Requirements] = ...,
|
||||
*,
|
||||
like: _SupportsArrayFunc = ...
|
||||
) -> NDArray[Any]: ...
|
374
lib/python3.13/site-packages/numpy/_core/_dtype.py
Normal file
374
lib/python3.13/site-packages/numpy/_core/_dtype.py
Normal file
@ -0,0 +1,374 @@
|
||||
"""
|
||||
A place for code to be called from the implementation of np.dtype
|
||||
|
||||
String handling is much easier to do correctly in python.
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
_kind_to_stem = {
|
||||
'u': 'uint',
|
||||
'i': 'int',
|
||||
'c': 'complex',
|
||||
'f': 'float',
|
||||
'b': 'bool',
|
||||
'V': 'void',
|
||||
'O': 'object',
|
||||
'M': 'datetime',
|
||||
'm': 'timedelta',
|
||||
'S': 'bytes',
|
||||
'U': 'str',
|
||||
}
|
||||
|
||||
|
||||
def _kind_name(dtype):
|
||||
try:
|
||||
return _kind_to_stem[dtype.kind]
|
||||
except KeyError as e:
|
||||
raise RuntimeError(
|
||||
"internal dtype error, unknown kind {!r}"
|
||||
.format(dtype.kind)
|
||||
) from None
|
||||
|
||||
|
||||
def __str__(dtype):
|
||||
if dtype.fields is not None:
|
||||
return _struct_str(dtype, include_align=True)
|
||||
elif dtype.subdtype:
|
||||
return _subarray_str(dtype)
|
||||
elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
|
||||
return dtype.str
|
||||
else:
|
||||
return dtype.name
|
||||
|
||||
|
||||
def __repr__(dtype):
|
||||
arg_str = _construction_repr(dtype, include_align=False)
|
||||
if dtype.isalignedstruct:
|
||||
arg_str = arg_str + ", align=True"
|
||||
return "dtype({})".format(arg_str)
|
||||
|
||||
|
||||
def _unpack_field(dtype, offset, title=None):
|
||||
"""
|
||||
Helper function to normalize the items in dtype.fields.
|
||||
|
||||
Call as:
|
||||
|
||||
dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||
"""
|
||||
return dtype, offset, title
|
||||
|
||||
|
||||
def _isunsized(dtype):
|
||||
# PyDataType_ISUNSIZED
|
||||
return dtype.itemsize == 0
|
||||
|
||||
|
||||
def _construction_repr(dtype, include_align=False, short=False):
|
||||
"""
|
||||
Creates a string repr of the dtype, excluding the 'dtype()' part
|
||||
surrounding the object. This object may be a string, a list, or
|
||||
a dict depending on the nature of the dtype. This
|
||||
is the object passed as the first parameter to the dtype
|
||||
constructor, and if no additional constructor parameters are
|
||||
given, will reproduce the exact memory layout.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
short : bool
|
||||
If true, this creates a shorter repr using 'kind' and 'itemsize',
|
||||
instead of the longer type name.
|
||||
|
||||
include_align : bool
|
||||
If true, this includes the 'align=True' parameter
|
||||
inside the struct dtype construction dict when needed. Use this flag
|
||||
if you want a proper repr string without the 'dtype()' part around it.
|
||||
|
||||
If false, this does not preserve the
|
||||
'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
|
||||
struct arrays like the regular repr does, because the 'align'
|
||||
flag is not part of first dtype constructor parameter. This
|
||||
mode is intended for a full 'repr', where the 'align=True' is
|
||||
provided as the second parameter.
|
||||
"""
|
||||
if dtype.fields is not None:
|
||||
return _struct_str(dtype, include_align=include_align)
|
||||
elif dtype.subdtype:
|
||||
return _subarray_str(dtype)
|
||||
else:
|
||||
return _scalar_str(dtype, short=short)
|
||||
|
||||
|
||||
def _scalar_str(dtype, short):
|
||||
byteorder = _byte_order_str(dtype)
|
||||
|
||||
if dtype.type == np.bool:
|
||||
if short:
|
||||
return "'?'"
|
||||
else:
|
||||
return "'bool'"
|
||||
|
||||
elif dtype.type == np.object_:
|
||||
# The object reference may be different sizes on different
|
||||
# platforms, so it should never include the itemsize here.
|
||||
return "'O'"
|
||||
|
||||
elif dtype.type == np.bytes_:
|
||||
if _isunsized(dtype):
|
||||
return "'S'"
|
||||
else:
|
||||
return "'S%d'" % dtype.itemsize
|
||||
|
||||
elif dtype.type == np.str_:
|
||||
if _isunsized(dtype):
|
||||
return "'%sU'" % byteorder
|
||||
else:
|
||||
return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
|
||||
|
||||
elif dtype.type == str:
|
||||
return "'T'"
|
||||
|
||||
elif not type(dtype)._legacy:
|
||||
return f"'{byteorder}{type(dtype).__name__}{dtype.itemsize * 8}'"
|
||||
|
||||
# unlike the other types, subclasses of void are preserved - but
|
||||
# historically the repr does not actually reveal the subclass
|
||||
elif issubclass(dtype.type, np.void):
|
||||
if _isunsized(dtype):
|
||||
return "'V'"
|
||||
else:
|
||||
return "'V%d'" % dtype.itemsize
|
||||
|
||||
elif dtype.type == np.datetime64:
|
||||
return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
||||
|
||||
elif dtype.type == np.timedelta64:
|
||||
return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
||||
|
||||
elif np.issubdtype(dtype, np.number):
|
||||
# Short repr with endianness, like '<f8'
|
||||
if short or dtype.byteorder not in ('=', '|'):
|
||||
return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
|
||||
|
||||
# Longer repr, like 'float64'
|
||||
else:
|
||||
return "'%s%d'" % (_kind_name(dtype), 8*dtype.itemsize)
|
||||
|
||||
elif dtype.isbuiltin == 2:
|
||||
return dtype.type.__name__
|
||||
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Internal error: NumPy dtype unrecognized type number")
|
||||
|
||||
|
||||
def _byte_order_str(dtype):
|
||||
""" Normalize byteorder to '<' or '>' """
|
||||
# hack to obtain the native and swapped byte order characters
|
||||
swapped = np.dtype(int).newbyteorder('S')
|
||||
native = swapped.newbyteorder('S')
|
||||
|
||||
byteorder = dtype.byteorder
|
||||
if byteorder == '=':
|
||||
return native.byteorder
|
||||
if byteorder == 'S':
|
||||
# TODO: this path can never be reached
|
||||
return swapped.byteorder
|
||||
elif byteorder == '|':
|
||||
return ''
|
||||
else:
|
||||
return byteorder
|
||||
|
||||
|
||||
def _datetime_metadata_str(dtype):
|
||||
# TODO: this duplicates the C metastr_to_unicode functionality
|
||||
unit, count = np.datetime_data(dtype)
|
||||
if unit == 'generic':
|
||||
return ''
|
||||
elif count == 1:
|
||||
return '[{}]'.format(unit)
|
||||
else:
|
||||
return '[{}{}]'.format(count, unit)
|
||||
|
||||
|
||||
def _struct_dict_str(dtype, includealignedflag):
|
||||
# unpack the fields dictionary into ls
|
||||
names = dtype.names
|
||||
fld_dtypes = []
|
||||
offsets = []
|
||||
titles = []
|
||||
for name in names:
|
||||
fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
|
||||
fld_dtypes.append(fld_dtype)
|
||||
offsets.append(offset)
|
||||
titles.append(title)
|
||||
|
||||
# Build up a string to make the dictionary
|
||||
|
||||
if np._core.arrayprint._get_legacy_print_mode() <= 121:
|
||||
colon = ":"
|
||||
fieldsep = ","
|
||||
else:
|
||||
colon = ": "
|
||||
fieldsep = ", "
|
||||
|
||||
# First, the names
|
||||
ret = "{'names'%s[" % colon
|
||||
ret += fieldsep.join(repr(name) for name in names)
|
||||
|
||||
# Second, the formats
|
||||
ret += "], 'formats'%s[" % colon
|
||||
ret += fieldsep.join(
|
||||
_construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
|
||||
|
||||
# Third, the offsets
|
||||
ret += "], 'offsets'%s[" % colon
|
||||
ret += fieldsep.join("%d" % offset for offset in offsets)
|
||||
|
||||
# Fourth, the titles
|
||||
if any(title is not None for title in titles):
|
||||
ret += "], 'titles'%s[" % colon
|
||||
ret += fieldsep.join(repr(title) for title in titles)
|
||||
|
||||
# Fifth, the itemsize
|
||||
ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
|
||||
|
||||
if (includealignedflag and dtype.isalignedstruct):
|
||||
# Finally, the aligned flag
|
||||
ret += ", 'aligned'%sTrue}" % colon
|
||||
else:
|
||||
ret += "}"
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def _aligned_offset(offset, alignment):
|
||||
# round up offset:
|
||||
return - (-offset // alignment) * alignment
|
||||
|
||||
|
||||
def _is_packed(dtype):
|
||||
"""
|
||||
Checks whether the structured data type in 'dtype'
|
||||
has a simple layout, where all the fields are in order,
|
||||
and follow each other with no alignment padding.
|
||||
|
||||
When this returns true, the dtype can be reconstructed
|
||||
from a list of the field names and dtypes with no additional
|
||||
dtype parameters.
|
||||
|
||||
Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
|
||||
"""
|
||||
align = dtype.isalignedstruct
|
||||
max_alignment = 1
|
||||
total_offset = 0
|
||||
for name in dtype.names:
|
||||
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||
|
||||
if align:
|
||||
total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
|
||||
max_alignment = max(max_alignment, fld_dtype.alignment)
|
||||
|
||||
if fld_offset != total_offset:
|
||||
return False
|
||||
total_offset += fld_dtype.itemsize
|
||||
|
||||
if align:
|
||||
total_offset = _aligned_offset(total_offset, max_alignment)
|
||||
|
||||
return total_offset == dtype.itemsize
|
||||
|
||||
|
||||
def _struct_list_str(dtype):
|
||||
items = []
|
||||
for name in dtype.names:
|
||||
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
||||
|
||||
item = "("
|
||||
if title is not None:
|
||||
item += "({!r}, {!r}), ".format(title, name)
|
||||
else:
|
||||
item += "{!r}, ".format(name)
|
||||
# Special case subarray handling here
|
||||
if fld_dtype.subdtype is not None:
|
||||
base, shape = fld_dtype.subdtype
|
||||
item += "{}, {}".format(
|
||||
_construction_repr(base, short=True),
|
||||
shape
|
||||
)
|
||||
else:
|
||||
item += _construction_repr(fld_dtype, short=True)
|
||||
|
||||
item += ")"
|
||||
items.append(item)
|
||||
|
||||
return "[" + ", ".join(items) + "]"
|
||||
|
||||
|
||||
def _struct_str(dtype, include_align):
|
||||
# The list str representation can't include the 'align=' flag,
|
||||
# so if it is requested and the struct has the aligned flag set,
|
||||
# we must use the dict str instead.
|
||||
if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
|
||||
sub = _struct_list_str(dtype)
|
||||
|
||||
else:
|
||||
sub = _struct_dict_str(dtype, include_align)
|
||||
|
||||
# If the data type isn't the default, void, show it
|
||||
if dtype.type != np.void:
|
||||
return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
|
||||
else:
|
||||
return sub
|
||||
|
||||
|
||||
def _subarray_str(dtype):
|
||||
base, shape = dtype.subdtype
|
||||
return "({}, {})".format(
|
||||
_construction_repr(base, short=True),
|
||||
shape
|
||||
)
|
||||
|
||||
|
||||
def _name_includes_bit_suffix(dtype):
|
||||
if dtype.type == np.object_:
|
||||
# pointer size varies by system, best to omit it
|
||||
return False
|
||||
elif dtype.type == np.bool:
|
||||
# implied
|
||||
return False
|
||||
elif dtype.type is None:
|
||||
return True
|
||||
elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
|
||||
# unspecified
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def _name_get(dtype):
|
||||
# provides dtype.name.__get__, documented as returning a "bit name"
|
||||
|
||||
if dtype.isbuiltin == 2:
|
||||
# user dtypes don't promise to do anything special
|
||||
return dtype.type.__name__
|
||||
|
||||
if not type(dtype)._legacy:
|
||||
name = type(dtype).__name__
|
||||
|
||||
elif issubclass(dtype.type, np.void):
|
||||
# historically, void subclasses preserve their name, eg `record64`
|
||||
name = dtype.type.__name__
|
||||
else:
|
||||
name = _kind_name(dtype)
|
||||
|
||||
# append bit counts
|
||||
if _name_includes_bit_suffix(dtype):
|
||||
name += "{}".format(dtype.itemsize * 8)
|
||||
|
||||
# append metadata to datetimes
|
||||
if dtype.type in (np.datetime64, np.timedelta64):
|
||||
name += _datetime_metadata_str(dtype)
|
||||
|
||||
return name
|
120
lib/python3.13/site-packages/numpy/_core/_dtype_ctypes.py
Normal file
120
lib/python3.13/site-packages/numpy/_core/_dtype_ctypes.py
Normal file
@ -0,0 +1,120 @@
|
||||
"""
|
||||
Conversion from ctypes to dtype.
|
||||
|
||||
In an ideal world, we could achieve this through the PEP3118 buffer protocol,
|
||||
something like::
|
||||
|
||||
def dtype_from_ctypes_type(t):
|
||||
# needed to ensure that the shape of `t` is within memoryview.format
|
||||
class DummyStruct(ctypes.Structure):
|
||||
_fields_ = [('a', t)]
|
||||
|
||||
# empty to avoid memory allocation
|
||||
ctype_0 = (DummyStruct * 0)()
|
||||
mv = memoryview(ctype_0)
|
||||
|
||||
# convert the struct, and slice back out the field
|
||||
return _dtype_from_pep3118(mv.format)['a']
|
||||
|
||||
Unfortunately, this fails because:
|
||||
|
||||
* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
|
||||
* PEP3118 cannot represent unions, but both numpy and ctypes can
|
||||
* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
|
||||
"""
|
||||
|
||||
# We delay-import ctypes for distributions that do not include it.
|
||||
# While this module is not used unless the user passes in ctypes
|
||||
# members, it is eagerly imported from numpy/_core/__init__.py.
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _from_ctypes_array(t):
|
||||
return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
|
||||
|
||||
|
||||
def _from_ctypes_structure(t):
|
||||
for item in t._fields_:
|
||||
if len(item) > 2:
|
||||
raise TypeError(
|
||||
"ctypes bitfields have no dtype equivalent")
|
||||
|
||||
if hasattr(t, "_pack_"):
|
||||
import ctypes
|
||||
formats = []
|
||||
offsets = []
|
||||
names = []
|
||||
current_offset = 0
|
||||
for fname, ftyp in t._fields_:
|
||||
names.append(fname)
|
||||
formats.append(dtype_from_ctypes_type(ftyp))
|
||||
# Each type has a default offset, this is platform dependent
|
||||
# for some types.
|
||||
effective_pack = min(t._pack_, ctypes.alignment(ftyp))
|
||||
current_offset = (
|
||||
(current_offset + effective_pack - 1) // effective_pack
|
||||
) * effective_pack
|
||||
offsets.append(current_offset)
|
||||
current_offset += ctypes.sizeof(ftyp)
|
||||
|
||||
return np.dtype(dict(
|
||||
formats=formats,
|
||||
offsets=offsets,
|
||||
names=names,
|
||||
itemsize=ctypes.sizeof(t)))
|
||||
else:
|
||||
fields = []
|
||||
for fname, ftyp in t._fields_:
|
||||
fields.append((fname, dtype_from_ctypes_type(ftyp)))
|
||||
|
||||
# by default, ctypes structs are aligned
|
||||
return np.dtype(fields, align=True)
|
||||
|
||||
|
||||
def _from_ctypes_scalar(t):
|
||||
"""
|
||||
Return the dtype type with endianness included if it's the case
|
||||
"""
|
||||
if getattr(t, '__ctype_be__', None) is t:
|
||||
return np.dtype('>' + t._type_)
|
||||
elif getattr(t, '__ctype_le__', None) is t:
|
||||
return np.dtype('<' + t._type_)
|
||||
else:
|
||||
return np.dtype(t._type_)
|
||||
|
||||
|
||||
def _from_ctypes_union(t):
|
||||
import ctypes
|
||||
formats = []
|
||||
offsets = []
|
||||
names = []
|
||||
for fname, ftyp in t._fields_:
|
||||
names.append(fname)
|
||||
formats.append(dtype_from_ctypes_type(ftyp))
|
||||
offsets.append(0) # Union fields are offset to 0
|
||||
|
||||
return np.dtype(dict(
|
||||
formats=formats,
|
||||
offsets=offsets,
|
||||
names=names,
|
||||
itemsize=ctypes.sizeof(t)))
|
||||
|
||||
|
||||
def dtype_from_ctypes_type(t):
|
||||
"""
|
||||
Construct a dtype object from a ctypes type
|
||||
"""
|
||||
import _ctypes
|
||||
if issubclass(t, _ctypes.Array):
|
||||
return _from_ctypes_array(t)
|
||||
elif issubclass(t, _ctypes._Pointer):
|
||||
raise TypeError("ctypes pointers have no dtype equivalent")
|
||||
elif issubclass(t, _ctypes.Structure):
|
||||
return _from_ctypes_structure(t)
|
||||
elif issubclass(t, _ctypes.Union):
|
||||
return _from_ctypes_union(t)
|
||||
elif isinstance(getattr(t, '_type_', None), str):
|
||||
return _from_ctypes_scalar(t)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Unknown ctypes type {}".format(t.__name__))
|
172
lib/python3.13/site-packages/numpy/_core/_exceptions.py
Normal file
172
lib/python3.13/site-packages/numpy/_core/_exceptions.py
Normal file
@ -0,0 +1,172 @@
|
||||
"""
|
||||
Various richly-typed exceptions, that also help us deal with string formatting
|
||||
in python where it's easier.
|
||||
|
||||
By putting the formatting in `__str__`, we also avoid paying the cost for
|
||||
users who silence the exceptions.
|
||||
"""
|
||||
from .._utils import set_module
|
||||
|
||||
def _unpack_tuple(tup):
|
||||
if len(tup) == 1:
|
||||
return tup[0]
|
||||
else:
|
||||
return tup
|
||||
|
||||
|
||||
def _display_as_base(cls):
|
||||
"""
|
||||
A decorator that makes an exception class look like its base.
|
||||
|
||||
We use this to hide subclasses that are implementation details - the user
|
||||
should catch the base type, which is what the traceback will show them.
|
||||
|
||||
Classes decorated with this decorator are subject to removal without a
|
||||
deprecation warning.
|
||||
"""
|
||||
assert issubclass(cls, Exception)
|
||||
cls.__name__ = cls.__base__.__name__
|
||||
return cls
|
||||
|
||||
|
||||
class UFuncTypeError(TypeError):
|
||||
""" Base class for all ufunc exceptions """
|
||||
def __init__(self, ufunc):
|
||||
self.ufunc = ufunc
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncNoLoopError(UFuncTypeError):
|
||||
""" Thrown when a ufunc loop cannot be found """
|
||||
def __init__(self, ufunc, dtypes):
|
||||
super().__init__(ufunc)
|
||||
self.dtypes = tuple(dtypes)
|
||||
|
||||
def __str__(self):
|
||||
return (
|
||||
"ufunc {!r} did not contain a loop with signature matching types "
|
||||
"{!r} -> {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__,
|
||||
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
|
||||
_unpack_tuple(self.dtypes[self.ufunc.nin:])
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
|
||||
""" Thrown when a binary resolution fails """
|
||||
def __init__(self, ufunc, dtypes):
|
||||
super().__init__(ufunc, dtypes)
|
||||
assert len(self.dtypes) == 2
|
||||
|
||||
def __str__(self):
|
||||
return (
|
||||
"ufunc {!r} cannot use operands with types {!r} and {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, *self.dtypes
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncCastingError(UFuncTypeError):
|
||||
def __init__(self, ufunc, casting, from_, to):
|
||||
super().__init__(ufunc)
|
||||
self.casting = casting
|
||||
self.from_ = from_
|
||||
self.to = to
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncInputCastingError(_UFuncCastingError):
|
||||
""" Thrown when a ufunc input cannot be casted """
|
||||
def __init__(self, ufunc, casting, from_, to, i):
|
||||
super().__init__(ufunc, casting, from_, to)
|
||||
self.in_i = i
|
||||
|
||||
def __str__(self):
|
||||
# only show the number if more than one input exists
|
||||
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
|
||||
return (
|
||||
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
|
||||
"rule {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _UFuncOutputCastingError(_UFuncCastingError):
|
||||
""" Thrown when a ufunc output cannot be casted """
|
||||
def __init__(self, ufunc, casting, from_, to, i):
|
||||
super().__init__(ufunc, casting, from_, to)
|
||||
self.out_i = i
|
||||
|
||||
def __str__(self):
|
||||
# only show the number if more than one output exists
|
||||
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
|
||||
return (
|
||||
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
|
||||
"rule {!r}"
|
||||
).format(
|
||||
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
||||
)
|
||||
|
||||
|
||||
@_display_as_base
|
||||
class _ArrayMemoryError(MemoryError):
|
||||
""" Thrown when an array cannot be allocated"""
|
||||
def __init__(self, shape, dtype):
|
||||
self.shape = shape
|
||||
self.dtype = dtype
|
||||
|
||||
@property
|
||||
def _total_size(self):
|
||||
num_bytes = self.dtype.itemsize
|
||||
for dim in self.shape:
|
||||
num_bytes *= dim
|
||||
return num_bytes
|
||||
|
||||
@staticmethod
|
||||
def _size_to_string(num_bytes):
|
||||
""" Convert a number of bytes into a binary size string """
|
||||
|
||||
# https://en.wikipedia.org/wiki/Binary_prefix
|
||||
LOG2_STEP = 10
|
||||
STEP = 1024
|
||||
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
|
||||
|
||||
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
|
||||
unit_val = 1 << (unit_i * LOG2_STEP)
|
||||
n_units = num_bytes / unit_val
|
||||
del unit_val
|
||||
|
||||
# ensure we pick a unit that is correct after rounding
|
||||
if round(n_units) == STEP:
|
||||
unit_i += 1
|
||||
n_units /= STEP
|
||||
|
||||
# deal with sizes so large that we don't have units for them
|
||||
if unit_i >= len(units):
|
||||
new_unit_i = len(units) - 1
|
||||
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
|
||||
unit_i = new_unit_i
|
||||
|
||||
unit_name = units[unit_i]
|
||||
# format with a sensible number of digits
|
||||
if unit_i == 0:
|
||||
# no decimal point on bytes
|
||||
return '{:.0f} {}'.format(n_units, unit_name)
|
||||
elif round(n_units) < 1000:
|
||||
# 3 significant figures, if none are dropped to the left of the .
|
||||
return '{:#.3g} {}'.format(n_units, unit_name)
|
||||
else:
|
||||
# just give all the digits otherwise
|
||||
return '{:#.0f} {}'.format(n_units, unit_name)
|
||||
|
||||
def __str__(self):
|
||||
size_str = self._size_to_string(self._total_size)
|
||||
return (
|
||||
"Unable to allocate {} for an array with shape {} and data type {}"
|
||||
.format(size_str, self.shape, self.dtype)
|
||||
)
|
963
lib/python3.13/site-packages/numpy/_core/_internal.py
Normal file
963
lib/python3.13/site-packages/numpy/_core/_internal.py
Normal file
@ -0,0 +1,963 @@
|
||||
"""
|
||||
A place for internal code
|
||||
|
||||
Some things are more easily handled Python.
|
||||
|
||||
"""
|
||||
import ast
|
||||
import math
|
||||
import re
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from ..exceptions import DTypePromotionError
|
||||
from .multiarray import dtype, array, ndarray, promote_types, StringDType
|
||||
from numpy import _NoValue
|
||||
try:
|
||||
import ctypes
|
||||
except ImportError:
|
||||
ctypes = None
|
||||
|
||||
IS_PYPY = sys.implementation.name == 'pypy'
|
||||
|
||||
if sys.byteorder == 'little':
|
||||
_nbo = '<'
|
||||
else:
|
||||
_nbo = '>'
|
||||
|
||||
def _makenames_list(adict, align):
|
||||
allfields = []
|
||||
|
||||
for fname, obj in adict.items():
|
||||
n = len(obj)
|
||||
if not isinstance(obj, tuple) or n not in (2, 3):
|
||||
raise ValueError("entry not a 2- or 3- tuple")
|
||||
if n > 2 and obj[2] == fname:
|
||||
continue
|
||||
num = int(obj[1])
|
||||
if num < 0:
|
||||
raise ValueError("invalid offset.")
|
||||
format = dtype(obj[0], align=align)
|
||||
if n > 2:
|
||||
title = obj[2]
|
||||
else:
|
||||
title = None
|
||||
allfields.append((fname, format, num, title))
|
||||
# sort by offsets
|
||||
allfields.sort(key=lambda x: x[2])
|
||||
names = [x[0] for x in allfields]
|
||||
formats = [x[1] for x in allfields]
|
||||
offsets = [x[2] for x in allfields]
|
||||
titles = [x[3] for x in allfields]
|
||||
|
||||
return names, formats, offsets, titles
|
||||
|
||||
# Called in PyArray_DescrConverter function when
|
||||
# a dictionary without "names" and "formats"
|
||||
# fields is used as a data-type descriptor.
|
||||
def _usefields(adict, align):
|
||||
try:
|
||||
names = adict[-1]
|
||||
except KeyError:
|
||||
names = None
|
||||
if names is None:
|
||||
names, formats, offsets, titles = _makenames_list(adict, align)
|
||||
else:
|
||||
formats = []
|
||||
offsets = []
|
||||
titles = []
|
||||
for name in names:
|
||||
res = adict[name]
|
||||
formats.append(res[0])
|
||||
offsets.append(res[1])
|
||||
if len(res) > 2:
|
||||
titles.append(res[2])
|
||||
else:
|
||||
titles.append(None)
|
||||
|
||||
return dtype({"names": names,
|
||||
"formats": formats,
|
||||
"offsets": offsets,
|
||||
"titles": titles}, align)
|
||||
|
||||
|
||||
# construct an array_protocol descriptor list
|
||||
# from the fields attribute of a descriptor
|
||||
# This calls itself recursively but should eventually hit
|
||||
# a descriptor that has no fields and then return
|
||||
# a simple typestring
|
||||
|
||||
def _array_descr(descriptor):
|
||||
fields = descriptor.fields
|
||||
if fields is None:
|
||||
subdtype = descriptor.subdtype
|
||||
if subdtype is None:
|
||||
if descriptor.metadata is None:
|
||||
return descriptor.str
|
||||
else:
|
||||
new = descriptor.metadata.copy()
|
||||
if new:
|
||||
return (descriptor.str, new)
|
||||
else:
|
||||
return descriptor.str
|
||||
else:
|
||||
return (_array_descr(subdtype[0]), subdtype[1])
|
||||
|
||||
names = descriptor.names
|
||||
ordered_fields = [fields[x] + (x,) for x in names]
|
||||
result = []
|
||||
offset = 0
|
||||
for field in ordered_fields:
|
||||
if field[1] > offset:
|
||||
num = field[1] - offset
|
||||
result.append(('', f'|V{num}'))
|
||||
offset += num
|
||||
elif field[1] < offset:
|
||||
raise ValueError(
|
||||
"dtype.descr is not defined for types with overlapping or "
|
||||
"out-of-order fields")
|
||||
if len(field) > 3:
|
||||
name = (field[2], field[3])
|
||||
else:
|
||||
name = field[2]
|
||||
if field[0].subdtype:
|
||||
tup = (name, _array_descr(field[0].subdtype[0]),
|
||||
field[0].subdtype[1])
|
||||
else:
|
||||
tup = (name, _array_descr(field[0]))
|
||||
offset += field[0].itemsize
|
||||
result.append(tup)
|
||||
|
||||
if descriptor.itemsize > offset:
|
||||
num = descriptor.itemsize - offset
|
||||
result.append(('', f'|V{num}'))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# format_re was originally from numarray by J. Todd Miller
|
||||
|
||||
format_re = re.compile(r'(?P<order1>[<>|=]?)'
|
||||
r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
|
||||
r'(?P<order2>[<>|=]?)'
|
||||
r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
|
||||
sep_re = re.compile(r'\s*,\s*')
|
||||
space_re = re.compile(r'\s+$')
|
||||
|
||||
# astr is a string (perhaps comma separated)
|
||||
|
||||
_convorder = {'=': _nbo}
|
||||
|
||||
def _commastring(astr):
|
||||
startindex = 0
|
||||
result = []
|
||||
islist = False
|
||||
while startindex < len(astr):
|
||||
mo = format_re.match(astr, pos=startindex)
|
||||
try:
|
||||
(order1, repeats, order2, dtype) = mo.groups()
|
||||
except (TypeError, AttributeError):
|
||||
raise ValueError(
|
||||
f'format number {len(result)+1} of "{astr}" is not recognized'
|
||||
) from None
|
||||
startindex = mo.end()
|
||||
# Separator or ending padding
|
||||
if startindex < len(astr):
|
||||
if space_re.match(astr, pos=startindex):
|
||||
startindex = len(astr)
|
||||
else:
|
||||
mo = sep_re.match(astr, pos=startindex)
|
||||
if not mo:
|
||||
raise ValueError(
|
||||
'format number %d of "%s" is not recognized' %
|
||||
(len(result)+1, astr))
|
||||
startindex = mo.end()
|
||||
islist = True
|
||||
|
||||
if order2 == '':
|
||||
order = order1
|
||||
elif order1 == '':
|
||||
order = order2
|
||||
else:
|
||||
order1 = _convorder.get(order1, order1)
|
||||
order2 = _convorder.get(order2, order2)
|
||||
if (order1 != order2):
|
||||
raise ValueError(
|
||||
'inconsistent byte-order specification %s and %s' %
|
||||
(order1, order2))
|
||||
order = order1
|
||||
|
||||
if order in ('|', '=', _nbo):
|
||||
order = ''
|
||||
dtype = order + dtype
|
||||
if repeats == '':
|
||||
newitem = dtype
|
||||
else:
|
||||
if (repeats[0] == "(" and repeats[-1] == ")"
|
||||
and repeats[1:-1].strip() != ""
|
||||
and "," not in repeats):
|
||||
warnings.warn(
|
||||
'Passing in a parenthesized single number for repeats '
|
||||
'is deprecated; pass either a single number or indicate '
|
||||
'a tuple with a comma, like "(2,)".', DeprecationWarning,
|
||||
stacklevel=2)
|
||||
newitem = (dtype, ast.literal_eval(repeats))
|
||||
|
||||
result.append(newitem)
|
||||
|
||||
return result if islist else result[0]
|
||||
|
||||
class dummy_ctype:
|
||||
|
||||
def __init__(self, cls):
|
||||
self._cls = cls
|
||||
|
||||
def __mul__(self, other):
|
||||
return self
|
||||
|
||||
def __call__(self, *other):
|
||||
return self._cls(other)
|
||||
|
||||
def __eq__(self, other):
|
||||
return self._cls == other._cls
|
||||
|
||||
def __ne__(self, other):
|
||||
return self._cls != other._cls
|
||||
|
||||
def _getintp_ctype():
|
||||
val = _getintp_ctype.cache
|
||||
if val is not None:
|
||||
return val
|
||||
if ctypes is None:
|
||||
import numpy as np
|
||||
val = dummy_ctype(np.intp)
|
||||
else:
|
||||
char = dtype('n').char
|
||||
if char == 'i':
|
||||
val = ctypes.c_int
|
||||
elif char == 'l':
|
||||
val = ctypes.c_long
|
||||
elif char == 'q':
|
||||
val = ctypes.c_longlong
|
||||
else:
|
||||
val = ctypes.c_long
|
||||
_getintp_ctype.cache = val
|
||||
return val
|
||||
|
||||
|
||||
_getintp_ctype.cache = None
|
||||
|
||||
# Used for .ctypes attribute of ndarray
|
||||
|
||||
class _missing_ctypes:
|
||||
def cast(self, num, obj):
|
||||
return num.value
|
||||
|
||||
class c_void_p:
|
||||
def __init__(self, ptr):
|
||||
self.value = ptr
|
||||
|
||||
|
||||
class _ctypes:
|
||||
def __init__(self, array, ptr=None):
|
||||
self._arr = array
|
||||
|
||||
if ctypes:
|
||||
self._ctypes = ctypes
|
||||
self._data = self._ctypes.c_void_p(ptr)
|
||||
else:
|
||||
# fake a pointer-like object that holds onto the reference
|
||||
self._ctypes = _missing_ctypes()
|
||||
self._data = self._ctypes.c_void_p(ptr)
|
||||
self._data._objects = array
|
||||
|
||||
if self._arr.ndim == 0:
|
||||
self._zerod = True
|
||||
else:
|
||||
self._zerod = False
|
||||
|
||||
def data_as(self, obj):
|
||||
"""
|
||||
Return the data pointer cast to a particular c-types object.
|
||||
For example, calling ``self._as_parameter_`` is equivalent to
|
||||
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use
|
||||
the data as a pointer to a ctypes array of floating-point data:
|
||||
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
|
||||
|
||||
The returned pointer will keep a reference to the array.
|
||||
"""
|
||||
# _ctypes.cast function causes a circular reference of self._data in
|
||||
# self._data._objects. Attributes of self._data cannot be released
|
||||
# until gc.collect is called. Make a copy of the pointer first then
|
||||
# let it hold the array reference. This is a workaround to circumvent
|
||||
# the CPython bug https://bugs.python.org/issue12836.
|
||||
ptr = self._ctypes.cast(self._data, obj)
|
||||
ptr._arr = self._arr
|
||||
return ptr
|
||||
|
||||
def shape_as(self, obj):
|
||||
"""
|
||||
Return the shape tuple as an array of some other c-types
|
||||
type. For example: ``self.shape_as(ctypes.c_short)``.
|
||||
"""
|
||||
if self._zerod:
|
||||
return None
|
||||
return (obj*self._arr.ndim)(*self._arr.shape)
|
||||
|
||||
def strides_as(self, obj):
|
||||
"""
|
||||
Return the strides tuple as an array of some other
|
||||
c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
|
||||
"""
|
||||
if self._zerod:
|
||||
return None
|
||||
return (obj*self._arr.ndim)(*self._arr.strides)
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
"""
|
||||
A pointer to the memory area of the array as a Python integer.
|
||||
This memory area may contain data that is not aligned, or not in
|
||||
correct byte-order. The memory area may not even be writeable.
|
||||
The array flags and data-type of this array should be respected
|
||||
when passing this attribute to arbitrary C-code to avoid trouble
|
||||
that can include Python crashing. User Beware! The value of this
|
||||
attribute is exactly the same as:
|
||||
``self._array_interface_['data'][0]``.
|
||||
|
||||
Note that unlike ``data_as``, a reference won't be kept to the array:
|
||||
code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
|
||||
pointer to a deallocated array, and should be spelt
|
||||
``(a + b).ctypes.data_as(ctypes.c_void_p)``
|
||||
"""
|
||||
return self._data.value
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
"""
|
||||
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||
the basetype is the C-integer corresponding to ``dtype('p')`` on this
|
||||
platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
|
||||
`ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
|
||||
the platform. The ctypes array contains the shape of
|
||||
the underlying array.
|
||||
"""
|
||||
return self.shape_as(_getintp_ctype())
|
||||
|
||||
@property
|
||||
def strides(self):
|
||||
"""
|
||||
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
||||
the basetype is the same as for the shape attribute. This ctypes
|
||||
array contains the strides information from the underlying array.
|
||||
This strides information is important for showing how many bytes
|
||||
must be jumped to get to the next element in the array.
|
||||
"""
|
||||
return self.strides_as(_getintp_ctype())
|
||||
|
||||
@property
|
||||
def _as_parameter_(self):
|
||||
"""
|
||||
Overrides the ctypes semi-magic method
|
||||
|
||||
Enables `c_func(some_array.ctypes)`
|
||||
"""
|
||||
return self.data_as(ctypes.c_void_p)
|
||||
|
||||
# Numpy 1.21.0, 2021-05-18
|
||||
|
||||
def get_data(self):
|
||||
"""Deprecated getter for the `_ctypes.data` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_data" is deprecated. Use "data" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.data
|
||||
|
||||
def get_shape(self):
|
||||
"""Deprecated getter for the `_ctypes.shape` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_shape" is deprecated. Use "shape" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.shape
|
||||
|
||||
def get_strides(self):
|
||||
"""Deprecated getter for the `_ctypes.strides` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn('"get_strides" is deprecated. Use "strides" instead',
|
||||
DeprecationWarning, stacklevel=2)
|
||||
return self.strides
|
||||
|
||||
def get_as_parameter(self):
|
||||
"""Deprecated getter for the `_ctypes._as_parameter_` property.
|
||||
|
||||
.. deprecated:: 1.21
|
||||
"""
|
||||
warnings.warn(
|
||||
'"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
|
||||
DeprecationWarning, stacklevel=2,
|
||||
)
|
||||
return self._as_parameter_
|
||||
|
||||
|
||||
def _newnames(datatype, order):
|
||||
"""
|
||||
Given a datatype and an order object, return a new names tuple, with the
|
||||
order indicated
|
||||
"""
|
||||
oldnames = datatype.names
|
||||
nameslist = list(oldnames)
|
||||
if isinstance(order, str):
|
||||
order = [order]
|
||||
seen = set()
|
||||
if isinstance(order, (list, tuple)):
|
||||
for name in order:
|
||||
try:
|
||||
nameslist.remove(name)
|
||||
except ValueError:
|
||||
if name in seen:
|
||||
raise ValueError(f"duplicate field name: {name}") from None
|
||||
else:
|
||||
raise ValueError(f"unknown field name: {name}") from None
|
||||
seen.add(name)
|
||||
return tuple(list(order) + nameslist)
|
||||
raise ValueError(f"unsupported order value: {order}")
|
||||
|
||||
def _copy_fields(ary):
|
||||
"""Return copy of structured array with padding between fields removed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ary : ndarray
|
||||
Structured array from which to remove padding bytes
|
||||
|
||||
Returns
|
||||
-------
|
||||
ary_copy : ndarray
|
||||
Copy of ary with padding bytes removed
|
||||
"""
|
||||
dt = ary.dtype
|
||||
copy_dtype = {'names': dt.names,
|
||||
'formats': [dt.fields[name][0] for name in dt.names]}
|
||||
return array(ary, dtype=copy_dtype, copy=True)
|
||||
|
||||
def _promote_fields(dt1, dt2):
|
||||
""" Perform type promotion for two structured dtypes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dt1 : structured dtype
|
||||
First dtype.
|
||||
dt2 : structured dtype
|
||||
Second dtype.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : dtype
|
||||
The promoted dtype
|
||||
|
||||
Notes
|
||||
-----
|
||||
If one of the inputs is aligned, the result will be. The titles of
|
||||
both descriptors must match (point to the same field).
|
||||
"""
|
||||
# Both must be structured and have the same names in the same order
|
||||
if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
|
||||
raise DTypePromotionError(
|
||||
f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
|
||||
|
||||
# if both are identical, we can (maybe!) just return the same dtype.
|
||||
identical = dt1 is dt2
|
||||
new_fields = []
|
||||
for name in dt1.names:
|
||||
field1 = dt1.fields[name]
|
||||
field2 = dt2.fields[name]
|
||||
new_descr = promote_types(field1[0], field2[0])
|
||||
identical = identical and new_descr is field1[0]
|
||||
|
||||
# Check that the titles match (if given):
|
||||
if field1[2:] != field2[2:]:
|
||||
raise DTypePromotionError(
|
||||
f"field titles of field '{name}' mismatch")
|
||||
if len(field1) == 2:
|
||||
new_fields.append((name, new_descr))
|
||||
else:
|
||||
new_fields.append(((field1[2], name), new_descr))
|
||||
|
||||
res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
|
||||
|
||||
# Might as well preserve identity (and metadata) if the dtype is identical
|
||||
# and the itemsize, offsets are also unmodified. This could probably be
|
||||
# sped up, but also probably just be removed entirely.
|
||||
if identical and res.itemsize == dt1.itemsize:
|
||||
for name in dt1.names:
|
||||
if dt1.fields[name][1] != res.fields[name][1]:
|
||||
return res # the dtype changed.
|
||||
return dt1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def _getfield_is_safe(oldtype, newtype, offset):
|
||||
""" Checks safety of getfield for object arrays.
|
||||
|
||||
As in _view_is_safe, we need to check that memory containing objects is not
|
||||
reinterpreted as a non-object datatype and vice versa.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
oldtype : data-type
|
||||
Data type of the original ndarray.
|
||||
newtype : data-type
|
||||
Data type of the field being accessed by ndarray.getfield
|
||||
offset : int
|
||||
Offset of the field being accessed by ndarray.getfield
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If the field access is invalid
|
||||
|
||||
"""
|
||||
if newtype.hasobject or oldtype.hasobject:
|
||||
if offset == 0 and newtype == oldtype:
|
||||
return
|
||||
if oldtype.names is not None:
|
||||
for name in oldtype.names:
|
||||
if (oldtype.fields[name][1] == offset and
|
||||
oldtype.fields[name][0] == newtype):
|
||||
return
|
||||
raise TypeError("Cannot get/set field of an object array")
|
||||
return
|
||||
|
||||
def _view_is_safe(oldtype, newtype):
|
||||
""" Checks safety of a view involving object arrays, for example when
|
||||
doing::
|
||||
|
||||
np.zeros(10, dtype=oldtype).view(newtype)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
oldtype : data-type
|
||||
Data type of original ndarray
|
||||
newtype : data-type
|
||||
Data type of the view
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If the new type is incompatible with the old type.
|
||||
|
||||
"""
|
||||
|
||||
# if the types are equivalent, there is no problem.
|
||||
# for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
|
||||
if oldtype == newtype:
|
||||
return
|
||||
|
||||
if newtype.hasobject or oldtype.hasobject:
|
||||
raise TypeError("Cannot change data-type for array of references.")
|
||||
return
|
||||
|
||||
|
||||
# Given a string containing a PEP 3118 format specifier,
|
||||
# construct a NumPy dtype
|
||||
|
||||
_pep3118_native_map = {
|
||||
'?': '?',
|
||||
'c': 'S1',
|
||||
'b': 'b',
|
||||
'B': 'B',
|
||||
'h': 'h',
|
||||
'H': 'H',
|
||||
'i': 'i',
|
||||
'I': 'I',
|
||||
'l': 'l',
|
||||
'L': 'L',
|
||||
'q': 'q',
|
||||
'Q': 'Q',
|
||||
'e': 'e',
|
||||
'f': 'f',
|
||||
'd': 'd',
|
||||
'g': 'g',
|
||||
'Zf': 'F',
|
||||
'Zd': 'D',
|
||||
'Zg': 'G',
|
||||
's': 'S',
|
||||
'w': 'U',
|
||||
'O': 'O',
|
||||
'x': 'V', # padding
|
||||
}
|
||||
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
|
||||
|
||||
_pep3118_standard_map = {
|
||||
'?': '?',
|
||||
'c': 'S1',
|
||||
'b': 'b',
|
||||
'B': 'B',
|
||||
'h': 'i2',
|
||||
'H': 'u2',
|
||||
'i': 'i4',
|
||||
'I': 'u4',
|
||||
'l': 'i4',
|
||||
'L': 'u4',
|
||||
'q': 'i8',
|
||||
'Q': 'u8',
|
||||
'e': 'f2',
|
||||
'f': 'f',
|
||||
'd': 'd',
|
||||
'Zf': 'F',
|
||||
'Zd': 'D',
|
||||
's': 'S',
|
||||
'w': 'U',
|
||||
'O': 'O',
|
||||
'x': 'V', # padding
|
||||
}
|
||||
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
|
||||
|
||||
_pep3118_unsupported_map = {
|
||||
'u': 'UCS-2 strings',
|
||||
'&': 'pointers',
|
||||
't': 'bitfields',
|
||||
'X': 'function pointers',
|
||||
}
|
||||
|
||||
class _Stream:
|
||||
def __init__(self, s):
|
||||
self.s = s
|
||||
self.byteorder = '@'
|
||||
|
||||
def advance(self, n):
|
||||
res = self.s[:n]
|
||||
self.s = self.s[n:]
|
||||
return res
|
||||
|
||||
def consume(self, c):
|
||||
if self.s[:len(c)] == c:
|
||||
self.advance(len(c))
|
||||
return True
|
||||
return False
|
||||
|
||||
def consume_until(self, c):
|
||||
if callable(c):
|
||||
i = 0
|
||||
while i < len(self.s) and not c(self.s[i]):
|
||||
i = i + 1
|
||||
return self.advance(i)
|
||||
else:
|
||||
i = self.s.index(c)
|
||||
res = self.advance(i)
|
||||
self.advance(len(c))
|
||||
return res
|
||||
|
||||
@property
|
||||
def next(self):
|
||||
return self.s[0]
|
||||
|
||||
def __bool__(self):
|
||||
return bool(self.s)
|
||||
|
||||
|
||||
def _dtype_from_pep3118(spec):
|
||||
stream = _Stream(spec)
|
||||
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
|
||||
return dtype
|
||||
|
||||
def __dtype_from_pep3118(stream, is_subdtype):
|
||||
field_spec = dict(
|
||||
names=[],
|
||||
formats=[],
|
||||
offsets=[],
|
||||
itemsize=0
|
||||
)
|
||||
offset = 0
|
||||
common_alignment = 1
|
||||
is_padding = False
|
||||
|
||||
# Parse spec
|
||||
while stream:
|
||||
value = None
|
||||
|
||||
# End of structure, bail out to upper level
|
||||
if stream.consume('}'):
|
||||
break
|
||||
|
||||
# Sub-arrays (1)
|
||||
shape = None
|
||||
if stream.consume('('):
|
||||
shape = stream.consume_until(')')
|
||||
shape = tuple(map(int, shape.split(',')))
|
||||
|
||||
# Byte order
|
||||
if stream.next in ('@', '=', '<', '>', '^', '!'):
|
||||
byteorder = stream.advance(1)
|
||||
if byteorder == '!':
|
||||
byteorder = '>'
|
||||
stream.byteorder = byteorder
|
||||
|
||||
# Byte order characters also control native vs. standard type sizes
|
||||
if stream.byteorder in ('@', '^'):
|
||||
type_map = _pep3118_native_map
|
||||
type_map_chars = _pep3118_native_typechars
|
||||
else:
|
||||
type_map = _pep3118_standard_map
|
||||
type_map_chars = _pep3118_standard_typechars
|
||||
|
||||
# Item sizes
|
||||
itemsize_str = stream.consume_until(lambda c: not c.isdigit())
|
||||
if itemsize_str:
|
||||
itemsize = int(itemsize_str)
|
||||
else:
|
||||
itemsize = 1
|
||||
|
||||
# Data types
|
||||
is_padding = False
|
||||
|
||||
if stream.consume('T{'):
|
||||
value, align = __dtype_from_pep3118(
|
||||
stream, is_subdtype=True)
|
||||
elif stream.next in type_map_chars:
|
||||
if stream.next == 'Z':
|
||||
typechar = stream.advance(2)
|
||||
else:
|
||||
typechar = stream.advance(1)
|
||||
|
||||
is_padding = (typechar == 'x')
|
||||
dtypechar = type_map[typechar]
|
||||
if dtypechar in 'USV':
|
||||
dtypechar += '%d' % itemsize
|
||||
itemsize = 1
|
||||
numpy_byteorder = {'@': '=', '^': '='}.get(
|
||||
stream.byteorder, stream.byteorder)
|
||||
value = dtype(numpy_byteorder + dtypechar)
|
||||
align = value.alignment
|
||||
elif stream.next in _pep3118_unsupported_map:
|
||||
desc = _pep3118_unsupported_map[stream.next]
|
||||
raise NotImplementedError(
|
||||
"Unrepresentable PEP 3118 data type {!r} ({})"
|
||||
.format(stream.next, desc))
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown PEP 3118 data type specifier %r" % stream.s
|
||||
)
|
||||
|
||||
#
|
||||
# Native alignment may require padding
|
||||
#
|
||||
# Here we assume that the presence of a '@' character implicitly
|
||||
# implies that the start of the array is *already* aligned.
|
||||
#
|
||||
extra_offset = 0
|
||||
if stream.byteorder == '@':
|
||||
start_padding = (-offset) % align
|
||||
intra_padding = (-value.itemsize) % align
|
||||
|
||||
offset += start_padding
|
||||
|
||||
if intra_padding != 0:
|
||||
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
|
||||
# Inject internal padding to the end of the sub-item
|
||||
value = _add_trailing_padding(value, intra_padding)
|
||||
else:
|
||||
# We can postpone the injection of internal padding,
|
||||
# as the item appears at most once
|
||||
extra_offset += intra_padding
|
||||
|
||||
# Update common alignment
|
||||
common_alignment = _lcm(align, common_alignment)
|
||||
|
||||
# Convert itemsize to sub-array
|
||||
if itemsize != 1:
|
||||
value = dtype((value, (itemsize,)))
|
||||
|
||||
# Sub-arrays (2)
|
||||
if shape is not None:
|
||||
value = dtype((value, shape))
|
||||
|
||||
# Field name
|
||||
if stream.consume(':'):
|
||||
name = stream.consume_until(':')
|
||||
else:
|
||||
name = None
|
||||
|
||||
if not (is_padding and name is None):
|
||||
if name is not None and name in field_spec['names']:
|
||||
raise RuntimeError(
|
||||
f"Duplicate field name '{name}' in PEP3118 format"
|
||||
)
|
||||
field_spec['names'].append(name)
|
||||
field_spec['formats'].append(value)
|
||||
field_spec['offsets'].append(offset)
|
||||
|
||||
offset += value.itemsize
|
||||
offset += extra_offset
|
||||
|
||||
field_spec['itemsize'] = offset
|
||||
|
||||
# extra final padding for aligned types
|
||||
if stream.byteorder == '@':
|
||||
field_spec['itemsize'] += (-offset) % common_alignment
|
||||
|
||||
# Check if this was a simple 1-item type, and unwrap it
|
||||
if (field_spec['names'] == [None]
|
||||
and field_spec['offsets'][0] == 0
|
||||
and field_spec['itemsize'] == field_spec['formats'][0].itemsize
|
||||
and not is_subdtype):
|
||||
ret = field_spec['formats'][0]
|
||||
else:
|
||||
_fix_names(field_spec)
|
||||
ret = dtype(field_spec)
|
||||
|
||||
# Finished
|
||||
return ret, common_alignment
|
||||
|
||||
def _fix_names(field_spec):
|
||||
""" Replace names which are None with the next unused f%d name """
|
||||
names = field_spec['names']
|
||||
for i, name in enumerate(names):
|
||||
if name is not None:
|
||||
continue
|
||||
|
||||
j = 0
|
||||
while True:
|
||||
name = f'f{j}'
|
||||
if name not in names:
|
||||
break
|
||||
j = j + 1
|
||||
names[i] = name
|
||||
|
||||
def _add_trailing_padding(value, padding):
|
||||
"""Inject the specified number of padding bytes at the end of a dtype"""
|
||||
if value.fields is None:
|
||||
field_spec = dict(
|
||||
names=['f0'],
|
||||
formats=[value],
|
||||
offsets=[0],
|
||||
itemsize=value.itemsize
|
||||
)
|
||||
else:
|
||||
fields = value.fields
|
||||
names = value.names
|
||||
field_spec = dict(
|
||||
names=names,
|
||||
formats=[fields[name][0] for name in names],
|
||||
offsets=[fields[name][1] for name in names],
|
||||
itemsize=value.itemsize
|
||||
)
|
||||
|
||||
field_spec['itemsize'] += padding
|
||||
return dtype(field_spec)
|
||||
|
||||
def _prod(a):
|
||||
p = 1
|
||||
for x in a:
|
||||
p *= x
|
||||
return p
|
||||
|
||||
def _gcd(a, b):
|
||||
"""Calculate the greatest common divisor of a and b"""
|
||||
if not (math.isfinite(a) and math.isfinite(b)):
|
||||
raise ValueError('Can only find greatest common divisor of '
|
||||
f'finite arguments, found "{a}" and "{b}"')
|
||||
while b:
|
||||
a, b = b, a % b
|
||||
return a
|
||||
|
||||
def _lcm(a, b):
|
||||
return a // _gcd(a, b) * b
|
||||
|
||||
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
|
||||
""" Format the error message for when __array_ufunc__ gives up. """
|
||||
args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
|
||||
['{}={!r}'.format(k, v)
|
||||
for k, v in kwargs.items()])
|
||||
args = inputs + kwargs.get('out', ())
|
||||
types_string = ', '.join(repr(type(arg).__name__) for arg in args)
|
||||
return ('operand type(s) all returned NotImplemented from '
|
||||
'__array_ufunc__({!r}, {!r}, {}): {}'
|
||||
.format(ufunc, method, args_string, types_string))
|
||||
|
||||
|
||||
def array_function_errmsg_formatter(public_api, types):
|
||||
""" Format the error message for when __array_ufunc__ gives up. """
|
||||
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
|
||||
return ("no implementation found for '{}' on types that implement "
|
||||
'__array_function__: {}'.format(func_name, list(types)))
|
||||
|
||||
|
||||
def _ufunc_doc_signature_formatter(ufunc):
|
||||
"""
|
||||
Builds a signature string which resembles PEP 457
|
||||
|
||||
This is used to construct the first line of the docstring
|
||||
"""
|
||||
|
||||
# input arguments are simple
|
||||
if ufunc.nin == 1:
|
||||
in_args = 'x'
|
||||
else:
|
||||
in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
|
||||
|
||||
# output arguments are both keyword or positional
|
||||
if ufunc.nout == 0:
|
||||
out_args = ', /, out=()'
|
||||
elif ufunc.nout == 1:
|
||||
out_args = ', /, out=None'
|
||||
else:
|
||||
out_args = '[, {positional}], / [, out={default}]'.format(
|
||||
positional=', '.join(
|
||||
'out{}'.format(i+1) for i in range(ufunc.nout)),
|
||||
default=repr((None,)*ufunc.nout)
|
||||
)
|
||||
|
||||
# keyword only args depend on whether this is a gufunc
|
||||
kwargs = (
|
||||
", casting='same_kind'"
|
||||
", order='K'"
|
||||
", dtype=None"
|
||||
", subok=True"
|
||||
)
|
||||
|
||||
# NOTE: gufuncs may or may not support the `axis` parameter
|
||||
if ufunc.signature is None:
|
||||
kwargs = f", where=True{kwargs}[, signature]"
|
||||
else:
|
||||
kwargs += "[, signature, axes, axis]"
|
||||
|
||||
# join all the parts together
|
||||
return '{name}({in_args}{out_args}, *{kwargs})'.format(
|
||||
name=ufunc.__name__,
|
||||
in_args=in_args,
|
||||
out_args=out_args,
|
||||
kwargs=kwargs
|
||||
)
|
||||
|
||||
|
||||
def npy_ctypes_check(cls):
|
||||
# determine if a class comes from ctypes, in order to work around
|
||||
# a bug in the buffer protocol for those objects, bpo-10746
|
||||
try:
|
||||
# ctypes class are new-style, so have an __mro__. This probably fails
|
||||
# for ctypes classes with multiple inheritance.
|
||||
if IS_PYPY:
|
||||
# (..., _ctypes.basics._CData, Bufferable, object)
|
||||
ctype_base = cls.__mro__[-3]
|
||||
else:
|
||||
# # (..., _ctypes._CData, object)
|
||||
ctype_base = cls.__mro__[-2]
|
||||
# right now, they're part of the _ctypes module
|
||||
return '_ctypes' in ctype_base.__module__
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
# used to handle the _NoValue default argument for na_object
|
||||
# in the C implementation of the __reduce__ method for stringdtype
|
||||
def _convert_to_stringdtype_kwargs(coerce, na_object=_NoValue):
|
||||
if na_object is _NoValue:
|
||||
return StringDType(coerce=coerce)
|
||||
return StringDType(coerce=coerce, na_object=na_object)
|
30
lib/python3.13/site-packages/numpy/_core/_internal.pyi
Normal file
30
lib/python3.13/site-packages/numpy/_core/_internal.pyi
Normal file
@ -0,0 +1,30 @@
|
||||
from typing import Any, TypeVar, overload, Generic
|
||||
import ctypes as ct
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from numpy.ctypeslib import c_intp
|
||||
|
||||
_CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
|
||||
_CT = TypeVar("_CT", bound=ct._CData)
|
||||
_PT = TypeVar("_PT", bound=int)
|
||||
|
||||
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
|
||||
# for 0D arrays once we've got shape-support
|
||||
|
||||
class _ctypes(Generic[_PT]):
|
||||
@overload
|
||||
def __new__(cls, array: NDArray[Any], ptr: None = ...) -> _ctypes[None]: ...
|
||||
@overload
|
||||
def __new__(cls, array: NDArray[Any], ptr: _PT) -> _ctypes[_PT]: ...
|
||||
@property
|
||||
def data(self) -> _PT: ...
|
||||
@property
|
||||
def shape(self) -> ct.Array[c_intp]: ...
|
||||
@property
|
||||
def strides(self) -> ct.Array[c_intp]: ...
|
||||
@property
|
||||
def _as_parameter_(self) -> ct.c_void_p: ...
|
||||
|
||||
def data_as(self, obj: type[_CastT]) -> _CastT: ...
|
||||
def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
|
||||
def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
|
356
lib/python3.13/site-packages/numpy/_core/_machar.py
Normal file
356
lib/python3.13/site-packages/numpy/_core/_machar.py
Normal file
@ -0,0 +1,356 @@
|
||||
"""
|
||||
Machine arithmetic - determine the parameters of the
|
||||
floating-point arithmetic system
|
||||
|
||||
Author: Pearu Peterson, September 2003
|
||||
|
||||
"""
|
||||
__all__ = ['MachAr']
|
||||
|
||||
from .fromnumeric import any
|
||||
from ._ufunc_config import errstate
|
||||
from .._utils import set_module
|
||||
|
||||
# Need to speed this up...especially for longdouble
|
||||
|
||||
# Deprecated 2021-10-20, NumPy 1.22
|
||||
class MachAr:
|
||||
"""
|
||||
Diagnosing machine parameters.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
ibeta : int
|
||||
Radix in which numbers are represented.
|
||||
it : int
|
||||
Number of base-`ibeta` digits in the floating point mantissa M.
|
||||
machep : int
|
||||
Exponent of the smallest (most negative) power of `ibeta` that,
|
||||
added to 1.0, gives something different from 1.0
|
||||
eps : float
|
||||
Floating-point number ``beta**machep`` (floating point precision)
|
||||
negep : int
|
||||
Exponent of the smallest power of `ibeta` that, subtracted
|
||||
from 1.0, gives something different from 1.0.
|
||||
epsneg : float
|
||||
Floating-point number ``beta**negep``.
|
||||
iexp : int
|
||||
Number of bits in the exponent (including its sign and bias).
|
||||
minexp : int
|
||||
Smallest (most negative) power of `ibeta` consistent with there
|
||||
being no leading zeros in the mantissa.
|
||||
xmin : float
|
||||
Floating-point number ``beta**minexp`` (the smallest [in
|
||||
magnitude] positive floating point number with full precision).
|
||||
maxexp : int
|
||||
Smallest (positive) power of `ibeta` that causes overflow.
|
||||
xmax : float
|
||||
``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
|
||||
usable floating value).
|
||||
irnd : int
|
||||
In ``range(6)``, information on what kind of rounding is done
|
||||
in addition, and on how underflow is handled.
|
||||
ngrd : int
|
||||
Number of 'guard digits' used when truncating the product
|
||||
of two mantissas to fit the representation.
|
||||
epsilon : float
|
||||
Same as `eps`.
|
||||
tiny : float
|
||||
An alias for `smallest_normal`, kept for backwards compatibility.
|
||||
huge : float
|
||||
Same as `xmax`.
|
||||
precision : float
|
||||
``- int(-log10(eps))``
|
||||
resolution : float
|
||||
``- 10**(-precision)``
|
||||
smallest_normal : float
|
||||
The smallest positive floating point number with 1 as leading bit in
|
||||
the mantissa following IEEE-754. Same as `xmin`.
|
||||
smallest_subnormal : float
|
||||
The smallest positive floating point number with 0 as leading bit in
|
||||
the mantissa following IEEE-754.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
float_conv : function, optional
|
||||
Function that converts an integer or integer array to a float
|
||||
or float array. Default is `float`.
|
||||
int_conv : function, optional
|
||||
Function that converts a float or float array to an integer or
|
||||
integer array. Default is `int`.
|
||||
float_to_float : function, optional
|
||||
Function that converts a float array to float. Default is `float`.
|
||||
Note that this does not seem to do anything useful in the current
|
||||
implementation.
|
||||
float_to_str : function, optional
|
||||
Function that converts a single float to a string. Default is
|
||||
``lambda v:'%24.16e' %v``.
|
||||
title : str, optional
|
||||
Title that is printed in the string representation of `MachAr`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
finfo : Machine limits for floating point types.
|
||||
iinfo : Machine limits for integer types.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Press, Teukolsky, Vetterling and Flannery,
|
||||
"Numerical Recipes in C++," 2nd ed,
|
||||
Cambridge University Press, 2002, p. 31.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, float_conv=float,int_conv=int,
|
||||
float_to_float=float,
|
||||
float_to_str=lambda v:'%24.16e' % v,
|
||||
title='Python floating point number'):
|
||||
"""
|
||||
|
||||
float_conv - convert integer to float (array)
|
||||
int_conv - convert float (array) to integer
|
||||
float_to_float - convert float array to float
|
||||
float_to_str - convert array float to str
|
||||
title - description of used floating point numbers
|
||||
|
||||
"""
|
||||
# We ignore all errors here because we are purposely triggering
|
||||
# underflow to detect the properties of the runninng arch.
|
||||
with errstate(under='ignore'):
|
||||
self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
|
||||
|
||||
def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
|
||||
max_iterN = 10000
|
||||
msg = "Did not converge after %d tries with %s"
|
||||
one = float_conv(1)
|
||||
two = one + one
|
||||
zero = one - one
|
||||
|
||||
# Do we really need to do this? Aren't they 2 and 2.0?
|
||||
# Determine ibeta and beta
|
||||
a = one
|
||||
for _ in range(max_iterN):
|
||||
a = a + a
|
||||
temp = a + one
|
||||
temp1 = temp - a
|
||||
if any(temp1 - one != zero):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
b = one
|
||||
for _ in range(max_iterN):
|
||||
b = b + b
|
||||
temp = a + b
|
||||
itemp = int_conv(temp-a)
|
||||
if any(itemp != 0):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
ibeta = itemp
|
||||
beta = float_conv(ibeta)
|
||||
|
||||
# Determine it and irnd
|
||||
it = -1
|
||||
b = one
|
||||
for _ in range(max_iterN):
|
||||
it = it + 1
|
||||
b = b * beta
|
||||
temp = b + one
|
||||
temp1 = temp - b
|
||||
if any(temp1 - one != zero):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
|
||||
betah = beta / two
|
||||
a = one
|
||||
for _ in range(max_iterN):
|
||||
a = a + a
|
||||
temp = a + one
|
||||
temp1 = temp - a
|
||||
if any(temp1 - one != zero):
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
temp = a + betah
|
||||
irnd = 0
|
||||
if any(temp-a != zero):
|
||||
irnd = 1
|
||||
tempa = a + beta
|
||||
temp = tempa + betah
|
||||
if irnd == 0 and any(temp-tempa != zero):
|
||||
irnd = 2
|
||||
|
||||
# Determine negep and epsneg
|
||||
negep = it + 3
|
||||
betain = one / beta
|
||||
a = one
|
||||
for i in range(negep):
|
||||
a = a * betain
|
||||
b = a
|
||||
for _ in range(max_iterN):
|
||||
temp = one - a
|
||||
if any(temp-one != zero):
|
||||
break
|
||||
a = a * beta
|
||||
negep = negep - 1
|
||||
# Prevent infinite loop on PPC with gcc 4.0:
|
||||
if negep < 0:
|
||||
raise RuntimeError("could not determine machine tolerance "
|
||||
"for 'negep', locals() -> %s" % (locals()))
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
negep = -negep
|
||||
epsneg = a
|
||||
|
||||
# Determine machep and eps
|
||||
machep = - it - 3
|
||||
a = b
|
||||
|
||||
for _ in range(max_iterN):
|
||||
temp = one + a
|
||||
if any(temp-one != zero):
|
||||
break
|
||||
a = a * beta
|
||||
machep = machep + 1
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
eps = a
|
||||
|
||||
# Determine ngrd
|
||||
ngrd = 0
|
||||
temp = one + eps
|
||||
if irnd == 0 and any(temp*one - one != zero):
|
||||
ngrd = 1
|
||||
|
||||
# Determine iexp
|
||||
i = 0
|
||||
k = 1
|
||||
z = betain
|
||||
t = one + eps
|
||||
nxres = 0
|
||||
for _ in range(max_iterN):
|
||||
y = z
|
||||
z = y*y
|
||||
a = z*one # Check here for underflow
|
||||
temp = z*t
|
||||
if any(a+a == zero) or any(abs(z) >= y):
|
||||
break
|
||||
temp1 = temp * betain
|
||||
if any(temp1*beta == z):
|
||||
break
|
||||
i = i + 1
|
||||
k = k + k
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
if ibeta != 10:
|
||||
iexp = i + 1
|
||||
mx = k + k
|
||||
else:
|
||||
iexp = 2
|
||||
iz = ibeta
|
||||
while k >= iz:
|
||||
iz = iz * ibeta
|
||||
iexp = iexp + 1
|
||||
mx = iz + iz - 1
|
||||
|
||||
# Determine minexp and xmin
|
||||
for _ in range(max_iterN):
|
||||
xmin = y
|
||||
y = y * betain
|
||||
a = y * one
|
||||
temp = y * t
|
||||
if any((a + a) != zero) and any(abs(y) < xmin):
|
||||
k = k + 1
|
||||
temp1 = temp * betain
|
||||
if any(temp1*beta == y) and any(temp != y):
|
||||
nxres = 3
|
||||
xmin = y
|
||||
break
|
||||
else:
|
||||
break
|
||||
else:
|
||||
raise RuntimeError(msg % (_, one.dtype))
|
||||
minexp = -k
|
||||
|
||||
# Determine maxexp, xmax
|
||||
if mx <= k + k - 3 and ibeta != 10:
|
||||
mx = mx + mx
|
||||
iexp = iexp + 1
|
||||
maxexp = mx + minexp
|
||||
irnd = irnd + nxres
|
||||
if irnd >= 2:
|
||||
maxexp = maxexp - 2
|
||||
i = maxexp + minexp
|
||||
if ibeta == 2 and not i:
|
||||
maxexp = maxexp - 1
|
||||
if i > 20:
|
||||
maxexp = maxexp - 1
|
||||
if any(a != y):
|
||||
maxexp = maxexp - 2
|
||||
xmax = one - epsneg
|
||||
if any(xmax*one != xmax):
|
||||
xmax = one - beta*epsneg
|
||||
xmax = xmax / (xmin*beta*beta*beta)
|
||||
i = maxexp + minexp + 3
|
||||
for j in range(i):
|
||||
if ibeta == 2:
|
||||
xmax = xmax + xmax
|
||||
else:
|
||||
xmax = xmax * beta
|
||||
|
||||
smallest_subnormal = abs(xmin / beta ** (it))
|
||||
|
||||
self.ibeta = ibeta
|
||||
self.it = it
|
||||
self.negep = negep
|
||||
self.epsneg = float_to_float(epsneg)
|
||||
self._str_epsneg = float_to_str(epsneg)
|
||||
self.machep = machep
|
||||
self.eps = float_to_float(eps)
|
||||
self._str_eps = float_to_str(eps)
|
||||
self.ngrd = ngrd
|
||||
self.iexp = iexp
|
||||
self.minexp = minexp
|
||||
self.xmin = float_to_float(xmin)
|
||||
self._str_xmin = float_to_str(xmin)
|
||||
self.maxexp = maxexp
|
||||
self.xmax = float_to_float(xmax)
|
||||
self._str_xmax = float_to_str(xmax)
|
||||
self.irnd = irnd
|
||||
|
||||
self.title = title
|
||||
# Commonly used parameters
|
||||
self.epsilon = self.eps
|
||||
self.tiny = self.xmin
|
||||
self.huge = self.xmax
|
||||
self.smallest_normal = self.xmin
|
||||
self._str_smallest_normal = float_to_str(self.xmin)
|
||||
self.smallest_subnormal = float_to_float(smallest_subnormal)
|
||||
self._str_smallest_subnormal = float_to_str(smallest_subnormal)
|
||||
|
||||
import math
|
||||
self.precision = int(-math.log10(float_to_float(self.eps)))
|
||||
ten = two + two + two + two + two
|
||||
resolution = ten ** (-self.precision)
|
||||
self.resolution = float_to_float(resolution)
|
||||
self._str_resolution = float_to_str(resolution)
|
||||
|
||||
def __str__(self):
|
||||
fmt = (
|
||||
'Machine parameters for %(title)s\n'
|
||||
'---------------------------------------------------------------------\n'
|
||||
'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
|
||||
'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
|
||||
'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
|
||||
'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
|
||||
'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
|
||||
'smallest_normal=%(smallest_normal)s '
|
||||
'smallest_subnormal=%(smallest_subnormal)s\n'
|
||||
'---------------------------------------------------------------------\n'
|
||||
)
|
||||
return fmt % self.__dict__
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(MachAr())
|
260
lib/python3.13/site-packages/numpy/_core/_methods.py
Normal file
260
lib/python3.13/site-packages/numpy/_core/_methods.py
Normal file
@ -0,0 +1,260 @@
|
||||
"""
|
||||
Array methods which are called by both the C-code for the method
|
||||
and the Python code for the NumPy-namespace function
|
||||
|
||||
"""
|
||||
import os
|
||||
import pickle
|
||||
import warnings
|
||||
from contextlib import nullcontext
|
||||
|
||||
import numpy as np
|
||||
from numpy._core import multiarray as mu
|
||||
from numpy._core import umath as um
|
||||
from numpy._core.multiarray import asanyarray
|
||||
from numpy._core import numerictypes as nt
|
||||
from numpy._core import _exceptions
|
||||
from numpy._core._ufunc_config import _no_nep50_warning
|
||||
from numpy._globals import _NoValue
|
||||
|
||||
# save those O(100) nanoseconds!
|
||||
bool_dt = mu.dtype("bool")
|
||||
umr_maximum = um.maximum.reduce
|
||||
umr_minimum = um.minimum.reduce
|
||||
umr_sum = um.add.reduce
|
||||
umr_prod = um.multiply.reduce
|
||||
umr_bitwise_count = um.bitwise_count
|
||||
umr_any = um.logical_or.reduce
|
||||
umr_all = um.logical_and.reduce
|
||||
|
||||
# Complex types to -> (2,)float view for fast-path computation in _var()
|
||||
_complex_to_float = {
|
||||
nt.dtype(nt.csingle) : nt.dtype(nt.single),
|
||||
nt.dtype(nt.cdouble) : nt.dtype(nt.double),
|
||||
}
|
||||
# Special case for windows: ensure double takes precedence
|
||||
if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
|
||||
_complex_to_float.update({
|
||||
nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
|
||||
})
|
||||
|
||||
# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
|
||||
# small reductions
|
||||
def _amax(a, axis=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_maximum(a, axis, None, out, keepdims, initial, where)
|
||||
|
||||
def _amin(a, axis=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_minimum(a, axis, None, out, keepdims, initial, where)
|
||||
|
||||
def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_sum(a, axis, dtype, out, keepdims, initial, where)
|
||||
|
||||
def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
|
||||
initial=_NoValue, where=True):
|
||||
return umr_prod(a, axis, dtype, out, keepdims, initial, where)
|
||||
|
||||
def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
# By default, return a boolean for any and all
|
||||
if dtype is None:
|
||||
dtype = bool_dt
|
||||
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||
if where is True:
|
||||
return umr_any(a, axis, dtype, out, keepdims)
|
||||
return umr_any(a, axis, dtype, out, keepdims, where=where)
|
||||
|
||||
def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
# By default, return a boolean for any and all
|
||||
if dtype is None:
|
||||
dtype = bool_dt
|
||||
# Parsing keyword arguments is currently fairly slow, so avoid it for now
|
||||
if where is True:
|
||||
return umr_all(a, axis, dtype, out, keepdims)
|
||||
return umr_all(a, axis, dtype, out, keepdims, where=where)
|
||||
|
||||
def _count_reduce_items(arr, axis, keepdims=False, where=True):
|
||||
# fast-path for the default case
|
||||
if where is True:
|
||||
# no boolean mask given, calculate items according to axis
|
||||
if axis is None:
|
||||
axis = tuple(range(arr.ndim))
|
||||
elif not isinstance(axis, tuple):
|
||||
axis = (axis,)
|
||||
items = 1
|
||||
for ax in axis:
|
||||
items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
|
||||
items = nt.intp(items)
|
||||
else:
|
||||
# TODO: Optimize case when `where` is broadcast along a non-reduction
|
||||
# axis and full sum is more excessive than needed.
|
||||
|
||||
# guarded to protect circular imports
|
||||
from numpy.lib._stride_tricks_impl import broadcast_to
|
||||
# count True values in (potentially broadcasted) boolean mask
|
||||
items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
|
||||
keepdims)
|
||||
return items
|
||||
|
||||
def _clip(a, min=None, max=None, out=None, **kwargs):
|
||||
if a.dtype.kind in "iu":
|
||||
# If min/max is a Python integer, deal with out-of-bound values here.
|
||||
# (This enforces NEP 50 rules as no value based promotion is done.)
|
||||
if type(min) is int and min <= np.iinfo(a.dtype).min:
|
||||
min = None
|
||||
if type(max) is int and max >= np.iinfo(a.dtype).max:
|
||||
max = None
|
||||
|
||||
if min is None and max is None:
|
||||
# return identity
|
||||
return um.positive(a, out=out, **kwargs)
|
||||
elif min is None:
|
||||
return um.minimum(a, max, out=out, **kwargs)
|
||||
elif max is None:
|
||||
return um.maximum(a, min, out=out, **kwargs)
|
||||
else:
|
||||
return um.clip(a, min, max, out=out, **kwargs)
|
||||
|
||||
def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
|
||||
arr = asanyarray(a)
|
||||
|
||||
is_float16_result = False
|
||||
|
||||
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||
if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
|
||||
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
|
||||
|
||||
# Cast bool, unsigned int, and int to float64 by default
|
||||
if dtype is None:
|
||||
if issubclass(arr.dtype.type, (nt.integer, nt.bool)):
|
||||
dtype = mu.dtype('f8')
|
||||
elif issubclass(arr.dtype.type, nt.float16):
|
||||
dtype = mu.dtype('f4')
|
||||
is_float16_result = True
|
||||
|
||||
ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
|
||||
if isinstance(ret, mu.ndarray):
|
||||
with _no_nep50_warning():
|
||||
ret = um.true_divide(
|
||||
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||
if is_float16_result and out is None:
|
||||
ret = arr.dtype.type(ret)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
if is_float16_result:
|
||||
ret = arr.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret / rcount
|
||||
|
||||
return ret
|
||||
|
||||
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||
where=True, mean=None):
|
||||
arr = asanyarray(a)
|
||||
|
||||
rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
|
||||
# Make this warning show up on top.
|
||||
if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
|
||||
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
|
||||
stacklevel=2)
|
||||
|
||||
# Cast bool, unsigned int, and int to float64 by default
|
||||
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool)):
|
||||
dtype = mu.dtype('f8')
|
||||
|
||||
if mean is not None:
|
||||
arrmean = mean
|
||||
else:
|
||||
# Compute the mean.
|
||||
# Note that if dtype is not of inexact type then arraymean will
|
||||
# not be either.
|
||||
arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
|
||||
# The shape of rcount has to match arrmean to not change the shape of
|
||||
# out in broadcasting. Otherwise, it cannot be stored back to arrmean.
|
||||
if rcount.ndim == 0:
|
||||
# fast-path for default case when where is True
|
||||
div = rcount
|
||||
else:
|
||||
# matching rcount to arrmean when where is specified as array
|
||||
div = rcount.reshape(arrmean.shape)
|
||||
if isinstance(arrmean, mu.ndarray):
|
||||
with _no_nep50_warning():
|
||||
arrmean = um.true_divide(arrmean, div, out=arrmean,
|
||||
casting='unsafe', subok=False)
|
||||
elif hasattr(arrmean, "dtype"):
|
||||
arrmean = arrmean.dtype.type(arrmean / rcount)
|
||||
else:
|
||||
arrmean = arrmean / rcount
|
||||
|
||||
# Compute sum of squared deviations from mean
|
||||
# Note that x may not be inexact and that we need it to be an array,
|
||||
# not a scalar.
|
||||
x = asanyarray(arr - arrmean)
|
||||
|
||||
if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
|
||||
x = um.multiply(x, x, out=x)
|
||||
# Fast-paths for built-in complex types
|
||||
elif x.dtype in _complex_to_float:
|
||||
xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
|
||||
um.multiply(xv, xv, out=xv)
|
||||
x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
|
||||
# Most general case; includes handling object arrays containing imaginary
|
||||
# numbers and complex types with non-native byteorder
|
||||
else:
|
||||
x = um.multiply(x, um.conjugate(x), out=x).real
|
||||
|
||||
ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
|
||||
|
||||
# Compute degrees of freedom and make sure it is not negative.
|
||||
rcount = um.maximum(rcount - ddof, 0)
|
||||
|
||||
# divide by degrees of freedom
|
||||
if isinstance(ret, mu.ndarray):
|
||||
with _no_nep50_warning():
|
||||
ret = um.true_divide(
|
||||
ret, rcount, out=ret, casting='unsafe', subok=False)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
ret = ret.dtype.type(ret / rcount)
|
||||
else:
|
||||
ret = ret / rcount
|
||||
|
||||
return ret
|
||||
|
||||
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
|
||||
where=True, mean=None):
|
||||
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
|
||||
keepdims=keepdims, where=where, mean=mean)
|
||||
|
||||
if isinstance(ret, mu.ndarray):
|
||||
ret = um.sqrt(ret, out=ret)
|
||||
elif hasattr(ret, 'dtype'):
|
||||
ret = ret.dtype.type(um.sqrt(ret))
|
||||
else:
|
||||
ret = um.sqrt(ret)
|
||||
|
||||
return ret
|
||||
|
||||
def _ptp(a, axis=None, out=None, keepdims=False):
|
||||
return um.subtract(
|
||||
umr_maximum(a, axis, None, out, keepdims),
|
||||
umr_minimum(a, axis, None, None, keepdims),
|
||||
out
|
||||
)
|
||||
|
||||
def _dump(self, file, protocol=2):
|
||||
if hasattr(file, 'write'):
|
||||
ctx = nullcontext(file)
|
||||
else:
|
||||
ctx = open(os.fspath(file), "wb")
|
||||
with ctx as f:
|
||||
pickle.dump(self, f, protocol=protocol)
|
||||
|
||||
def _dumps(self, protocol=2):
|
||||
return pickle.dumps(self, protocol=protocol)
|
||||
|
||||
def _bitwise_count(a, out=None, *, where=True, casting='same_kind',
|
||||
order='K', dtype=None, subok=True):
|
||||
return umr_bitwise_count(a, out, where=where, casting=casting,
|
||||
order=order, dtype=dtype, subok=subok)
|
BIN
lib/python3.13/site-packages/numpy/_core/_multiarray_tests.cpython-313-darwin.so
Executable file
BIN
lib/python3.13/site-packages/numpy/_core/_multiarray_tests.cpython-313-darwin.so
Executable file
Binary file not shown.
BIN
lib/python3.13/site-packages/numpy/_core/_multiarray_umath.cpython-313-darwin.so
Executable file
BIN
lib/python3.13/site-packages/numpy/_core/_multiarray_umath.cpython-313-darwin.so
Executable file
Binary file not shown.
Binary file not shown.
BIN
lib/python3.13/site-packages/numpy/_core/_rational_tests.cpython-313-darwin.so
Executable file
BIN
lib/python3.13/site-packages/numpy/_core/_rational_tests.cpython-313-darwin.so
Executable file
Binary file not shown.
BIN
lib/python3.13/site-packages/numpy/_core/_simd.cpython-313-darwin.so
Executable file
BIN
lib/python3.13/site-packages/numpy/_core/_simd.cpython-313-darwin.so
Executable file
Binary file not shown.
100
lib/python3.13/site-packages/numpy/_core/_string_helpers.py
Normal file
100
lib/python3.13/site-packages/numpy/_core/_string_helpers.py
Normal file
@ -0,0 +1,100 @@
|
||||
"""
|
||||
String-handling utilities to avoid locale-dependence.
|
||||
|
||||
Used primarily to generate type name aliases.
|
||||
"""
|
||||
# "import string" is costly to import!
|
||||
# Construct the translation tables directly
|
||||
# "A" = chr(65), "a" = chr(97)
|
||||
_all_chars = tuple(map(chr, range(256)))
|
||||
_ascii_upper = _all_chars[65:65+26]
|
||||
_ascii_lower = _all_chars[97:97+26]
|
||||
LOWER_TABLE = _all_chars[:65] + _ascii_lower + _all_chars[65+26:]
|
||||
UPPER_TABLE = _all_chars[:97] + _ascii_upper + _all_chars[97+26:]
|
||||
|
||||
|
||||
def english_lower(s):
|
||||
""" Apply English case rules to convert ASCII strings to all lower case.
|
||||
|
||||
This is an internal utility function to replace calls to str.lower() such
|
||||
that we can avoid changing behavior with changing locales. In particular,
|
||||
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||
both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
lowered : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy._core.numerictypes import english_lower
|
||||
>>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||
'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
|
||||
>>> english_lower('')
|
||||
''
|
||||
"""
|
||||
lowered = s.translate(LOWER_TABLE)
|
||||
return lowered
|
||||
|
||||
|
||||
def english_upper(s):
|
||||
""" Apply English case rules to convert ASCII strings to all upper case.
|
||||
|
||||
This is an internal utility function to replace calls to str.upper() such
|
||||
that we can avoid changing behavior with changing locales. In particular,
|
||||
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
||||
both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
uppered : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy._core.numerictypes import english_upper
|
||||
>>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
||||
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
|
||||
>>> english_upper('')
|
||||
''
|
||||
"""
|
||||
uppered = s.translate(UPPER_TABLE)
|
||||
return uppered
|
||||
|
||||
|
||||
def english_capitalize(s):
|
||||
""" Apply English case rules to convert the first character of an ASCII
|
||||
string to upper case.
|
||||
|
||||
This is an internal utility function to replace calls to str.capitalize()
|
||||
such that we can avoid changing behavior with changing locales.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
capitalized : str
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy._core.numerictypes import english_capitalize
|
||||
>>> english_capitalize('int8')
|
||||
'Int8'
|
||||
>>> english_capitalize('Int8')
|
||||
'Int8'
|
||||
>>> english_capitalize('')
|
||||
''
|
||||
"""
|
||||
if s:
|
||||
return english_upper(s[0]) + s[1:]
|
||||
else:
|
||||
return s
|
Binary file not shown.
119
lib/python3.13/site-packages/numpy/_core/_type_aliases.py
Normal file
119
lib/python3.13/site-packages/numpy/_core/_type_aliases.py
Normal file
@ -0,0 +1,119 @@
|
||||
"""
|
||||
Due to compatibility, numpy has a very large number of different naming
|
||||
conventions for the scalar types (those subclassing from `numpy.generic`).
|
||||
This file produces a convoluted set of dictionaries mapping names to types,
|
||||
and sometimes other mappings too.
|
||||
|
||||
.. data:: allTypes
|
||||
A dictionary of names to types that will be exposed as attributes through
|
||||
``np._core.numerictypes.*``
|
||||
|
||||
.. data:: sctypeDict
|
||||
Similar to `allTypes`, but maps a broader set of aliases to their types.
|
||||
|
||||
.. data:: sctypes
|
||||
A dictionary keyed by a "type group" string, providing a list of types
|
||||
under that group.
|
||||
|
||||
"""
|
||||
|
||||
import numpy._core.multiarray as ma
|
||||
from numpy._core.multiarray import typeinfo, dtype
|
||||
|
||||
######################################
|
||||
# Building `sctypeDict` and `allTypes`
|
||||
######################################
|
||||
|
||||
sctypeDict = {}
|
||||
allTypes = {}
|
||||
c_names_dict = {}
|
||||
|
||||
_abstract_type_names = {
|
||||
"generic", "integer", "inexact", "floating", "number",
|
||||
"flexible", "character", "complexfloating", "unsignedinteger",
|
||||
"signedinteger"
|
||||
}
|
||||
|
||||
for _abstract_type_name in _abstract_type_names:
|
||||
allTypes[_abstract_type_name] = getattr(ma, _abstract_type_name)
|
||||
|
||||
for k, v in typeinfo.items():
|
||||
if k.startswith("NPY_") and v not in c_names_dict:
|
||||
c_names_dict[k[4:]] = v
|
||||
else:
|
||||
concrete_type = v.type
|
||||
allTypes[k] = concrete_type
|
||||
sctypeDict[k] = concrete_type
|
||||
|
||||
_aliases = {
|
||||
"double": "float64",
|
||||
"cdouble": "complex128",
|
||||
"single": "float32",
|
||||
"csingle": "complex64",
|
||||
"half": "float16",
|
||||
"bool_": "bool",
|
||||
# Default integer:
|
||||
"int_": "intp",
|
||||
"uint": "uintp",
|
||||
}
|
||||
|
||||
for k, v in _aliases.items():
|
||||
sctypeDict[k] = allTypes[v]
|
||||
allTypes[k] = allTypes[v]
|
||||
|
||||
# extra aliases are added only to `sctypeDict`
|
||||
# to support dtype name access, such as`np.dtype("float")`
|
||||
_extra_aliases = {
|
||||
"float": "float64",
|
||||
"complex": "complex128",
|
||||
"object": "object_",
|
||||
"bytes": "bytes_",
|
||||
"a": "bytes_",
|
||||
"int": "int_",
|
||||
"str": "str_",
|
||||
"unicode": "str_",
|
||||
}
|
||||
|
||||
for k, v in _extra_aliases.items():
|
||||
sctypeDict[k] = allTypes[v]
|
||||
|
||||
# include extended precision sized aliases
|
||||
for is_complex, full_name in [(False, "longdouble"), (True, "clongdouble")]:
|
||||
longdouble_type: type = allTypes[full_name]
|
||||
|
||||
bits: int = dtype(longdouble_type).itemsize * 8
|
||||
base_name: str = "complex" if is_complex else "float"
|
||||
extended_prec_name: str = f"{base_name}{bits}"
|
||||
if extended_prec_name not in allTypes:
|
||||
sctypeDict[extended_prec_name] = longdouble_type
|
||||
allTypes[extended_prec_name] = longdouble_type
|
||||
|
||||
|
||||
####################
|
||||
# Building `sctypes`
|
||||
####################
|
||||
|
||||
sctypes = {"int": set(), "uint": set(), "float": set(),
|
||||
"complex": set(), "others": set()}
|
||||
|
||||
for type_info in typeinfo.values():
|
||||
if type_info.kind in ["M", "m"]: # exclude timedelta and datetime
|
||||
continue
|
||||
|
||||
concrete_type = type_info.type
|
||||
|
||||
# find proper group for each concrete type
|
||||
for type_group, abstract_type in [
|
||||
("int", ma.signedinteger), ("uint", ma.unsignedinteger),
|
||||
("float", ma.floating), ("complex", ma.complexfloating),
|
||||
("others", ma.generic)
|
||||
]:
|
||||
if issubclass(concrete_type, abstract_type):
|
||||
sctypes[type_group].add(concrete_type)
|
||||
break
|
||||
|
||||
# sort sctype groups by bitsize
|
||||
for sctype_key in sctypes.keys():
|
||||
sctype_list = list(sctypes[sctype_key])
|
||||
sctype_list.sort(key=lambda x: dtype(x).itemsize)
|
||||
sctypes[sctype_key] = sctype_list
|
@ -0,0 +1,3 @@
|
||||
from numpy import generic
|
||||
|
||||
sctypeDict: dict[int | str, type[generic]]
|
503
lib/python3.13/site-packages/numpy/_core/_ufunc_config.py
Normal file
503
lib/python3.13/site-packages/numpy/_core/_ufunc_config.py
Normal file
@ -0,0 +1,503 @@
|
||||
"""
|
||||
Functions for changing global ufunc configuration
|
||||
|
||||
This provides helpers which wrap `_get_extobj_dict` and `_make_extobj`, and
|
||||
`_extobj_contextvar` from umath.
|
||||
"""
|
||||
import collections.abc
|
||||
import contextlib
|
||||
import contextvars
|
||||
import functools
|
||||
|
||||
from .._utils import set_module
|
||||
from .umath import _make_extobj, _get_extobj_dict, _extobj_contextvar
|
||||
|
||||
__all__ = [
|
||||
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
|
||||
"errstate", '_no_nep50_warning'
|
||||
]
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
|
||||
"""
|
||||
Set how floating-point errors are handled.
|
||||
|
||||
Note that operations on integer scalar types (such as `int16`) are
|
||||
handled like floating point, and are affected by these settings.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Set treatment for all types of floating-point errors at once:
|
||||
|
||||
- ignore: Take no action when the exception occurs.
|
||||
- warn: Print a :exc:`RuntimeWarning` (via the Python `warnings`
|
||||
module).
|
||||
- raise: Raise a :exc:`FloatingPointError`.
|
||||
- call: Call a function specified using the `seterrcall` function.
|
||||
- print: Print a warning directly to ``stdout``.
|
||||
- log: Record error in a Log object specified by `seterrcall`.
|
||||
|
||||
The default is not to change the current behavior.
|
||||
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for division by zero.
|
||||
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for floating-point overflow.
|
||||
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for floating-point underflow.
|
||||
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
||||
Treatment for invalid floating-point operation.
|
||||
|
||||
Returns
|
||||
-------
|
||||
old_settings : dict
|
||||
Dictionary containing the old settings.
|
||||
|
||||
See also
|
||||
--------
|
||||
seterrcall : Set a callback function for the 'call' mode.
|
||||
geterr, geterrcall, errstate
|
||||
|
||||
Notes
|
||||
-----
|
||||
The floating-point exceptions are defined in the IEEE 754 standard [1]_:
|
||||
|
||||
- Division by zero: infinite result obtained from finite numbers.
|
||||
- Overflow: result too large to be expressed.
|
||||
- Underflow: result so close to zero that some precision
|
||||
was lost.
|
||||
- Invalid operation: result is not an expressible number, typically
|
||||
indicates that a NaN was produced.
|
||||
|
||||
.. [1] https://en.wikipedia.org/wiki/IEEE_754
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> orig_settings = np.seterr(all='ignore') # seterr to known value
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
30464
|
||||
>>> np.seterr(over='raise')
|
||||
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
>>> old_settings = np.seterr(all='warn', over='raise')
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
FloatingPointError: overflow encountered in scalar multiply
|
||||
|
||||
>>> old_settings = np.seterr(all='print')
|
||||
>>> np.geterr()
|
||||
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
||||
>>> np.int16(32000) * np.int16(3)
|
||||
30464
|
||||
>>> np.seterr(**orig_settings) # restore original
|
||||
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
||||
|
||||
"""
|
||||
|
||||
old = _get_extobj_dict()
|
||||
# The errstate doesn't include call and bufsize, so pop them:
|
||||
old.pop("call", None)
|
||||
old.pop("bufsize", None)
|
||||
|
||||
extobj = _make_extobj(
|
||||
all=all, divide=divide, over=over, under=under, invalid=invalid)
|
||||
_extobj_contextvar.set(extobj)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def geterr():
|
||||
"""
|
||||
Get the current way of handling floating-point errors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
res : dict
|
||||
A dictionary with keys "divide", "over", "under", and "invalid",
|
||||
whose values are from the strings "ignore", "print", "log", "warn",
|
||||
"raise", and "call". The keys represent possible floating-point
|
||||
exceptions, and the values define how these exceptions are handled.
|
||||
|
||||
See Also
|
||||
--------
|
||||
geterrcall, seterr, seterrcall
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.geterr()
|
||||
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
|
||||
>>> np.arange(3.) / np.arange(3.) # doctest: +SKIP
|
||||
array([nan, 1., 1.])
|
||||
RuntimeWarning: invalid value encountered in divide
|
||||
|
||||
>>> oldsettings = np.seterr(all='warn', invalid='raise')
|
||||
>>> np.geterr()
|
||||
{'divide': 'warn', 'over': 'warn', 'under': 'warn', 'invalid': 'raise'}
|
||||
>>> np.arange(3.) / np.arange(3.)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
FloatingPointError: invalid value encountered in divide
|
||||
>>> oldsettings = np.seterr(**oldsettings) # restore original
|
||||
|
||||
"""
|
||||
res = _get_extobj_dict()
|
||||
# The "geterr" doesn't include call and bufsize,:
|
||||
res.pop("call", None)
|
||||
res.pop("bufsize", None)
|
||||
return res
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def setbufsize(size):
|
||||
"""
|
||||
Set the size of the buffer used in ufuncs.
|
||||
|
||||
.. versionchanged:: 2.0
|
||||
The scope of setting the buffer is tied to the `numpy.errstate`
|
||||
context. Exiting a ``with errstate():`` will also restore the bufsize.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : int
|
||||
Size of buffer.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bufsize : int
|
||||
Previous size of ufunc buffer in bytes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
When exiting a `numpy.errstate` context manager the bufsize is restored:
|
||||
|
||||
>>> import numpy as np
|
||||
>>> with np.errstate():
|
||||
... np.setbufsize(4096)
|
||||
... print(np.getbufsize())
|
||||
...
|
||||
8192
|
||||
4096
|
||||
>>> np.getbufsize()
|
||||
8192
|
||||
|
||||
"""
|
||||
old = _get_extobj_dict()["bufsize"]
|
||||
extobj = _make_extobj(bufsize=size)
|
||||
_extobj_contextvar.set(extobj)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def getbufsize():
|
||||
"""
|
||||
Return the size of the buffer used in ufuncs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
getbufsize : int
|
||||
Size of ufunc buffer in bytes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.getbufsize()
|
||||
8192
|
||||
|
||||
"""
|
||||
return _get_extobj_dict()["bufsize"]
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def seterrcall(func):
|
||||
"""
|
||||
Set the floating-point error callback function or log object.
|
||||
|
||||
There are two ways to capture floating-point error messages. The first
|
||||
is to set the error-handler to 'call', using `seterr`. Then, set
|
||||
the function to call using this function.
|
||||
|
||||
The second is to set the error-handler to 'log', using `seterr`.
|
||||
Floating-point errors then trigger a call to the 'write' method of
|
||||
the provided object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable f(err, flag) or object with write method
|
||||
Function to call upon floating-point errors ('call'-mode) or
|
||||
object whose 'write' method is used to log such message ('log'-mode).
|
||||
|
||||
The call function takes two arguments. The first is a string describing
|
||||
the type of error (such as "divide by zero", "overflow", "underflow",
|
||||
or "invalid value"), and the second is the status flag. The flag is a
|
||||
byte, whose four least-significant bits indicate the type of error, one
|
||||
of "divide", "over", "under", "invalid"::
|
||||
|
||||
[0 0 0 0 divide over under invalid]
|
||||
|
||||
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
|
||||
|
||||
If an object is provided, its write method should take one argument,
|
||||
a string.
|
||||
|
||||
Returns
|
||||
-------
|
||||
h : callable, log instance or None
|
||||
The old error handler.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterr, geterr, geterrcall
|
||||
|
||||
Examples
|
||||
--------
|
||||
Callback upon error:
|
||||
|
||||
>>> def err_handler(type, flag):
|
||||
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||
...
|
||||
|
||||
>>> import numpy as np
|
||||
|
||||
>>> orig_handler = np.seterrcall(err_handler)
|
||||
>>> orig_err = np.seterr(all='call')
|
||||
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
Floating point error (divide by zero), with flag 1
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> np.seterrcall(orig_handler)
|
||||
<function err_handler at 0x...>
|
||||
>>> np.seterr(**orig_err)
|
||||
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
|
||||
|
||||
Log error message:
|
||||
|
||||
>>> class Log:
|
||||
... def write(self, msg):
|
||||
... print("LOG: %s" % msg)
|
||||
...
|
||||
|
||||
>>> log = Log()
|
||||
>>> saved_handler = np.seterrcall(log)
|
||||
>>> save_err = np.seterr(all='log')
|
||||
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
LOG: Warning: divide by zero encountered in divide
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> np.seterrcall(orig_handler)
|
||||
<numpy.Log object at 0x...>
|
||||
>>> np.seterr(**orig_err)
|
||||
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
|
||||
|
||||
"""
|
||||
old = _get_extobj_dict()["call"]
|
||||
extobj = _make_extobj(call=func)
|
||||
_extobj_contextvar.set(extobj)
|
||||
return old
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
def geterrcall():
|
||||
"""
|
||||
Return the current callback function used on floating-point errors.
|
||||
|
||||
When the error handling for a floating-point error (one of "divide",
|
||||
"over", "under", or "invalid") is set to 'call' or 'log', the function
|
||||
that is called or the log instance that is written to is returned by
|
||||
`geterrcall`. This function or log instance has been set with
|
||||
`seterrcall`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
errobj : callable, log instance or None
|
||||
The current error handler. If no handler was set through `seterrcall`,
|
||||
``None`` is returned.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterrcall, seterr, geterr
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.geterrcall() # we did not yet set a handler, returns None
|
||||
|
||||
>>> orig_settings = np.seterr(all='call')
|
||||
>>> def err_handler(type, flag):
|
||||
... print("Floating point error (%s), with flag %s" % (type, flag))
|
||||
>>> old_handler = np.seterrcall(err_handler)
|
||||
>>> np.array([1, 2, 3]) / 0.0
|
||||
Floating point error (divide by zero), with flag 1
|
||||
array([inf, inf, inf])
|
||||
|
||||
>>> cur_handler = np.geterrcall()
|
||||
>>> cur_handler is err_handler
|
||||
True
|
||||
>>> old_settings = np.seterr(**orig_settings) # restore original
|
||||
>>> old_handler = np.seterrcall(None) # restore original
|
||||
|
||||
"""
|
||||
return _get_extobj_dict()["call"]
|
||||
|
||||
|
||||
class _unspecified:
|
||||
pass
|
||||
|
||||
|
||||
_Unspecified = _unspecified()
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
class errstate:
|
||||
"""
|
||||
errstate(**kwargs)
|
||||
|
||||
Context manager for floating-point error handling.
|
||||
|
||||
Using an instance of `errstate` as a context manager allows statements in
|
||||
that context to execute with a known error handling behavior. Upon entering
|
||||
the context the error handling is set with `seterr` and `seterrcall`, and
|
||||
upon exiting it is reset to what it was before.
|
||||
|
||||
.. versionchanged:: 1.17.0
|
||||
`errstate` is also usable as a function decorator, saving
|
||||
a level of indentation if an entire function is wrapped.
|
||||
|
||||
.. versionchanged:: 2.0
|
||||
`errstate` is now fully thread and asyncio safe, but may not be
|
||||
entered more than once.
|
||||
It is not safe to decorate async functions using ``errstate``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kwargs : {divide, over, under, invalid}
|
||||
Keyword arguments. The valid keywords are the possible floating-point
|
||||
exceptions. Each keyword should have a string value that defines the
|
||||
treatment for the particular error. Possible values are
|
||||
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
|
||||
|
||||
See Also
|
||||
--------
|
||||
seterr, geterr, seterrcall, geterrcall
|
||||
|
||||
Notes
|
||||
-----
|
||||
For complete documentation of the types of floating-point exceptions and
|
||||
treatment options, see `seterr`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
|
||||
|
||||
>>> np.arange(3) / 0.
|
||||
array([nan, inf, inf])
|
||||
>>> with np.errstate(divide='ignore'):
|
||||
... np.arange(3) / 0.
|
||||
array([nan, inf, inf])
|
||||
|
||||
>>> np.sqrt(-1)
|
||||
np.float64(nan)
|
||||
>>> with np.errstate(invalid='raise'):
|
||||
... np.sqrt(-1)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 2, in <module>
|
||||
FloatingPointError: invalid value encountered in sqrt
|
||||
|
||||
Outside the context the error handling behavior has not changed:
|
||||
|
||||
>>> np.geterr()
|
||||
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
||||
>>> olderr = np.seterr(**olderr) # restore original state
|
||||
|
||||
"""
|
||||
__slots__ = (
|
||||
"_call", "_all", "_divide", "_over", "_under", "_invalid", "_token")
|
||||
|
||||
def __init__(self, *, call=_Unspecified,
|
||||
all=None, divide=None, over=None, under=None, invalid=None):
|
||||
self._token = None
|
||||
self._call = call
|
||||
self._all = all
|
||||
self._divide = divide
|
||||
self._over = over
|
||||
self._under = under
|
||||
self._invalid = invalid
|
||||
|
||||
def __enter__(self):
|
||||
# Note that __call__ duplicates much of this logic
|
||||
if self._token is not None:
|
||||
raise TypeError("Cannot enter `np.errstate` twice.")
|
||||
if self._call is _Unspecified:
|
||||
extobj = _make_extobj(
|
||||
all=self._all, divide=self._divide, over=self._over,
|
||||
under=self._under, invalid=self._invalid)
|
||||
else:
|
||||
extobj = _make_extobj(
|
||||
call=self._call,
|
||||
all=self._all, divide=self._divide, over=self._over,
|
||||
under=self._under, invalid=self._invalid)
|
||||
|
||||
self._token = _extobj_contextvar.set(extobj)
|
||||
|
||||
def __exit__(self, *exc_info):
|
||||
_extobj_contextvar.reset(self._token)
|
||||
|
||||
def __call__(self, func):
|
||||
# We need to customize `__call__` compared to `ContextDecorator`
|
||||
# because we must store the token per-thread so cannot store it on
|
||||
# the instance (we could create a new instance for this).
|
||||
# This duplicates the code from `__enter__`.
|
||||
@functools.wraps(func)
|
||||
def inner(*args, **kwargs):
|
||||
if self._call is _Unspecified:
|
||||
extobj = _make_extobj(
|
||||
all=self._all, divide=self._divide, over=self._over,
|
||||
under=self._under, invalid=self._invalid)
|
||||
else:
|
||||
extobj = _make_extobj(
|
||||
call=self._call,
|
||||
all=self._all, divide=self._divide, over=self._over,
|
||||
under=self._under, invalid=self._invalid)
|
||||
|
||||
_token = _extobj_contextvar.set(extobj)
|
||||
try:
|
||||
# Call the original, decorated, function:
|
||||
return func(*args, **kwargs)
|
||||
finally:
|
||||
_extobj_contextvar.reset(_token)
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
NO_NEP50_WARNING = contextvars.ContextVar("_no_nep50_warning", default=False)
|
||||
|
||||
@set_module('numpy')
|
||||
@contextlib.contextmanager
|
||||
def _no_nep50_warning():
|
||||
"""
|
||||
Context manager to disable NEP 50 warnings. This context manager is
|
||||
only relevant if the NEP 50 warnings are enabled globally (which is not
|
||||
thread/context safe).
|
||||
|
||||
This warning context manager itself is fully safe, however.
|
||||
"""
|
||||
token = NO_NEP50_WARNING.set(True)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
NO_NEP50_WARNING.reset(token)
|
37
lib/python3.13/site-packages/numpy/_core/_ufunc_config.pyi
Normal file
37
lib/python3.13/site-packages/numpy/_core/_ufunc_config.pyi
Normal file
@ -0,0 +1,37 @@
|
||||
from collections.abc import Callable
|
||||
from typing import Any, Literal, TypedDict
|
||||
|
||||
from numpy import _SupportsWrite
|
||||
|
||||
_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
|
||||
_ErrFunc = Callable[[str, int], Any]
|
||||
|
||||
class _ErrDict(TypedDict):
|
||||
divide: _ErrKind
|
||||
over: _ErrKind
|
||||
under: _ErrKind
|
||||
invalid: _ErrKind
|
||||
|
||||
class _ErrDictOptional(TypedDict, total=False):
|
||||
all: None | _ErrKind
|
||||
divide: None | _ErrKind
|
||||
over: None | _ErrKind
|
||||
under: None | _ErrKind
|
||||
invalid: None | _ErrKind
|
||||
|
||||
def seterr(
|
||||
all: None | _ErrKind = ...,
|
||||
divide: None | _ErrKind = ...,
|
||||
over: None | _ErrKind = ...,
|
||||
under: None | _ErrKind = ...,
|
||||
invalid: None | _ErrKind = ...,
|
||||
) -> _ErrDict: ...
|
||||
def geterr() -> _ErrDict: ...
|
||||
def setbufsize(size: int) -> int: ...
|
||||
def getbufsize() -> int: ...
|
||||
def seterrcall(
|
||||
func: None | _ErrFunc | _SupportsWrite[str]
|
||||
) -> None | _ErrFunc | _SupportsWrite[str]: ...
|
||||
def geterrcall() -> None | _ErrFunc | _SupportsWrite[str]: ...
|
||||
|
||||
# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`
|
BIN
lib/python3.13/site-packages/numpy/_core/_umath_tests.cpython-313-darwin.so
Executable file
BIN
lib/python3.13/site-packages/numpy/_core/_umath_tests.cpython-313-darwin.so
Executable file
Binary file not shown.
1746
lib/python3.13/site-packages/numpy/_core/arrayprint.py
Normal file
1746
lib/python3.13/site-packages/numpy/_core/arrayprint.py
Normal file
File diff suppressed because it is too large
Load Diff
135
lib/python3.13/site-packages/numpy/_core/arrayprint.pyi
Normal file
135
lib/python3.13/site-packages/numpy/_core/arrayprint.pyi
Normal file
@ -0,0 +1,135 @@
|
||||
from collections.abc import Callable
|
||||
from typing import Any, Literal, TypedDict, SupportsIndex
|
||||
|
||||
# Using a private class is by no means ideal, but it is simply a consequence
|
||||
# of a `contextlib.context` returning an instance of aforementioned class
|
||||
from contextlib import _GeneratorContextManager
|
||||
|
||||
import numpy as np
|
||||
from numpy import (
|
||||
integer,
|
||||
timedelta64,
|
||||
datetime64,
|
||||
floating,
|
||||
complexfloating,
|
||||
void,
|
||||
longdouble,
|
||||
clongdouble,
|
||||
)
|
||||
from numpy._typing import NDArray, _CharLike_co, _FloatLike_co
|
||||
|
||||
_FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
|
||||
|
||||
class _FormatDict(TypedDict, total=False):
|
||||
bool: Callable[[np.bool], str]
|
||||
int: Callable[[integer[Any]], str]
|
||||
timedelta: Callable[[timedelta64], str]
|
||||
datetime: Callable[[datetime64], str]
|
||||
float: Callable[[floating[Any]], str]
|
||||
longfloat: Callable[[longdouble], str]
|
||||
complexfloat: Callable[[complexfloating[Any, Any]], str]
|
||||
longcomplexfloat: Callable[[clongdouble], str]
|
||||
void: Callable[[void], str]
|
||||
numpystr: Callable[[_CharLike_co], str]
|
||||
object: Callable[[object], str]
|
||||
all: Callable[[object], str]
|
||||
int_kind: Callable[[integer[Any]], str]
|
||||
float_kind: Callable[[floating[Any]], str]
|
||||
complex_kind: Callable[[complexfloating[Any, Any]], str]
|
||||
str_kind: Callable[[_CharLike_co], str]
|
||||
|
||||
class _FormatOptions(TypedDict):
|
||||
precision: int
|
||||
threshold: int
|
||||
edgeitems: int
|
||||
linewidth: int
|
||||
suppress: bool
|
||||
nanstr: str
|
||||
infstr: str
|
||||
formatter: None | _FormatDict
|
||||
sign: Literal["-", "+", " "]
|
||||
floatmode: _FloatMode
|
||||
legacy: Literal[False, "1.13", "1.21"]
|
||||
|
||||
def set_printoptions(
|
||||
precision: None | SupportsIndex = ...,
|
||||
threshold: None | int = ...,
|
||||
edgeitems: None | int = ...,
|
||||
linewidth: None | int = ...,
|
||||
suppress: None | bool = ...,
|
||||
nanstr: None | str = ...,
|
||||
infstr: None | str = ...,
|
||||
formatter: None | _FormatDict = ...,
|
||||
sign: Literal[None, "-", "+", " "] = ...,
|
||||
floatmode: None | _FloatMode = ...,
|
||||
*,
|
||||
legacy: Literal[None, False, "1.13", "1.21"] = ...,
|
||||
override_repr: None | Callable[[NDArray[Any]], str] = ...,
|
||||
) -> None: ...
|
||||
def get_printoptions() -> _FormatOptions: ...
|
||||
def array2string(
|
||||
a: NDArray[Any],
|
||||
max_line_width: None | int = ...,
|
||||
precision: None | SupportsIndex = ...,
|
||||
suppress_small: None | bool = ...,
|
||||
separator: str = ...,
|
||||
prefix: str = ...,
|
||||
# NOTE: With the `style` argument being deprecated,
|
||||
# all arguments between `formatter` and `suffix` are de facto
|
||||
# keyworld-only arguments
|
||||
*,
|
||||
formatter: None | _FormatDict = ...,
|
||||
threshold: None | int = ...,
|
||||
edgeitems: None | int = ...,
|
||||
sign: Literal[None, "-", "+", " "] = ...,
|
||||
floatmode: None | _FloatMode = ...,
|
||||
suffix: str = ...,
|
||||
legacy: Literal[None, False, "1.13", "1.21"] = ...,
|
||||
) -> str: ...
|
||||
def format_float_scientific(
|
||||
x: _FloatLike_co,
|
||||
precision: None | int = ...,
|
||||
unique: bool = ...,
|
||||
trim: Literal["k", ".", "0", "-"] = ...,
|
||||
sign: bool = ...,
|
||||
pad_left: None | int = ...,
|
||||
exp_digits: None | int = ...,
|
||||
min_digits: None | int = ...,
|
||||
) -> str: ...
|
||||
def format_float_positional(
|
||||
x: _FloatLike_co,
|
||||
precision: None | int = ...,
|
||||
unique: bool = ...,
|
||||
fractional: bool = ...,
|
||||
trim: Literal["k", ".", "0", "-"] = ...,
|
||||
sign: bool = ...,
|
||||
pad_left: None | int = ...,
|
||||
pad_right: None | int = ...,
|
||||
min_digits: None | int = ...,
|
||||
) -> str: ...
|
||||
def array_repr(
|
||||
arr: NDArray[Any],
|
||||
max_line_width: None | int = ...,
|
||||
precision: None | SupportsIndex = ...,
|
||||
suppress_small: None | bool = ...,
|
||||
) -> str: ...
|
||||
def array_str(
|
||||
a: NDArray[Any],
|
||||
max_line_width: None | int = ...,
|
||||
precision: None | SupportsIndex = ...,
|
||||
suppress_small: None | bool = ...,
|
||||
) -> str: ...
|
||||
def printoptions(
|
||||
precision: None | SupportsIndex = ...,
|
||||
threshold: None | int = ...,
|
||||
edgeitems: None | int = ...,
|
||||
linewidth: None | int = ...,
|
||||
suppress: None | bool = ...,
|
||||
nanstr: None | str = ...,
|
||||
infstr: None | str = ...,
|
||||
formatter: None | _FormatDict = ...,
|
||||
sign: Literal[None, "-", "+", " "] = ...,
|
||||
floatmode: None | _FloatMode = ...,
|
||||
*,
|
||||
legacy: Literal[None, False, "1.13", "1.21"] = ...
|
||||
) -> _GeneratorContextManager[_FormatOptions]: ...
|
13
lib/python3.13/site-packages/numpy/_core/cversions.py
Normal file
13
lib/python3.13/site-packages/numpy/_core/cversions.py
Normal file
@ -0,0 +1,13 @@
|
||||
"""Simple script to compute the api hash of the current API.
|
||||
|
||||
The API has is defined by numpy_api_order and ufunc_api_order.
|
||||
|
||||
"""
|
||||
from os.path import dirname
|
||||
|
||||
from code_generators.genapi import fullapi_hash
|
||||
from code_generators.numpy_api import full_api
|
||||
|
||||
if __name__ == '__main__':
|
||||
curdir = dirname(__file__)
|
||||
print(fullapi_hash(full_api))
|
1402
lib/python3.13/site-packages/numpy/_core/defchararray.py
Normal file
1402
lib/python3.13/site-packages/numpy/_core/defchararray.py
Normal file
File diff suppressed because it is too large
Load Diff
843
lib/python3.13/site-packages/numpy/_core/defchararray.pyi
Normal file
843
lib/python3.13/site-packages/numpy/_core/defchararray.pyi
Normal file
@ -0,0 +1,843 @@
|
||||
from typing import (
|
||||
Literal as L,
|
||||
overload,
|
||||
TypeVar,
|
||||
Any,
|
||||
SupportsIndex,
|
||||
SupportsInt,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
from numpy import (
|
||||
ndarray,
|
||||
dtype,
|
||||
str_,
|
||||
bytes_,
|
||||
int_,
|
||||
object_,
|
||||
_OrderKACF,
|
||||
_ShapeType_co,
|
||||
_CharDType,
|
||||
_SupportsBuffer,
|
||||
)
|
||||
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
_ShapeLike,
|
||||
_ArrayLikeStr_co as U_co,
|
||||
_ArrayLikeBytes_co as S_co,
|
||||
_ArrayLikeInt_co as i_co,
|
||||
_ArrayLikeBool_co as b_co,
|
||||
)
|
||||
|
||||
from numpy._core.multiarray import compare_chararrays as compare_chararrays
|
||||
|
||||
_SCT = TypeVar("_SCT", str_, bytes_)
|
||||
_CharArray = chararray[Any, dtype[_SCT]]
|
||||
|
||||
class chararray(ndarray[_ShapeType_co, _CharDType]):
|
||||
@overload
|
||||
def __new__(
|
||||
subtype,
|
||||
shape: _ShapeLike,
|
||||
itemsize: SupportsIndex | SupportsInt = ...,
|
||||
unicode: L[False] = ...,
|
||||
buffer: _SupportsBuffer = ...,
|
||||
offset: SupportsIndex = ...,
|
||||
strides: _ShapeLike = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> chararray[Any, dtype[bytes_]]: ...
|
||||
@overload
|
||||
def __new__(
|
||||
subtype,
|
||||
shape: _ShapeLike,
|
||||
itemsize: SupportsIndex | SupportsInt = ...,
|
||||
unicode: L[True] = ...,
|
||||
buffer: _SupportsBuffer = ...,
|
||||
offset: SupportsIndex = ...,
|
||||
strides: _ShapeLike = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> chararray[Any, dtype[str_]]: ...
|
||||
|
||||
def __array_finalize__(self, obj: object) -> None: ...
|
||||
def __mul__(self, other: i_co) -> chararray[Any, _CharDType]: ...
|
||||
def __rmul__(self, other: i_co) -> chararray[Any, _CharDType]: ...
|
||||
def __mod__(self, i: Any) -> chararray[Any, _CharDType]: ...
|
||||
|
||||
@overload
|
||||
def __eq__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def __eq__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def __ne__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def __ne__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def __ge__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def __ge__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def __le__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def __le__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def __gt__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def __gt__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def __lt__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def __lt__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def __add__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def __add__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def __radd__(
|
||||
self: _CharArray[str_],
|
||||
other: U_co,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def __radd__(
|
||||
self: _CharArray[bytes_],
|
||||
other: S_co,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def center(
|
||||
self: _CharArray[str_],
|
||||
width: i_co,
|
||||
fillchar: U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def center(
|
||||
self: _CharArray[bytes_],
|
||||
width: i_co,
|
||||
fillchar: S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def count(
|
||||
self: _CharArray[str_],
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def count(
|
||||
self: _CharArray[bytes_],
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
def decode(
|
||||
self: _CharArray[bytes_],
|
||||
encoding: None | str = ...,
|
||||
errors: None | str = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
|
||||
def encode(
|
||||
self: _CharArray[str_],
|
||||
encoding: None | str = ...,
|
||||
errors: None | str = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def endswith(
|
||||
self: _CharArray[str_],
|
||||
suffix: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def endswith(
|
||||
self: _CharArray[bytes_],
|
||||
suffix: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
def expandtabs(
|
||||
self,
|
||||
tabsize: i_co = ...,
|
||||
) -> chararray[Any, _CharDType]: ...
|
||||
|
||||
@overload
|
||||
def find(
|
||||
self: _CharArray[str_],
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def find(
|
||||
self: _CharArray[bytes_],
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def index(
|
||||
self: _CharArray[str_],
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def index(
|
||||
self: _CharArray[bytes_],
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def join(
|
||||
self: _CharArray[str_],
|
||||
seq: U_co,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def join(
|
||||
self: _CharArray[bytes_],
|
||||
seq: S_co,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def ljust(
|
||||
self: _CharArray[str_],
|
||||
width: i_co,
|
||||
fillchar: U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def ljust(
|
||||
self: _CharArray[bytes_],
|
||||
width: i_co,
|
||||
fillchar: S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def lstrip(
|
||||
self: _CharArray[str_],
|
||||
chars: None | U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def lstrip(
|
||||
self: _CharArray[bytes_],
|
||||
chars: None | S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def partition(
|
||||
self: _CharArray[str_],
|
||||
sep: U_co,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def partition(
|
||||
self: _CharArray[bytes_],
|
||||
sep: S_co,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def replace(
|
||||
self: _CharArray[str_],
|
||||
old: U_co,
|
||||
new: U_co,
|
||||
count: None | i_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def replace(
|
||||
self: _CharArray[bytes_],
|
||||
old: S_co,
|
||||
new: S_co,
|
||||
count: None | i_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rfind(
|
||||
self: _CharArray[str_],
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def rfind(
|
||||
self: _CharArray[bytes_],
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def rindex(
|
||||
self: _CharArray[str_],
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def rindex(
|
||||
self: _CharArray[bytes_],
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def rjust(
|
||||
self: _CharArray[str_],
|
||||
width: i_co,
|
||||
fillchar: U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def rjust(
|
||||
self: _CharArray[bytes_],
|
||||
width: i_co,
|
||||
fillchar: S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rpartition(
|
||||
self: _CharArray[str_],
|
||||
sep: U_co,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def rpartition(
|
||||
self: _CharArray[bytes_],
|
||||
sep: S_co,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rsplit(
|
||||
self: _CharArray[str_],
|
||||
sep: None | U_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def rsplit(
|
||||
self: _CharArray[bytes_],
|
||||
sep: None | S_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def rstrip(
|
||||
self: _CharArray[str_],
|
||||
chars: None | U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def rstrip(
|
||||
self: _CharArray[bytes_],
|
||||
chars: None | S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def split(
|
||||
self: _CharArray[str_],
|
||||
sep: None | U_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def split(
|
||||
self: _CharArray[bytes_],
|
||||
sep: None | S_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
def splitlines(self, keepends: None | b_co = ...) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def startswith(
|
||||
self: _CharArray[str_],
|
||||
prefix: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def startswith(
|
||||
self: _CharArray[bytes_],
|
||||
prefix: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def strip(
|
||||
self: _CharArray[str_],
|
||||
chars: None | U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def strip(
|
||||
self: _CharArray[bytes_],
|
||||
chars: None | S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def translate(
|
||||
self: _CharArray[str_],
|
||||
table: U_co,
|
||||
deletechars: None | U_co = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def translate(
|
||||
self: _CharArray[bytes_],
|
||||
table: S_co,
|
||||
deletechars: None | S_co = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
|
||||
def zfill(self, width: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ...
|
||||
def capitalize(self) -> chararray[_ShapeType_co, _CharDType]: ...
|
||||
def title(self) -> chararray[_ShapeType_co, _CharDType]: ...
|
||||
def swapcase(self) -> chararray[_ShapeType_co, _CharDType]: ...
|
||||
def lower(self) -> chararray[_ShapeType_co, _CharDType]: ...
|
||||
def upper(self) -> chararray[_ShapeType_co, _CharDType]: ...
|
||||
def isalnum(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def isalpha(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def isdigit(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def islower(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def isspace(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def istitle(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def isupper(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def isnumeric(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
def isdecimal(self) -> ndarray[_ShapeType_co, dtype[np.bool]]: ...
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
# Comparison
|
||||
@overload
|
||||
def equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def not_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def not_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def greater_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def greater_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def less_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def less_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def greater(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def greater(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def less(x1: U_co, x2: U_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def less(x1: S_co, x2: S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
# String operations
|
||||
@overload
|
||||
def add(x1: U_co, x2: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def add(x1: S_co, x2: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def multiply(a: U_co, i: i_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def multiply(a: S_co, i: i_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def mod(a: U_co, value: Any) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def mod(a: S_co, value: Any) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def capitalize(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def capitalize(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
def decode(
|
||||
a: S_co,
|
||||
encoding: None | str = ...,
|
||||
errors: None | str = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
|
||||
def encode(
|
||||
a: U_co,
|
||||
encoding: None | str = ...,
|
||||
errors: None | str = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def join(sep: U_co, seq: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def lower(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def lower(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def lstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def lstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def partition(a: U_co, sep: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def replace(
|
||||
a: U_co,
|
||||
old: U_co,
|
||||
new: U_co,
|
||||
count: None | i_co = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def replace(
|
||||
a: S_co,
|
||||
old: S_co,
|
||||
new: S_co,
|
||||
count: None | i_co = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rjust(
|
||||
a: U_co,
|
||||
width: i_co,
|
||||
fillchar: U_co = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def rjust(
|
||||
a: S_co,
|
||||
width: i_co,
|
||||
fillchar: S_co = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def rsplit(
|
||||
a: U_co,
|
||||
sep: None | U_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def rsplit(
|
||||
a: S_co,
|
||||
sep: None | S_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def rstrip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def rstrip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def split(
|
||||
a: U_co,
|
||||
sep: None | U_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def split(
|
||||
a: S_co,
|
||||
sep: None | S_co = ...,
|
||||
maxsplit: None | i_co = ...,
|
||||
) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def splitlines(a: U_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def splitlines(a: S_co, keepends: None | b_co = ...) -> NDArray[object_]: ...
|
||||
|
||||
@overload
|
||||
def strip(a: U_co, chars: None | U_co = ...) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def strip(a: S_co, chars: None | S_co = ...) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def swapcase(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def swapcase(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def title(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def title(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def translate(
|
||||
a: U_co,
|
||||
table: U_co,
|
||||
deletechars: None | U_co = ...,
|
||||
) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def translate(
|
||||
a: S_co,
|
||||
table: S_co,
|
||||
deletechars: None | S_co = ...,
|
||||
) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def upper(a: U_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def upper(a: S_co) -> NDArray[bytes_]: ...
|
||||
|
||||
@overload
|
||||
def zfill(a: U_co, width: i_co) -> NDArray[str_]: ...
|
||||
@overload
|
||||
def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ...
|
||||
|
||||
# String information
|
||||
@overload
|
||||
def count(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def count(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def endswith(
|
||||
a: U_co,
|
||||
suffix: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def endswith(
|
||||
a: S_co,
|
||||
suffix: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def find(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def find(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def index(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def index(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
def isalpha(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
def isalnum(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
def isdecimal(a: U_co) -> NDArray[np.bool]: ...
|
||||
def isdigit(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
def islower(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
def isnumeric(a: U_co) -> NDArray[np.bool]: ...
|
||||
def isspace(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
def istitle(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
def isupper(a: U_co | S_co) -> NDArray[np.bool]: ...
|
||||
|
||||
@overload
|
||||
def rfind(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def rfind(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def rindex(
|
||||
a: U_co,
|
||||
sub: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
@overload
|
||||
def rindex(
|
||||
a: S_co,
|
||||
sub: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[int_]: ...
|
||||
|
||||
@overload
|
||||
def startswith(
|
||||
a: U_co,
|
||||
prefix: U_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def startswith(
|
||||
a: S_co,
|
||||
prefix: S_co,
|
||||
start: i_co = ...,
|
||||
end: None | i_co = ...,
|
||||
) -> NDArray[np.bool]: ...
|
||||
|
||||
def str_len(A: U_co | S_co) -> NDArray[int_]: ...
|
||||
|
||||
# Overload 1 and 2: str- or bytes-based array-likes
|
||||
# overload 3: arbitrary object with unicode=False (-> bytes_)
|
||||
# overload 4: arbitrary object with unicode=True (-> str_)
|
||||
@overload
|
||||
def array(
|
||||
obj: U_co,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def array(
|
||||
obj: S_co,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def array(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def array(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
copy: bool = ...,
|
||||
unicode: L[True] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
|
||||
@overload
|
||||
def asarray(
|
||||
obj: U_co,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
||||
@overload
|
||||
def asarray(
|
||||
obj: S_co,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def asarray(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[False] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[bytes_]: ...
|
||||
@overload
|
||||
def asarray(
|
||||
obj: object,
|
||||
itemsize: None | int = ...,
|
||||
unicode: L[True] = ...,
|
||||
order: _OrderKACF = ...,
|
||||
) -> _CharArray[str_]: ...
|
1505
lib/python3.13/site-packages/numpy/_core/einsumfunc.py
Normal file
1505
lib/python3.13/site-packages/numpy/_core/einsumfunc.py
Normal file
File diff suppressed because it is too large
Load Diff
183
lib/python3.13/site-packages/numpy/_core/einsumfunc.pyi
Normal file
183
lib/python3.13/site-packages/numpy/_core/einsumfunc.pyi
Normal file
@ -0,0 +1,183 @@
|
||||
from collections.abc import Sequence
|
||||
from typing import TypeVar, Any, overload, Literal
|
||||
|
||||
import numpy as np
|
||||
from numpy import number, _OrderKACF
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
_ArrayLikeBool_co,
|
||||
_ArrayLikeUInt_co,
|
||||
_ArrayLikeInt_co,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
_ArrayLikeObject_co,
|
||||
_DTypeLikeBool,
|
||||
_DTypeLikeUInt,
|
||||
_DTypeLikeInt,
|
||||
_DTypeLikeFloat,
|
||||
_DTypeLikeComplex,
|
||||
_DTypeLikeComplex_co,
|
||||
_DTypeLikeObject,
|
||||
)
|
||||
|
||||
_ArrayType = TypeVar(
|
||||
"_ArrayType",
|
||||
bound=NDArray[np.bool | number[Any]],
|
||||
)
|
||||
|
||||
_OptimizeKind = None | bool | Literal["greedy", "optimal"] | Sequence[Any]
|
||||
_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
|
||||
_CastingUnsafe = Literal["unsafe"]
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
# TODO: Properly handle the `casting`-based combinatorics
|
||||
# TODO: We need to evaluate the content `__subscripts` in order
|
||||
# to identify whether or an array or scalar is returned. At a cursory
|
||||
# glance this seems like something that can quite easily be done with
|
||||
# a mypy plugin.
|
||||
# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeBool_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeBool = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeUInt_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeUInt = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeInt_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeInt = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeFloat_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeFloat = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeComplex = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeComplex_co = ...,
|
||||
out: None = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeComplex_co,
|
||||
out: _ArrayType,
|
||||
dtype: None | _DTypeLikeComplex_co = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
out: _ArrayType,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeComplex_co = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeObject_co,
|
||||
out: None = ...,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
out: None = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeObject_co,
|
||||
out: _ArrayType,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
order: _OrderKACF = ...,
|
||||
casting: _CastingSafe = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
@overload
|
||||
def einsum(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: Any,
|
||||
out: _ArrayType,
|
||||
casting: _CastingUnsafe,
|
||||
dtype: None | _DTypeLikeObject = ...,
|
||||
order: _OrderKACF = ...,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> _ArrayType: ...
|
||||
|
||||
# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
|
||||
# It is therefore excluded from the signatures below.
|
||||
# NOTE: In practice the list consists of a `str` (first element)
|
||||
# and a variable number of integer tuples.
|
||||
def einsum_path(
|
||||
subscripts: str | _ArrayLikeInt_co,
|
||||
/,
|
||||
*operands: _ArrayLikeComplex_co | _DTypeLikeObject,
|
||||
optimize: _OptimizeKind = ...,
|
||||
) -> tuple[list[Any], str]: ...
|
4320
lib/python3.13/site-packages/numpy/_core/fromnumeric.py
Normal file
4320
lib/python3.13/site-packages/numpy/_core/fromnumeric.py
Normal file
File diff suppressed because it is too large
Load Diff
1245
lib/python3.13/site-packages/numpy/_core/fromnumeric.pyi
Normal file
1245
lib/python3.13/site-packages/numpy/_core/fromnumeric.pyi
Normal file
File diff suppressed because it is too large
Load Diff
562
lib/python3.13/site-packages/numpy/_core/function_base.py
Normal file
562
lib/python3.13/site-packages/numpy/_core/function_base.py
Normal file
@ -0,0 +1,562 @@
|
||||
import functools
|
||||
import warnings
|
||||
import operator
|
||||
import types
|
||||
|
||||
import numpy as np
|
||||
from . import numeric as _nx
|
||||
from .numeric import result_type, nan, asanyarray, ndim
|
||||
from numpy._core.multiarray import add_docstring
|
||||
from numpy._core._multiarray_umath import _array_converter
|
||||
from numpy._core import overrides
|
||||
|
||||
__all__ = ['logspace', 'linspace', 'geomspace']
|
||||
|
||||
|
||||
array_function_dispatch = functools.partial(
|
||||
overrides.array_function_dispatch, module='numpy')
|
||||
|
||||
|
||||
def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
|
||||
dtype=None, axis=None, *, device=None):
|
||||
return (start, stop)
|
||||
|
||||
|
||||
@array_function_dispatch(_linspace_dispatcher)
|
||||
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
|
||||
axis=0, *, device=None):
|
||||
"""
|
||||
Return evenly spaced numbers over a specified interval.
|
||||
|
||||
Returns `num` evenly spaced samples, calculated over the
|
||||
interval [`start`, `stop`].
|
||||
|
||||
The endpoint of the interval can optionally be excluded.
|
||||
|
||||
.. versionchanged:: 1.16.0
|
||||
Non-scalar `start` and `stop` are now supported.
|
||||
|
||||
.. versionchanged:: 1.20.0
|
||||
Values are rounded towards ``-inf`` instead of ``0`` when an
|
||||
integer ``dtype`` is specified. The old behavior can
|
||||
still be obtained with ``np.linspace(start, stop, num).astype(int)``
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : array_like
|
||||
The starting value of the sequence.
|
||||
stop : array_like
|
||||
The end value of the sequence, unless `endpoint` is set to False.
|
||||
In that case, the sequence consists of all but the last of ``num + 1``
|
||||
evenly spaced samples, so that `stop` is excluded. Note that the step
|
||||
size changes when `endpoint` is False.
|
||||
num : int, optional
|
||||
Number of samples to generate. Default is 50. Must be non-negative.
|
||||
endpoint : bool, optional
|
||||
If True, `stop` is the last sample. Otherwise, it is not included.
|
||||
Default is True.
|
||||
retstep : bool, optional
|
||||
If True, return (`samples`, `step`), where `step` is the spacing
|
||||
between samples.
|
||||
dtype : dtype, optional
|
||||
The type of the output array. If `dtype` is not given, the data type
|
||||
is inferred from `start` and `stop`. The inferred dtype will never be
|
||||
an integer; `float` is chosen even if the arguments would produce an
|
||||
array of integers.
|
||||
|
||||
.. versionadded:: 1.9.0
|
||||
axis : int, optional
|
||||
The axis in the result to store the samples. Relevant only if start
|
||||
or stop are array-like. By default (0), the samples will be along a
|
||||
new axis inserted at the beginning. Use -1 to get an axis at the end.
|
||||
|
||||
.. versionadded:: 1.16.0
|
||||
device : str, optional
|
||||
The device on which to place the created array. Default: None.
|
||||
For Array-API interoperability only, so must be ``"cpu"`` if passed.
|
||||
|
||||
.. versionadded:: 2.0.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : ndarray
|
||||
There are `num` equally spaced samples in the closed interval
|
||||
``[start, stop]`` or the half-open interval ``[start, stop)``
|
||||
(depending on whether `endpoint` is True or False).
|
||||
step : float, optional
|
||||
Only returned if `retstep` is True
|
||||
|
||||
Size of spacing between samples.
|
||||
|
||||
|
||||
See Also
|
||||
--------
|
||||
arange : Similar to `linspace`, but uses a step size (instead of the
|
||||
number of samples).
|
||||
geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
|
||||
scale (a geometric progression).
|
||||
logspace : Similar to `geomspace`, but with the end points specified as
|
||||
logarithms.
|
||||
:ref:`how-to-partition`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.linspace(2.0, 3.0, num=5)
|
||||
array([2. , 2.25, 2.5 , 2.75, 3. ])
|
||||
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
|
||||
array([2. , 2.2, 2.4, 2.6, 2.8])
|
||||
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
|
||||
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
|
||||
|
||||
Graphical illustration:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> N = 8
|
||||
>>> y = np.zeros(N)
|
||||
>>> x1 = np.linspace(0, 10, N, endpoint=True)
|
||||
>>> x2 = np.linspace(0, 10, N, endpoint=False)
|
||||
>>> plt.plot(x1, y, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.plot(x2, y + 0.5, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.ylim([-0.5, 1])
|
||||
(-0.5, 1)
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
num = operator.index(num)
|
||||
if num < 0:
|
||||
raise ValueError(
|
||||
"Number of samples, %s, must be non-negative." % num
|
||||
)
|
||||
div = (num - 1) if endpoint else num
|
||||
|
||||
conv = _array_converter(start, stop)
|
||||
start, stop = conv.as_arrays()
|
||||
dt = conv.result_type(ensure_inexact=True)
|
||||
|
||||
if dtype is None:
|
||||
dtype = dt
|
||||
integer_dtype = False
|
||||
else:
|
||||
integer_dtype = _nx.issubdtype(dtype, _nx.integer)
|
||||
|
||||
# Use `dtype=type(dt)` to enforce a floating point evaluation:
|
||||
delta = np.subtract(stop, start, dtype=type(dt))
|
||||
y = _nx.arange(
|
||||
0, num, dtype=dt, device=device
|
||||
).reshape((-1,) + (1,) * ndim(delta))
|
||||
|
||||
# In-place multiplication y *= delta/div is faster, but prevents
|
||||
# the multiplicant from overriding what class is produced, and thus
|
||||
# prevents, e.g. use of Quantities, see gh-7142. Hence, we multiply
|
||||
# in place only for standard scalar types.
|
||||
if div > 0:
|
||||
_mult_inplace = _nx.isscalar(delta)
|
||||
step = delta / div
|
||||
any_step_zero = (
|
||||
step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any())
|
||||
if any_step_zero:
|
||||
# Special handling for denormal numbers, gh-5437
|
||||
y /= div
|
||||
if _mult_inplace:
|
||||
y *= delta
|
||||
else:
|
||||
y = y * delta
|
||||
else:
|
||||
if _mult_inplace:
|
||||
y *= step
|
||||
else:
|
||||
y = y * step
|
||||
else:
|
||||
# sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
|
||||
# have an undefined step
|
||||
step = nan
|
||||
# Multiply with delta to allow possible override of output class.
|
||||
y = y * delta
|
||||
|
||||
y += start
|
||||
|
||||
if endpoint and num > 1:
|
||||
y[-1, ...] = stop
|
||||
|
||||
if axis != 0:
|
||||
y = _nx.moveaxis(y, 0, axis)
|
||||
|
||||
if integer_dtype:
|
||||
_nx.floor(y, out=y)
|
||||
|
||||
y = conv.wrap(y.astype(dtype, copy=False))
|
||||
if retstep:
|
||||
return y, step
|
||||
else:
|
||||
return y
|
||||
|
||||
|
||||
def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
|
||||
dtype=None, axis=None):
|
||||
return (start, stop, base)
|
||||
|
||||
|
||||
@array_function_dispatch(_logspace_dispatcher)
|
||||
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
|
||||
axis=0):
|
||||
"""
|
||||
Return numbers spaced evenly on a log scale.
|
||||
|
||||
In linear space, the sequence starts at ``base ** start``
|
||||
(`base` to the power of `start`) and ends with ``base ** stop``
|
||||
(see `endpoint` below).
|
||||
|
||||
.. versionchanged:: 1.16.0
|
||||
Non-scalar `start` and `stop` are now supported.
|
||||
|
||||
.. versionchanged:: 1.25.0
|
||||
Non-scalar 'base` is now supported
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : array_like
|
||||
``base ** start`` is the starting value of the sequence.
|
||||
stop : array_like
|
||||
``base ** stop`` is the final value of the sequence, unless `endpoint`
|
||||
is False. In that case, ``num + 1`` values are spaced over the
|
||||
interval in log-space, of which all but the last (a sequence of
|
||||
length `num`) are returned.
|
||||
num : integer, optional
|
||||
Number of samples to generate. Default is 50.
|
||||
endpoint : boolean, optional
|
||||
If true, `stop` is the last sample. Otherwise, it is not included.
|
||||
Default is True.
|
||||
base : array_like, optional
|
||||
The base of the log space. The step size between the elements in
|
||||
``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
|
||||
Default is 10.0.
|
||||
dtype : dtype
|
||||
The type of the output array. If `dtype` is not given, the data type
|
||||
is inferred from `start` and `stop`. The inferred type will never be
|
||||
an integer; `float` is chosen even if the arguments would produce an
|
||||
array of integers.
|
||||
axis : int, optional
|
||||
The axis in the result to store the samples. Relevant only if start,
|
||||
stop, or base are array-like. By default (0), the samples will be
|
||||
along a new axis inserted at the beginning. Use -1 to get an axis at
|
||||
the end.
|
||||
|
||||
.. versionadded:: 1.16.0
|
||||
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : ndarray
|
||||
`num` samples, equally spaced on a log scale.
|
||||
|
||||
See Also
|
||||
--------
|
||||
arange : Similar to linspace, with the step size specified instead of the
|
||||
number of samples. Note that, when used with a float endpoint, the
|
||||
endpoint may or may not be included.
|
||||
linspace : Similar to logspace, but with the samples uniformly distributed
|
||||
in linear space, instead of log space.
|
||||
geomspace : Similar to logspace, but with endpoints specified directly.
|
||||
:ref:`how-to-partition`
|
||||
|
||||
Notes
|
||||
-----
|
||||
If base is a scalar, logspace is equivalent to the code
|
||||
|
||||
>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
|
||||
... # doctest: +SKIP
|
||||
>>> power(base, y).astype(dtype)
|
||||
... # doctest: +SKIP
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.logspace(2.0, 3.0, num=4)
|
||||
array([ 100. , 215.443469 , 464.15888336, 1000. ])
|
||||
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
|
||||
array([100. , 177.827941 , 316.22776602, 562.34132519])
|
||||
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
|
||||
array([4. , 5.0396842 , 6.34960421, 8. ])
|
||||
>>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
|
||||
array([[ 4. , 5.0396842 , 6.34960421, 8. ],
|
||||
[ 9. , 12.98024613, 18.72075441, 27. ]])
|
||||
|
||||
Graphical illustration:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> N = 10
|
||||
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
|
||||
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
|
||||
>>> y = np.zeros(N)
|
||||
>>> plt.plot(x1, y, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.plot(x2, y + 0.5, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.ylim([-0.5, 1])
|
||||
(-0.5, 1)
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
if not isinstance(base, (float, int)) and np.ndim(base):
|
||||
# If base is non-scalar, broadcast it with the others, since it
|
||||
# may influence how axis is interpreted.
|
||||
ndmax = np.broadcast(start, stop, base).ndim
|
||||
start, stop, base = (
|
||||
np.array(a, copy=None, subok=True, ndmin=ndmax)
|
||||
for a in (start, stop, base)
|
||||
)
|
||||
base = np.expand_dims(base, axis=axis)
|
||||
y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
|
||||
if dtype is None:
|
||||
return _nx.power(base, y)
|
||||
return _nx.power(base, y).astype(dtype, copy=False)
|
||||
|
||||
|
||||
def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
|
||||
axis=None):
|
||||
return (start, stop)
|
||||
|
||||
|
||||
@array_function_dispatch(_geomspace_dispatcher)
|
||||
def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
|
||||
"""
|
||||
Return numbers spaced evenly on a log scale (a geometric progression).
|
||||
|
||||
This is similar to `logspace`, but with endpoints specified directly.
|
||||
Each output sample is a constant multiple of the previous.
|
||||
|
||||
.. versionchanged:: 1.16.0
|
||||
Non-scalar `start` and `stop` are now supported.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start : array_like
|
||||
The starting value of the sequence.
|
||||
stop : array_like
|
||||
The final value of the sequence, unless `endpoint` is False.
|
||||
In that case, ``num + 1`` values are spaced over the
|
||||
interval in log-space, of which all but the last (a sequence of
|
||||
length `num`) are returned.
|
||||
num : integer, optional
|
||||
Number of samples to generate. Default is 50.
|
||||
endpoint : boolean, optional
|
||||
If true, `stop` is the last sample. Otherwise, it is not included.
|
||||
Default is True.
|
||||
dtype : dtype
|
||||
The type of the output array. If `dtype` is not given, the data type
|
||||
is inferred from `start` and `stop`. The inferred dtype will never be
|
||||
an integer; `float` is chosen even if the arguments would produce an
|
||||
array of integers.
|
||||
axis : int, optional
|
||||
The axis in the result to store the samples. Relevant only if start
|
||||
or stop are array-like. By default (0), the samples will be along a
|
||||
new axis inserted at the beginning. Use -1 to get an axis at the end.
|
||||
|
||||
.. versionadded:: 1.16.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
samples : ndarray
|
||||
`num` samples, equally spaced on a log scale.
|
||||
|
||||
See Also
|
||||
--------
|
||||
logspace : Similar to geomspace, but with endpoints specified using log
|
||||
and base.
|
||||
linspace : Similar to geomspace, but with arithmetic instead of geometric
|
||||
progression.
|
||||
arange : Similar to linspace, with the step size specified instead of the
|
||||
number of samples.
|
||||
:ref:`how-to-partition`
|
||||
|
||||
Notes
|
||||
-----
|
||||
If the inputs or dtype are complex, the output will follow a logarithmic
|
||||
spiral in the complex plane. (There are an infinite number of spirals
|
||||
passing through two points; the output will follow the shortest such path.)
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.geomspace(1, 1000, num=4)
|
||||
array([ 1., 10., 100., 1000.])
|
||||
>>> np.geomspace(1, 1000, num=3, endpoint=False)
|
||||
array([ 1., 10., 100.])
|
||||
>>> np.geomspace(1, 1000, num=4, endpoint=False)
|
||||
array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
|
||||
>>> np.geomspace(1, 256, num=9)
|
||||
array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
|
||||
|
||||
Note that the above may not produce exact integers:
|
||||
|
||||
>>> np.geomspace(1, 256, num=9, dtype=int)
|
||||
array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
|
||||
>>> np.around(np.geomspace(1, 256, num=9)).astype(int)
|
||||
array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
|
||||
|
||||
Negative, decreasing, and complex inputs are allowed:
|
||||
|
||||
>>> np.geomspace(1000, 1, num=4)
|
||||
array([1000., 100., 10., 1.])
|
||||
>>> np.geomspace(-1000, -1, num=4)
|
||||
array([-1000., -100., -10., -1.])
|
||||
>>> np.geomspace(1j, 1000j, num=4) # Straight line
|
||||
array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
|
||||
>>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
|
||||
array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
|
||||
6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
|
||||
1.00000000e+00+0.00000000e+00j])
|
||||
|
||||
Graphical illustration of `endpoint` parameter:
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> N = 10
|
||||
>>> y = np.zeros(N)
|
||||
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
|
||||
[<matplotlib.lines.Line2D object at 0x...>]
|
||||
>>> plt.axis([0.5, 2000, 0, 3])
|
||||
[0.5, 2000, 0, 3]
|
||||
>>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
start = asanyarray(start)
|
||||
stop = asanyarray(stop)
|
||||
if _nx.any(start == 0) or _nx.any(stop == 0):
|
||||
raise ValueError('Geometric sequence cannot include zero')
|
||||
|
||||
dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
|
||||
if dtype is None:
|
||||
dtype = dt
|
||||
else:
|
||||
# complex to dtype('complex128'), for instance
|
||||
dtype = _nx.dtype(dtype)
|
||||
|
||||
# Promote both arguments to the same dtype in case, for instance, one is
|
||||
# complex and another is negative and log would produce NaN otherwise.
|
||||
# Copy since we may change things in-place further down.
|
||||
start = start.astype(dt, copy=True)
|
||||
stop = stop.astype(dt, copy=True)
|
||||
|
||||
# Allow negative real values and ensure a consistent result for complex
|
||||
# (including avoiding negligible real or imaginary parts in output) by
|
||||
# rotating start to positive real, calculating, then undoing rotation.
|
||||
out_sign = _nx.sign(start)
|
||||
start /= out_sign
|
||||
stop = stop / out_sign
|
||||
|
||||
log_start = _nx.log10(start)
|
||||
log_stop = _nx.log10(stop)
|
||||
result = logspace(log_start, log_stop, num=num,
|
||||
endpoint=endpoint, base=10.0, dtype=dt)
|
||||
|
||||
# Make sure the endpoints match the start and stop arguments. This is
|
||||
# necessary because np.exp(np.log(x)) is not necessarily equal to x.
|
||||
if num > 0:
|
||||
result[0] = start
|
||||
if num > 1 and endpoint:
|
||||
result[-1] = stop
|
||||
|
||||
result *= out_sign
|
||||
|
||||
if axis != 0:
|
||||
result = _nx.moveaxis(result, 0, axis)
|
||||
|
||||
return result.astype(dtype, copy=False)
|
||||
|
||||
|
||||
def _needs_add_docstring(obj):
|
||||
"""
|
||||
Returns true if the only way to set the docstring of `obj` from python is
|
||||
via add_docstring.
|
||||
|
||||
This function errs on the side of being overly conservative.
|
||||
"""
|
||||
Py_TPFLAGS_HEAPTYPE = 1 << 9
|
||||
|
||||
if isinstance(obj, (types.FunctionType, types.MethodType, property)):
|
||||
return False
|
||||
|
||||
if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _add_docstring(obj, doc, warn_on_python):
|
||||
if warn_on_python and not _needs_add_docstring(obj):
|
||||
warnings.warn(
|
||||
"add_newdoc was used on a pure-python object {}. "
|
||||
"Prefer to attach it directly to the source."
|
||||
.format(obj),
|
||||
UserWarning,
|
||||
stacklevel=3)
|
||||
try:
|
||||
add_docstring(obj, doc)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
def add_newdoc(place, obj, doc, warn_on_python=True):
|
||||
"""
|
||||
Add documentation to an existing object, typically one defined in C
|
||||
|
||||
The purpose is to allow easier editing of the docstrings without requiring
|
||||
a re-compile. This exists primarily for internal use within numpy itself.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
place : str
|
||||
The absolute name of the module to import from
|
||||
obj : str or None
|
||||
The name of the object to add documentation to, typically a class or
|
||||
function name.
|
||||
doc : {str, Tuple[str, str], List[Tuple[str, str]]}
|
||||
If a string, the documentation to apply to `obj`
|
||||
|
||||
If a tuple, then the first element is interpreted as an attribute
|
||||
of `obj` and the second as the docstring to apply -
|
||||
``(method, docstring)``
|
||||
|
||||
If a list, then each element of the list should be a tuple of length
|
||||
two - ``[(method1, docstring1), (method2, docstring2), ...]``
|
||||
warn_on_python : bool
|
||||
If True, the default, emit `UserWarning` if this is used to attach
|
||||
documentation to a pure-python object.
|
||||
|
||||
Notes
|
||||
-----
|
||||
This routine never raises an error if the docstring can't be written, but
|
||||
will raise an error if the object being documented does not exist.
|
||||
|
||||
This routine cannot modify read-only docstrings, as appear
|
||||
in new-style classes or built-in functions. Because this
|
||||
routine never raises an error the caller must check manually
|
||||
that the docstrings were changed.
|
||||
|
||||
Since this function grabs the ``char *`` from a c-level str object and puts
|
||||
it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
|
||||
C-API best-practices, by:
|
||||
|
||||
- modifying a `PyTypeObject` after calling `PyType_Ready`
|
||||
- calling `Py_INCREF` on the str and losing the reference, so the str
|
||||
will never be released
|
||||
|
||||
If possible it should be avoided.
|
||||
"""
|
||||
new = getattr(__import__(place, globals(), {}, [obj]), obj)
|
||||
if isinstance(doc, str):
|
||||
_add_docstring(new, doc.strip(), warn_on_python)
|
||||
elif isinstance(doc, tuple):
|
||||
attr, docstring = doc
|
||||
_add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
|
||||
elif isinstance(doc, list):
|
||||
for attr, docstring in doc:
|
||||
_add_docstring(
|
||||
getattr(new, attr), docstring.strip(), warn_on_python
|
||||
)
|
202
lib/python3.13/site-packages/numpy/_core/function_base.pyi
Normal file
202
lib/python3.13/site-packages/numpy/_core/function_base.pyi
Normal file
@ -0,0 +1,202 @@
|
||||
from typing import (
|
||||
Literal as L,
|
||||
overload,
|
||||
Any,
|
||||
SupportsIndex,
|
||||
TypeVar,
|
||||
)
|
||||
|
||||
from numpy import floating, complexfloating, generic
|
||||
from numpy._typing import (
|
||||
NDArray,
|
||||
DTypeLike,
|
||||
_DTypeLike,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeComplex_co,
|
||||
)
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
|
||||
__all__: list[str]
|
||||
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[False] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> tuple[NDArray[floating[Any]], floating[Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> tuple[NDArray[complexfloating[Any, Any]], complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> tuple[NDArray[_SCT], _SCT]: ...
|
||||
@overload
|
||||
def linspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
retstep: L[True] = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
*,
|
||||
device: None | L["cpu"] = ...,
|
||||
) -> tuple[NDArray[Any], Any]: ...
|
||||
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeFloat_co = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeComplex_co = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeComplex_co = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def logspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
base: _ArrayLikeComplex_co = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeFloat_co,
|
||||
stop: _ArrayLikeFloat_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[floating[Any]]: ...
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: None = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[complexfloating[Any, Any]]: ...
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: _DTypeLike[_SCT] = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[_SCT]: ...
|
||||
@overload
|
||||
def geomspace(
|
||||
start: _ArrayLikeComplex_co,
|
||||
stop: _ArrayLikeComplex_co,
|
||||
num: SupportsIndex = ...,
|
||||
endpoint: bool = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
axis: SupportsIndex = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def add_newdoc(
|
||||
place: str,
|
||||
obj: str,
|
||||
doc: str | tuple[str, str] | list[tuple[str, str]],
|
||||
warn_on_python: bool = ...,
|
||||
) -> None: ...
|
742
lib/python3.13/site-packages/numpy/_core/getlimits.py
Normal file
742
lib/python3.13/site-packages/numpy/_core/getlimits.py
Normal file
@ -0,0 +1,742 @@
|
||||
"""Machine limits for Float32 and Float64 and (long double) if available...
|
||||
|
||||
"""
|
||||
__all__ = ['finfo', 'iinfo']
|
||||
|
||||
import warnings
|
||||
|
||||
from .._utils import set_module
|
||||
from ._machar import MachAr
|
||||
from . import numeric
|
||||
from . import numerictypes as ntypes
|
||||
from .numeric import array, inf, nan
|
||||
from .umath import log10, exp2, nextafter, isnan
|
||||
|
||||
|
||||
def _fr0(a):
|
||||
"""fix rank-0 --> rank-1"""
|
||||
if a.ndim == 0:
|
||||
a = a.copy()
|
||||
a.shape = (1,)
|
||||
return a
|
||||
|
||||
|
||||
def _fr1(a):
|
||||
"""fix rank > 0 --> rank-0"""
|
||||
if a.size == 1:
|
||||
a = a.copy()
|
||||
a.shape = ()
|
||||
return a
|
||||
|
||||
|
||||
class MachArLike:
|
||||
""" Object to simulate MachAr instance """
|
||||
def __init__(self, ftype, *, eps, epsneg, huge, tiny,
|
||||
ibeta, smallest_subnormal=None, **kwargs):
|
||||
self.params = _MACHAR_PARAMS[ftype]
|
||||
self.ftype = ftype
|
||||
self.title = self.params['title']
|
||||
# Parameter types same as for discovered MachAr object.
|
||||
if not smallest_subnormal:
|
||||
self._smallest_subnormal = nextafter(
|
||||
self.ftype(0), self.ftype(1), dtype=self.ftype)
|
||||
else:
|
||||
self._smallest_subnormal = smallest_subnormal
|
||||
self.epsilon = self.eps = self._float_to_float(eps)
|
||||
self.epsneg = self._float_to_float(epsneg)
|
||||
self.xmax = self.huge = self._float_to_float(huge)
|
||||
self.xmin = self._float_to_float(tiny)
|
||||
self.smallest_normal = self.tiny = self._float_to_float(tiny)
|
||||
self.ibeta = self.params['itype'](ibeta)
|
||||
self.__dict__.update(kwargs)
|
||||
self.precision = int(-log10(self.eps))
|
||||
self.resolution = self._float_to_float(
|
||||
self._float_conv(10) ** (-self.precision))
|
||||
self._str_eps = self._float_to_str(self.eps)
|
||||
self._str_epsneg = self._float_to_str(self.epsneg)
|
||||
self._str_xmin = self._float_to_str(self.xmin)
|
||||
self._str_xmax = self._float_to_str(self.xmax)
|
||||
self._str_resolution = self._float_to_str(self.resolution)
|
||||
self._str_smallest_normal = self._float_to_str(self.xmin)
|
||||
|
||||
@property
|
||||
def smallest_subnormal(self):
|
||||
"""Return the value for the smallest subnormal.
|
||||
|
||||
Returns
|
||||
-------
|
||||
smallest_subnormal : float
|
||||
value for the smallest subnormal.
|
||||
|
||||
Warns
|
||||
-----
|
||||
UserWarning
|
||||
If the calculated value for the smallest subnormal is zero.
|
||||
"""
|
||||
# Check that the calculated value is not zero, in case it raises a
|
||||
# warning.
|
||||
value = self._smallest_subnormal
|
||||
if self.ftype(0) == value:
|
||||
warnings.warn(
|
||||
'The value of the smallest subnormal for {} type '
|
||||
'is zero.'.format(self.ftype), UserWarning, stacklevel=2)
|
||||
|
||||
return self._float_to_float(value)
|
||||
|
||||
@property
|
||||
def _str_smallest_subnormal(self):
|
||||
"""Return the string representation of the smallest subnormal."""
|
||||
return self._float_to_str(self.smallest_subnormal)
|
||||
|
||||
def _float_to_float(self, value):
|
||||
"""Converts float to float.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
value : float
|
||||
value to be converted.
|
||||
"""
|
||||
return _fr1(self._float_conv(value))
|
||||
|
||||
def _float_conv(self, value):
|
||||
"""Converts float to conv.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
value : float
|
||||
value to be converted.
|
||||
"""
|
||||
return array([value], self.ftype)
|
||||
|
||||
def _float_to_str(self, value):
|
||||
"""Converts float to str.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
value : float
|
||||
value to be converted.
|
||||
"""
|
||||
return self.params['fmt'] % array(_fr0(value)[0], self.ftype)
|
||||
|
||||
|
||||
_convert_to_float = {
|
||||
ntypes.csingle: ntypes.single,
|
||||
ntypes.complex128: ntypes.float64,
|
||||
ntypes.clongdouble: ntypes.longdouble
|
||||
}
|
||||
|
||||
# Parameters for creating MachAr / MachAr-like objects
|
||||
_title_fmt = 'numpy {} precision floating point number'
|
||||
_MACHAR_PARAMS = {
|
||||
ntypes.double: dict(
|
||||
itype = ntypes.int64,
|
||||
fmt = '%24.16e',
|
||||
title = _title_fmt.format('double')),
|
||||
ntypes.single: dict(
|
||||
itype = ntypes.int32,
|
||||
fmt = '%15.7e',
|
||||
title = _title_fmt.format('single')),
|
||||
ntypes.longdouble: dict(
|
||||
itype = ntypes.longlong,
|
||||
fmt = '%s',
|
||||
title = _title_fmt.format('long double')),
|
||||
ntypes.half: dict(
|
||||
itype = ntypes.int16,
|
||||
fmt = '%12.5e',
|
||||
title = _title_fmt.format('half'))}
|
||||
|
||||
# Key to identify the floating point type. Key is result of
|
||||
#
|
||||
# ftype = np.longdouble # or float64, float32, etc.
|
||||
# v = (ftype(-1.0) / ftype(10.0))
|
||||
# v.view(v.dtype.newbyteorder('<')).tobytes()
|
||||
#
|
||||
# Uses division to work around deficiencies in strtold on some platforms.
|
||||
# See:
|
||||
# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
|
||||
|
||||
_KNOWN_TYPES = {}
|
||||
def _register_type(machar, bytepat):
|
||||
_KNOWN_TYPES[bytepat] = machar
|
||||
|
||||
|
||||
_float_ma = {}
|
||||
|
||||
|
||||
def _register_known_types():
|
||||
# Known parameters for float16
|
||||
# See docstring of MachAr class for description of parameters.
|
||||
f16 = ntypes.float16
|
||||
float16_ma = MachArLike(f16,
|
||||
machep=-10,
|
||||
negep=-11,
|
||||
minexp=-14,
|
||||
maxexp=16,
|
||||
it=10,
|
||||
iexp=5,
|
||||
ibeta=2,
|
||||
irnd=5,
|
||||
ngrd=0,
|
||||
eps=exp2(f16(-10)),
|
||||
epsneg=exp2(f16(-11)),
|
||||
huge=f16(65504),
|
||||
tiny=f16(2 ** -14))
|
||||
_register_type(float16_ma, b'f\xae')
|
||||
_float_ma[16] = float16_ma
|
||||
|
||||
# Known parameters for float32
|
||||
f32 = ntypes.float32
|
||||
float32_ma = MachArLike(f32,
|
||||
machep=-23,
|
||||
negep=-24,
|
||||
minexp=-126,
|
||||
maxexp=128,
|
||||
it=23,
|
||||
iexp=8,
|
||||
ibeta=2,
|
||||
irnd=5,
|
||||
ngrd=0,
|
||||
eps=exp2(f32(-23)),
|
||||
epsneg=exp2(f32(-24)),
|
||||
huge=f32((1 - 2 ** -24) * 2**128),
|
||||
tiny=exp2(f32(-126)))
|
||||
_register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
|
||||
_float_ma[32] = float32_ma
|
||||
|
||||
# Known parameters for float64
|
||||
f64 = ntypes.float64
|
||||
epsneg_f64 = 2.0 ** -53.0
|
||||
tiny_f64 = 2.0 ** -1022.0
|
||||
float64_ma = MachArLike(f64,
|
||||
machep=-52,
|
||||
negep=-53,
|
||||
minexp=-1022,
|
||||
maxexp=1024,
|
||||
it=52,
|
||||
iexp=11,
|
||||
ibeta=2,
|
||||
irnd=5,
|
||||
ngrd=0,
|
||||
eps=2.0 ** -52.0,
|
||||
epsneg=epsneg_f64,
|
||||
huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
|
||||
tiny=tiny_f64)
|
||||
_register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
|
||||
_float_ma[64] = float64_ma
|
||||
|
||||
# Known parameters for IEEE 754 128-bit binary float
|
||||
ld = ntypes.longdouble
|
||||
epsneg_f128 = exp2(ld(-113))
|
||||
tiny_f128 = exp2(ld(-16382))
|
||||
# Ignore runtime error when this is not f128
|
||||
with numeric.errstate(all='ignore'):
|
||||
huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
|
||||
float128_ma = MachArLike(ld,
|
||||
machep=-112,
|
||||
negep=-113,
|
||||
minexp=-16382,
|
||||
maxexp=16384,
|
||||
it=112,
|
||||
iexp=15,
|
||||
ibeta=2,
|
||||
irnd=5,
|
||||
ngrd=0,
|
||||
eps=exp2(ld(-112)),
|
||||
epsneg=epsneg_f128,
|
||||
huge=huge_f128,
|
||||
tiny=tiny_f128)
|
||||
# IEEE 754 128-bit binary float
|
||||
_register_type(float128_ma,
|
||||
b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
|
||||
_float_ma[128] = float128_ma
|
||||
|
||||
# Known parameters for float80 (Intel 80-bit extended precision)
|
||||
epsneg_f80 = exp2(ld(-64))
|
||||
tiny_f80 = exp2(ld(-16382))
|
||||
# Ignore runtime error when this is not f80
|
||||
with numeric.errstate(all='ignore'):
|
||||
huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
|
||||
float80_ma = MachArLike(ld,
|
||||
machep=-63,
|
||||
negep=-64,
|
||||
minexp=-16382,
|
||||
maxexp=16384,
|
||||
it=63,
|
||||
iexp=15,
|
||||
ibeta=2,
|
||||
irnd=5,
|
||||
ngrd=0,
|
||||
eps=exp2(ld(-63)),
|
||||
epsneg=epsneg_f80,
|
||||
huge=huge_f80,
|
||||
tiny=tiny_f80)
|
||||
# float80, first 10 bytes containing actual storage
|
||||
_register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
|
||||
_float_ma[80] = float80_ma
|
||||
|
||||
# Guessed / known parameters for double double; see:
|
||||
# https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
|
||||
# These numbers have the same exponent range as float64, but extended
|
||||
# number of digits in the significand.
|
||||
huge_dd = nextafter(ld(inf), ld(0), dtype=ld)
|
||||
# As the smallest_normal in double double is so hard to calculate we set
|
||||
# it to NaN.
|
||||
smallest_normal_dd = nan
|
||||
# Leave the same value for the smallest subnormal as double
|
||||
smallest_subnormal_dd = ld(nextafter(0., 1.))
|
||||
float_dd_ma = MachArLike(ld,
|
||||
machep=-105,
|
||||
negep=-106,
|
||||
minexp=-1022,
|
||||
maxexp=1024,
|
||||
it=105,
|
||||
iexp=11,
|
||||
ibeta=2,
|
||||
irnd=5,
|
||||
ngrd=0,
|
||||
eps=exp2(ld(-105)),
|
||||
epsneg=exp2(ld(-106)),
|
||||
huge=huge_dd,
|
||||
tiny=smallest_normal_dd,
|
||||
smallest_subnormal=smallest_subnormal_dd)
|
||||
# double double; low, high order (e.g. PPC 64)
|
||||
_register_type(float_dd_ma,
|
||||
b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
|
||||
# double double; high, low order (e.g. PPC 64 le)
|
||||
_register_type(float_dd_ma,
|
||||
b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
|
||||
_float_ma['dd'] = float_dd_ma
|
||||
|
||||
|
||||
def _get_machar(ftype):
|
||||
""" Get MachAr instance or MachAr-like instance
|
||||
|
||||
Get parameters for floating point type, by first trying signatures of
|
||||
various known floating point types, then, if none match, attempting to
|
||||
identify parameters by analysis.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ftype : class
|
||||
Numpy floating point type class (e.g. ``np.float64``)
|
||||
|
||||
Returns
|
||||
-------
|
||||
ma_like : instance of :class:`MachAr` or :class:`MachArLike`
|
||||
Object giving floating point parameters for `ftype`.
|
||||
|
||||
Warns
|
||||
-----
|
||||
UserWarning
|
||||
If the binary signature of the float type is not in the dictionary of
|
||||
known float types.
|
||||
"""
|
||||
params = _MACHAR_PARAMS.get(ftype)
|
||||
if params is None:
|
||||
raise ValueError(repr(ftype))
|
||||
# Detect known / suspected types
|
||||
# ftype(-1.0) / ftype(10.0) is better than ftype('-0.1') because stold
|
||||
# may be deficient
|
||||
key = (ftype(-1.0) / ftype(10.))
|
||||
key = key.view(key.dtype.newbyteorder("<")).tobytes()
|
||||
ma_like = None
|
||||
if ftype == ntypes.longdouble:
|
||||
# Could be 80 bit == 10 byte extended precision, where last bytes can
|
||||
# be random garbage.
|
||||
# Comparing first 10 bytes to pattern first to avoid branching on the
|
||||
# random garbage.
|
||||
ma_like = _KNOWN_TYPES.get(key[:10])
|
||||
if ma_like is None:
|
||||
# see if the full key is known.
|
||||
ma_like = _KNOWN_TYPES.get(key)
|
||||
if ma_like is None and len(key) == 16:
|
||||
# machine limits could be f80 masquerading as np.float128,
|
||||
# find all keys with length 16 and make new dict, but make the keys
|
||||
# only 10 bytes long, the last bytes can be random garbage
|
||||
_kt = {k[:10]: v for k, v in _KNOWN_TYPES.items() if len(k) == 16}
|
||||
ma_like = _kt.get(key[:10])
|
||||
if ma_like is not None:
|
||||
return ma_like
|
||||
# Fall back to parameter discovery
|
||||
warnings.warn(
|
||||
f'Signature {key} for {ftype} does not match any known type: '
|
||||
'falling back to type probe function.\n'
|
||||
'This warnings indicates broken support for the dtype!',
|
||||
UserWarning, stacklevel=2)
|
||||
return _discovered_machar(ftype)
|
||||
|
||||
|
||||
def _discovered_machar(ftype):
|
||||
""" Create MachAr instance with found information on float types
|
||||
|
||||
TODO: MachAr should be retired completely ideally. We currently only
|
||||
ever use it system with broken longdouble (valgrind, WSL).
|
||||
"""
|
||||
params = _MACHAR_PARAMS[ftype]
|
||||
return MachAr(lambda v: array([v], ftype),
|
||||
lambda v: _fr0(v.astype(params['itype']))[0],
|
||||
lambda v: array(_fr0(v)[0], ftype),
|
||||
lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
|
||||
params['title'])
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
class finfo:
|
||||
"""
|
||||
finfo(dtype)
|
||||
|
||||
Machine limits for floating point types.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
bits : int
|
||||
The number of bits occupied by the type.
|
||||
dtype : dtype
|
||||
Returns the dtype for which `finfo` returns information. For complex
|
||||
input, the returned dtype is the associated ``float*`` dtype for its
|
||||
real and complex components.
|
||||
eps : float
|
||||
The difference between 1.0 and the next smallest representable float
|
||||
larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
|
||||
standard, ``eps = 2**-52``, approximately 2.22e-16.
|
||||
epsneg : float
|
||||
The difference between 1.0 and the next smallest representable float
|
||||
less than 1.0. For example, for 64-bit binary floats in the IEEE-754
|
||||
standard, ``epsneg = 2**-53``, approximately 1.11e-16.
|
||||
iexp : int
|
||||
The number of bits in the exponent portion of the floating point
|
||||
representation.
|
||||
machep : int
|
||||
The exponent that yields `eps`.
|
||||
max : floating point number of the appropriate type
|
||||
The largest representable number.
|
||||
maxexp : int
|
||||
The smallest positive power of the base (2) that causes overflow.
|
||||
min : floating point number of the appropriate type
|
||||
The smallest representable number, typically ``-max``.
|
||||
minexp : int
|
||||
The most negative power of the base (2) consistent with there
|
||||
being no leading 0's in the mantissa.
|
||||
negep : int
|
||||
The exponent that yields `epsneg`.
|
||||
nexp : int
|
||||
The number of bits in the exponent including its sign and bias.
|
||||
nmant : int
|
||||
The number of bits in the mantissa.
|
||||
precision : int
|
||||
The approximate number of decimal digits to which this kind of
|
||||
float is precise.
|
||||
resolution : floating point number of the appropriate type
|
||||
The approximate decimal resolution of this type, i.e.,
|
||||
``10**-precision``.
|
||||
tiny : float
|
||||
An alias for `smallest_normal`, kept for backwards compatibility.
|
||||
smallest_normal : float
|
||||
The smallest positive floating point number with 1 as leading bit in
|
||||
the mantissa following IEEE-754 (see Notes).
|
||||
smallest_subnormal : float
|
||||
The smallest positive floating point number with 0 as leading bit in
|
||||
the mantissa following IEEE-754.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
dtype : float, dtype, or instance
|
||||
Kind of floating point or complex floating point
|
||||
data-type about which to get information.
|
||||
|
||||
See Also
|
||||
--------
|
||||
iinfo : The equivalent for integer data types.
|
||||
spacing : The distance between a value and the nearest adjacent number
|
||||
nextafter : The next floating point value after x1 towards x2
|
||||
|
||||
Notes
|
||||
-----
|
||||
For developers of NumPy: do not instantiate this at the module level.
|
||||
The initial calculation of these parameters is expensive and negatively
|
||||
impacts import times. These objects are cached, so calling ``finfo()``
|
||||
repeatedly inside your functions is not a problem.
|
||||
|
||||
Note that ``smallest_normal`` is not actually the smallest positive
|
||||
representable value in a NumPy floating point type. As in the IEEE-754
|
||||
standard [1]_, NumPy floating point types make use of subnormal numbers to
|
||||
fill the gap between 0 and ``smallest_normal``. However, subnormal numbers
|
||||
may have significantly reduced precision [2]_.
|
||||
|
||||
This function can also be used for complex data types as well. If used,
|
||||
the output will be the same as the corresponding real float type
|
||||
(e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)).
|
||||
However, the output is true for the real and imaginary components.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
|
||||
pp.1-70, 2008, https://doi.org/10.1109/IEEESTD.2008.4610935
|
||||
.. [2] Wikipedia, "Denormal Numbers",
|
||||
https://en.wikipedia.org/wiki/Denormal_number
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy as np
|
||||
>>> np.finfo(np.float64).dtype
|
||||
dtype('float64')
|
||||
>>> np.finfo(np.complex64).dtype
|
||||
dtype('float32')
|
||||
|
||||
"""
|
||||
|
||||
_finfo_cache = {}
|
||||
|
||||
def __new__(cls, dtype):
|
||||
try:
|
||||
obj = cls._finfo_cache.get(dtype) # most common path
|
||||
if obj is not None:
|
||||
return obj
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
if dtype is None:
|
||||
# Deprecated in NumPy 1.25, 2023-01-16
|
||||
warnings.warn(
|
||||
"finfo() dtype cannot be None. This behavior will "
|
||||
"raise an error in the future. (Deprecated in NumPy 1.25)",
|
||||
DeprecationWarning,
|
||||
stacklevel=2
|
||||
)
|
||||
|
||||
try:
|
||||
dtype = numeric.dtype(dtype)
|
||||
except TypeError:
|
||||
# In case a float instance was given
|
||||
dtype = numeric.dtype(type(dtype))
|
||||
|
||||
obj = cls._finfo_cache.get(dtype)
|
||||
if obj is not None:
|
||||
return obj
|
||||
dtypes = [dtype]
|
||||
newdtype = ntypes.obj2sctype(dtype)
|
||||
if newdtype is not dtype:
|
||||
dtypes.append(newdtype)
|
||||
dtype = newdtype
|
||||
if not issubclass(dtype, numeric.inexact):
|
||||
raise ValueError("data type %r not inexact" % (dtype))
|
||||
obj = cls._finfo_cache.get(dtype)
|
||||
if obj is not None:
|
||||
return obj
|
||||
if not issubclass(dtype, numeric.floating):
|
||||
newdtype = _convert_to_float[dtype]
|
||||
if newdtype is not dtype:
|
||||
# dtype changed, for example from complex128 to float64
|
||||
dtypes.append(newdtype)
|
||||
dtype = newdtype
|
||||
|
||||
obj = cls._finfo_cache.get(dtype, None)
|
||||
if obj is not None:
|
||||
# the original dtype was not in the cache, but the new
|
||||
# dtype is in the cache. we add the original dtypes to
|
||||
# the cache and return the result
|
||||
for dt in dtypes:
|
||||
cls._finfo_cache[dt] = obj
|
||||
return obj
|
||||
obj = object.__new__(cls)._init(dtype)
|
||||
for dt in dtypes:
|
||||
cls._finfo_cache[dt] = obj
|
||||
return obj
|
||||
|
||||
def _init(self, dtype):
|
||||
self.dtype = numeric.dtype(dtype)
|
||||
machar = _get_machar(dtype)
|
||||
|
||||
for word in ['precision', 'iexp',
|
||||
'maxexp', 'minexp', 'negep',
|
||||
'machep']:
|
||||
setattr(self, word, getattr(machar, word))
|
||||
for word in ['resolution', 'epsneg', 'smallest_subnormal']:
|
||||
setattr(self, word, getattr(machar, word).flat[0])
|
||||
self.bits = self.dtype.itemsize * 8
|
||||
self.max = machar.huge.flat[0]
|
||||
self.min = -self.max
|
||||
self.eps = machar.eps.flat[0]
|
||||
self.nexp = machar.iexp
|
||||
self.nmant = machar.it
|
||||
self._machar = machar
|
||||
self._str_tiny = machar._str_xmin.strip()
|
||||
self._str_max = machar._str_xmax.strip()
|
||||
self._str_epsneg = machar._str_epsneg.strip()
|
||||
self._str_eps = machar._str_eps.strip()
|
||||
self._str_resolution = machar._str_resolution.strip()
|
||||
self._str_smallest_normal = machar._str_smallest_normal.strip()
|
||||
self._str_smallest_subnormal = machar._str_smallest_subnormal.strip()
|
||||
return self
|
||||
|
||||
def __str__(self):
|
||||
fmt = (
|
||||
'Machine parameters for %(dtype)s\n'
|
||||
'---------------------------------------------------------------\n'
|
||||
'precision = %(precision)3s resolution = %(_str_resolution)s\n'
|
||||
'machep = %(machep)6s eps = %(_str_eps)s\n'
|
||||
'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
|
||||
'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
|
||||
'maxexp = %(maxexp)6s max = %(_str_max)s\n'
|
||||
'nexp = %(nexp)6s min = -max\n'
|
||||
'smallest_normal = %(_str_smallest_normal)s '
|
||||
'smallest_subnormal = %(_str_smallest_subnormal)s\n'
|
||||
'---------------------------------------------------------------\n'
|
||||
)
|
||||
return fmt % self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
c = self.__class__.__name__
|
||||
d = self.__dict__.copy()
|
||||
d['klass'] = c
|
||||
return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
|
||||
" max=%(_str_max)s, dtype=%(dtype)s)") % d)
|
||||
|
||||
@property
|
||||
def smallest_normal(self):
|
||||
"""Return the value for the smallest normal.
|
||||
|
||||
Returns
|
||||
-------
|
||||
smallest_normal : float
|
||||
Value for the smallest normal.
|
||||
|
||||
Warns
|
||||
-----
|
||||
UserWarning
|
||||
If the calculated value for the smallest normal is requested for
|
||||
double-double.
|
||||
"""
|
||||
# This check is necessary because the value for smallest_normal is
|
||||
# platform dependent for longdouble types.
|
||||
if isnan(self._machar.smallest_normal.flat[0]):
|
||||
warnings.warn(
|
||||
'The value of smallest normal is undefined for double double',
|
||||
UserWarning, stacklevel=2)
|
||||
return self._machar.smallest_normal.flat[0]
|
||||
|
||||
@property
|
||||
def tiny(self):
|
||||
"""Return the value for tiny, alias of smallest_normal.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tiny : float
|
||||
Value for the smallest normal, alias of smallest_normal.
|
||||
|
||||
Warns
|
||||
-----
|
||||
UserWarning
|
||||
If the calculated value for the smallest normal is requested for
|
||||
double-double.
|
||||
"""
|
||||
return self.smallest_normal
|
||||
|
||||
|
||||
@set_module('numpy')
|
||||
class iinfo:
|
||||
"""
|
||||
iinfo(type)
|
||||
|
||||
Machine limits for integer types.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
bits : int
|
||||
The number of bits occupied by the type.
|
||||
dtype : dtype
|
||||
Returns the dtype for which `iinfo` returns information.
|
||||
min : int
|
||||
The smallest integer expressible by the type.
|
||||
max : int
|
||||
The largest integer expressible by the type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
int_type : integer type, dtype, or instance
|
||||
The kind of integer data type to get information about.
|
||||
|
||||
See Also
|
||||
--------
|
||||
finfo : The equivalent for floating point data types.
|
||||
|
||||
Examples
|
||||
--------
|
||||
With types:
|
||||
|
||||
>>> import numpy as np
|
||||
>>> ii16 = np.iinfo(np.int16)
|
||||
>>> ii16.min
|
||||
-32768
|
||||
>>> ii16.max
|
||||
32767
|
||||
>>> ii32 = np.iinfo(np.int32)
|
||||
>>> ii32.min
|
||||
-2147483648
|
||||
>>> ii32.max
|
||||
2147483647
|
||||
|
||||
With instances:
|
||||
|
||||
>>> ii32 = np.iinfo(np.int32(10))
|
||||
>>> ii32.min
|
||||
-2147483648
|
||||
>>> ii32.max
|
||||
2147483647
|
||||
|
||||
"""
|
||||
|
||||
_min_vals = {}
|
||||
_max_vals = {}
|
||||
|
||||
def __init__(self, int_type):
|
||||
try:
|
||||
self.dtype = numeric.dtype(int_type)
|
||||
except TypeError:
|
||||
self.dtype = numeric.dtype(type(int_type))
|
||||
self.kind = self.dtype.kind
|
||||
self.bits = self.dtype.itemsize * 8
|
||||
self.key = "%s%d" % (self.kind, self.bits)
|
||||
if self.kind not in 'iu':
|
||||
raise ValueError("Invalid integer data type %r." % (self.kind,))
|
||||
|
||||
@property
|
||||
def min(self):
|
||||
"""Minimum value of given dtype."""
|
||||
if self.kind == 'u':
|
||||
return 0
|
||||
else:
|
||||
try:
|
||||
val = iinfo._min_vals[self.key]
|
||||
except KeyError:
|
||||
val = int(-(1 << (self.bits-1)))
|
||||
iinfo._min_vals[self.key] = val
|
||||
return val
|
||||
|
||||
@property
|
||||
def max(self):
|
||||
"""Maximum value of given dtype."""
|
||||
try:
|
||||
val = iinfo._max_vals[self.key]
|
||||
except KeyError:
|
||||
if self.kind == 'u':
|
||||
val = int((1 << self.bits) - 1)
|
||||
else:
|
||||
val = int((1 << (self.bits-1)) - 1)
|
||||
iinfo._max_vals[self.key] = val
|
||||
return val
|
||||
|
||||
def __str__(self):
|
||||
"""String representation."""
|
||||
fmt = (
|
||||
'Machine parameters for %(dtype)s\n'
|
||||
'---------------------------------------------------------------\n'
|
||||
'min = %(min)s\n'
|
||||
'max = %(max)s\n'
|
||||
'---------------------------------------------------------------\n'
|
||||
)
|
||||
return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
|
||||
|
||||
def __repr__(self):
|
||||
return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
|
||||
self.min, self.max, self.dtype)
|
6
lib/python3.13/site-packages/numpy/_core/getlimits.pyi
Normal file
6
lib/python3.13/site-packages/numpy/_core/getlimits.pyi
Normal file
@ -0,0 +1,6 @@
|
||||
from numpy import (
|
||||
finfo as finfo,
|
||||
iinfo as iinfo,
|
||||
)
|
||||
|
||||
__all__: list[str]
|
@ -0,0 +1,376 @@
|
||||
|
||||
/* These pointers will be stored in the C-object for use in other
|
||||
extension modules
|
||||
*/
|
||||
|
||||
void *PyArray_API[] = {
|
||||
(void *) PyArray_GetNDArrayCVersion,
|
||||
NULL,
|
||||
(void *) &PyArray_Type,
|
||||
(void *) &PyArrayDescr_Type,
|
||||
NULL,
|
||||
(void *) &PyArrayIter_Type,
|
||||
(void *) &PyArrayMultiIter_Type,
|
||||
(int *) &NPY_NUMUSERTYPES,
|
||||
(void *) &PyBoolArrType_Type,
|
||||
(void *) &_PyArrayScalar_BoolValues,
|
||||
(void *) &PyGenericArrType_Type,
|
||||
(void *) &PyNumberArrType_Type,
|
||||
(void *) &PyIntegerArrType_Type,
|
||||
(void *) &PySignedIntegerArrType_Type,
|
||||
(void *) &PyUnsignedIntegerArrType_Type,
|
||||
(void *) &PyInexactArrType_Type,
|
||||
(void *) &PyFloatingArrType_Type,
|
||||
(void *) &PyComplexFloatingArrType_Type,
|
||||
(void *) &PyFlexibleArrType_Type,
|
||||
(void *) &PyCharacterArrType_Type,
|
||||
(void *) &PyByteArrType_Type,
|
||||
(void *) &PyShortArrType_Type,
|
||||
(void *) &PyIntArrType_Type,
|
||||
(void *) &PyLongArrType_Type,
|
||||
(void *) &PyLongLongArrType_Type,
|
||||
(void *) &PyUByteArrType_Type,
|
||||
(void *) &PyUShortArrType_Type,
|
||||
(void *) &PyUIntArrType_Type,
|
||||
(void *) &PyULongArrType_Type,
|
||||
(void *) &PyULongLongArrType_Type,
|
||||
(void *) &PyFloatArrType_Type,
|
||||
(void *) &PyDoubleArrType_Type,
|
||||
(void *) &PyLongDoubleArrType_Type,
|
||||
(void *) &PyCFloatArrType_Type,
|
||||
(void *) &PyCDoubleArrType_Type,
|
||||
(void *) &PyCLongDoubleArrType_Type,
|
||||
(void *) &PyObjectArrType_Type,
|
||||
(void *) &PyStringArrType_Type,
|
||||
(void *) &PyUnicodeArrType_Type,
|
||||
(void *) &PyVoidArrType_Type,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_INCREF,
|
||||
(void *) PyArray_XDECREF,
|
||||
(void *) PyArray_SetStringFunction,
|
||||
(void *) PyArray_DescrFromType,
|
||||
(void *) PyArray_TypeObjectFromType,
|
||||
(void *) PyArray_Zero,
|
||||
(void *) PyArray_One,
|
||||
(void *) PyArray_CastToType,
|
||||
(void *) PyArray_CopyInto,
|
||||
(void *) PyArray_CopyAnyInto,
|
||||
(void *) PyArray_CanCastSafely,
|
||||
(void *) PyArray_CanCastTo,
|
||||
(void *) PyArray_ObjectType,
|
||||
(void *) PyArray_DescrFromObject,
|
||||
(void *) PyArray_ConvertToCommonType,
|
||||
(void *) PyArray_DescrFromScalar,
|
||||
(void *) PyArray_DescrFromTypeObject,
|
||||
(void *) PyArray_Size,
|
||||
(void *) PyArray_Scalar,
|
||||
(void *) PyArray_FromScalar,
|
||||
(void *) PyArray_ScalarAsCtype,
|
||||
(void *) PyArray_CastScalarToCtype,
|
||||
(void *) PyArray_CastScalarDirect,
|
||||
(void *) PyArray_Pack,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_FromAny,
|
||||
(void *) PyArray_EnsureArray,
|
||||
(void *) PyArray_EnsureAnyArray,
|
||||
(void *) PyArray_FromFile,
|
||||
(void *) PyArray_FromString,
|
||||
(void *) PyArray_FromBuffer,
|
||||
(void *) PyArray_FromIter,
|
||||
(void *) PyArray_Return,
|
||||
(void *) PyArray_GetField,
|
||||
(void *) PyArray_SetField,
|
||||
(void *) PyArray_Byteswap,
|
||||
(void *) PyArray_Resize,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_CopyObject,
|
||||
(void *) PyArray_NewCopy,
|
||||
(void *) PyArray_ToList,
|
||||
(void *) PyArray_ToString,
|
||||
(void *) PyArray_ToFile,
|
||||
(void *) PyArray_Dump,
|
||||
(void *) PyArray_Dumps,
|
||||
(void *) PyArray_ValidType,
|
||||
(void *) PyArray_UpdateFlags,
|
||||
(void *) PyArray_New,
|
||||
(void *) PyArray_NewFromDescr,
|
||||
(void *) PyArray_DescrNew,
|
||||
(void *) PyArray_DescrNewFromType,
|
||||
(void *) PyArray_GetPriority,
|
||||
(void *) PyArray_IterNew,
|
||||
(void *) PyArray_MultiIterNew,
|
||||
(void *) PyArray_PyIntAsInt,
|
||||
(void *) PyArray_PyIntAsIntp,
|
||||
(void *) PyArray_Broadcast,
|
||||
NULL,
|
||||
(void *) PyArray_FillWithScalar,
|
||||
(void *) PyArray_CheckStrides,
|
||||
(void *) PyArray_DescrNewByteorder,
|
||||
(void *) PyArray_IterAllButAxis,
|
||||
(void *) PyArray_CheckFromAny,
|
||||
(void *) PyArray_FromArray,
|
||||
(void *) PyArray_FromInterface,
|
||||
(void *) PyArray_FromStructInterface,
|
||||
(void *) PyArray_FromArrayAttr,
|
||||
(void *) PyArray_ScalarKind,
|
||||
(void *) PyArray_CanCoerceScalar,
|
||||
NULL,
|
||||
(void *) PyArray_CanCastScalar,
|
||||
NULL,
|
||||
(void *) PyArray_RemoveSmallest,
|
||||
(void *) PyArray_ElementStrides,
|
||||
(void *) PyArray_Item_INCREF,
|
||||
(void *) PyArray_Item_XDECREF,
|
||||
NULL,
|
||||
(void *) PyArray_Transpose,
|
||||
(void *) PyArray_TakeFrom,
|
||||
(void *) PyArray_PutTo,
|
||||
(void *) PyArray_PutMask,
|
||||
(void *) PyArray_Repeat,
|
||||
(void *) PyArray_Choose,
|
||||
(void *) PyArray_Sort,
|
||||
(void *) PyArray_ArgSort,
|
||||
(void *) PyArray_SearchSorted,
|
||||
(void *) PyArray_ArgMax,
|
||||
(void *) PyArray_ArgMin,
|
||||
(void *) PyArray_Reshape,
|
||||
(void *) PyArray_Newshape,
|
||||
(void *) PyArray_Squeeze,
|
||||
(void *) PyArray_View,
|
||||
(void *) PyArray_SwapAxes,
|
||||
(void *) PyArray_Max,
|
||||
(void *) PyArray_Min,
|
||||
(void *) PyArray_Ptp,
|
||||
(void *) PyArray_Mean,
|
||||
(void *) PyArray_Trace,
|
||||
(void *) PyArray_Diagonal,
|
||||
(void *) PyArray_Clip,
|
||||
(void *) PyArray_Conjugate,
|
||||
(void *) PyArray_Nonzero,
|
||||
(void *) PyArray_Std,
|
||||
(void *) PyArray_Sum,
|
||||
(void *) PyArray_CumSum,
|
||||
(void *) PyArray_Prod,
|
||||
(void *) PyArray_CumProd,
|
||||
(void *) PyArray_All,
|
||||
(void *) PyArray_Any,
|
||||
(void *) PyArray_Compress,
|
||||
(void *) PyArray_Flatten,
|
||||
(void *) PyArray_Ravel,
|
||||
(void *) PyArray_MultiplyList,
|
||||
(void *) PyArray_MultiplyIntList,
|
||||
(void *) PyArray_GetPtr,
|
||||
(void *) PyArray_CompareLists,
|
||||
(void *) PyArray_AsCArray,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_Free,
|
||||
(void *) PyArray_Converter,
|
||||
(void *) PyArray_IntpFromSequence,
|
||||
(void *) PyArray_Concatenate,
|
||||
(void *) PyArray_InnerProduct,
|
||||
(void *) PyArray_MatrixProduct,
|
||||
NULL,
|
||||
(void *) PyArray_Correlate,
|
||||
NULL,
|
||||
(void *) PyArray_DescrConverter,
|
||||
(void *) PyArray_DescrConverter2,
|
||||
(void *) PyArray_IntpConverter,
|
||||
(void *) PyArray_BufferConverter,
|
||||
(void *) PyArray_AxisConverter,
|
||||
(void *) PyArray_BoolConverter,
|
||||
(void *) PyArray_ByteorderConverter,
|
||||
(void *) PyArray_OrderConverter,
|
||||
(void *) PyArray_EquivTypes,
|
||||
(void *) PyArray_Zeros,
|
||||
(void *) PyArray_Empty,
|
||||
(void *) PyArray_Where,
|
||||
(void *) PyArray_Arange,
|
||||
(void *) PyArray_ArangeObj,
|
||||
(void *) PyArray_SortkindConverter,
|
||||
(void *) PyArray_LexSort,
|
||||
(void *) PyArray_Round,
|
||||
(void *) PyArray_EquivTypenums,
|
||||
(void *) PyArray_RegisterDataType,
|
||||
(void *) PyArray_RegisterCastFunc,
|
||||
(void *) PyArray_RegisterCanCast,
|
||||
(void *) PyArray_InitArrFuncs,
|
||||
(void *) PyArray_IntTupleFromIntp,
|
||||
NULL,
|
||||
(void *) PyArray_ClipmodeConverter,
|
||||
(void *) PyArray_OutputConverter,
|
||||
(void *) PyArray_BroadcastToShape,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_DescrAlignConverter,
|
||||
(void *) PyArray_DescrAlignConverter2,
|
||||
(void *) PyArray_SearchsideConverter,
|
||||
(void *) PyArray_CheckAxis,
|
||||
(void *) PyArray_OverflowMultiplyList,
|
||||
NULL,
|
||||
(void *) PyArray_MultiIterFromObjects,
|
||||
(void *) PyArray_GetEndianness,
|
||||
(void *) PyArray_GetNDArrayCFeatureVersion,
|
||||
(void *) PyArray_Correlate2,
|
||||
(void *) PyArray_NeighborhoodIterNew,
|
||||
(void *) &PyTimeIntegerArrType_Type,
|
||||
(void *) &PyDatetimeArrType_Type,
|
||||
(void *) &PyTimedeltaArrType_Type,
|
||||
(void *) &PyHalfArrType_Type,
|
||||
(void *) &NpyIter_Type,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) NpyIter_New,
|
||||
(void *) NpyIter_MultiNew,
|
||||
(void *) NpyIter_AdvancedNew,
|
||||
(void *) NpyIter_Copy,
|
||||
(void *) NpyIter_Deallocate,
|
||||
(void *) NpyIter_HasDelayedBufAlloc,
|
||||
(void *) NpyIter_HasExternalLoop,
|
||||
(void *) NpyIter_EnableExternalLoop,
|
||||
(void *) NpyIter_GetInnerStrideArray,
|
||||
(void *) NpyIter_GetInnerLoopSizePtr,
|
||||
(void *) NpyIter_Reset,
|
||||
(void *) NpyIter_ResetBasePointers,
|
||||
(void *) NpyIter_ResetToIterIndexRange,
|
||||
(void *) NpyIter_GetNDim,
|
||||
(void *) NpyIter_GetNOp,
|
||||
(void *) NpyIter_GetIterNext,
|
||||
(void *) NpyIter_GetIterSize,
|
||||
(void *) NpyIter_GetIterIndexRange,
|
||||
(void *) NpyIter_GetIterIndex,
|
||||
(void *) NpyIter_GotoIterIndex,
|
||||
(void *) NpyIter_HasMultiIndex,
|
||||
(void *) NpyIter_GetShape,
|
||||
(void *) NpyIter_GetGetMultiIndex,
|
||||
(void *) NpyIter_GotoMultiIndex,
|
||||
(void *) NpyIter_RemoveMultiIndex,
|
||||
(void *) NpyIter_HasIndex,
|
||||
(void *) NpyIter_IsBuffered,
|
||||
(void *) NpyIter_IsGrowInner,
|
||||
(void *) NpyIter_GetBufferSize,
|
||||
(void *) NpyIter_GetIndexPtr,
|
||||
(void *) NpyIter_GotoIndex,
|
||||
(void *) NpyIter_GetDataPtrArray,
|
||||
(void *) NpyIter_GetDescrArray,
|
||||
(void *) NpyIter_GetOperandArray,
|
||||
(void *) NpyIter_GetIterView,
|
||||
(void *) NpyIter_GetReadFlags,
|
||||
(void *) NpyIter_GetWriteFlags,
|
||||
(void *) NpyIter_DebugPrint,
|
||||
(void *) NpyIter_IterationNeedsAPI,
|
||||
(void *) NpyIter_GetInnerFixedStrideArray,
|
||||
(void *) NpyIter_RemoveAxis,
|
||||
(void *) NpyIter_GetAxisStrideArray,
|
||||
(void *) NpyIter_RequiresBuffering,
|
||||
(void *) NpyIter_GetInitialDataPtrArray,
|
||||
(void *) NpyIter_CreateCompatibleStrides,
|
||||
(void *) PyArray_CastingConverter,
|
||||
(void *) PyArray_CountNonzero,
|
||||
(void *) PyArray_PromoteTypes,
|
||||
(void *) PyArray_MinScalarType,
|
||||
(void *) PyArray_ResultType,
|
||||
(void *) PyArray_CanCastArrayTo,
|
||||
(void *) PyArray_CanCastTypeTo,
|
||||
(void *) PyArray_EinsteinSum,
|
||||
(void *) PyArray_NewLikeArray,
|
||||
NULL,
|
||||
(void *) PyArray_ConvertClipmodeSequence,
|
||||
(void *) PyArray_MatrixProduct2,
|
||||
(void *) NpyIter_IsFirstVisit,
|
||||
(void *) PyArray_SetBaseObject,
|
||||
(void *) PyArray_CreateSortedStridePerm,
|
||||
(void *) PyArray_RemoveAxesInPlace,
|
||||
(void *) PyArray_DebugPrint,
|
||||
(void *) PyArray_FailUnlessWriteable,
|
||||
(void *) PyArray_SetUpdateIfCopyBase,
|
||||
(void *) PyDataMem_NEW,
|
||||
(void *) PyDataMem_FREE,
|
||||
(void *) PyDataMem_RENEW,
|
||||
NULL,
|
||||
(NPY_CASTING *) &NPY_DEFAULT_ASSIGN_CASTING,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_Partition,
|
||||
(void *) PyArray_ArgPartition,
|
||||
(void *) PyArray_SelectkindConverter,
|
||||
(void *) PyDataMem_NEW_ZEROED,
|
||||
(void *) PyArray_CheckAnyScalarExact,
|
||||
NULL,
|
||||
(void *) PyArray_ResolveWritebackIfCopy,
|
||||
(void *) PyArray_SetWritebackIfCopyBase,
|
||||
(void *) PyDataMem_SetHandler,
|
||||
(void *) PyDataMem_GetHandler,
|
||||
(PyObject* *) &PyDataMem_DefaultHandler,
|
||||
(void *) NpyDatetime_ConvertDatetime64ToDatetimeStruct,
|
||||
(void *) NpyDatetime_ConvertDatetimeStructToDatetime64,
|
||||
(void *) NpyDatetime_ConvertPyDateTimeToDatetimeStruct,
|
||||
(void *) NpyDatetime_GetDatetimeISO8601StrLen,
|
||||
(void *) NpyDatetime_MakeISO8601Datetime,
|
||||
(void *) NpyDatetime_ParseISO8601Datetime,
|
||||
(void *) NpyString_load,
|
||||
(void *) NpyString_pack,
|
||||
(void *) NpyString_pack_null,
|
||||
(void *) NpyString_acquire_allocator,
|
||||
(void *) NpyString_acquire_allocators,
|
||||
(void *) NpyString_release_allocator,
|
||||
(void *) NpyString_release_allocators,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyArray_GetDefaultDescr,
|
||||
(void *) PyArrayInitDTypeMeta_FromSpec,
|
||||
(void *) PyArray_CommonDType,
|
||||
(void *) PyArray_PromoteDTypeSequence,
|
||||
(void *) _PyDataType_GetArrFuncs,
|
||||
NULL,
|
||||
NULL,
|
||||
NULL
|
||||
};
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,54 @@
|
||||
|
||||
/* These pointers will be stored in the C-object for use in other
|
||||
extension modules
|
||||
*/
|
||||
|
||||
void *PyUFunc_API[] = {
|
||||
(void *) &PyUFunc_Type,
|
||||
(void *) PyUFunc_FromFuncAndData,
|
||||
(void *) PyUFunc_RegisterLoopForType,
|
||||
NULL,
|
||||
(void *) PyUFunc_f_f_As_d_d,
|
||||
(void *) PyUFunc_d_d,
|
||||
(void *) PyUFunc_f_f,
|
||||
(void *) PyUFunc_g_g,
|
||||
(void *) PyUFunc_F_F_As_D_D,
|
||||
(void *) PyUFunc_F_F,
|
||||
(void *) PyUFunc_D_D,
|
||||
(void *) PyUFunc_G_G,
|
||||
(void *) PyUFunc_O_O,
|
||||
(void *) PyUFunc_ff_f_As_dd_d,
|
||||
(void *) PyUFunc_ff_f,
|
||||
(void *) PyUFunc_dd_d,
|
||||
(void *) PyUFunc_gg_g,
|
||||
(void *) PyUFunc_FF_F_As_DD_D,
|
||||
(void *) PyUFunc_DD_D,
|
||||
(void *) PyUFunc_FF_F,
|
||||
(void *) PyUFunc_GG_G,
|
||||
(void *) PyUFunc_OO_O,
|
||||
(void *) PyUFunc_O_O_method,
|
||||
(void *) PyUFunc_OO_O_method,
|
||||
(void *) PyUFunc_On_Om,
|
||||
NULL,
|
||||
NULL,
|
||||
(void *) PyUFunc_clearfperr,
|
||||
(void *) PyUFunc_getfperr,
|
||||
NULL,
|
||||
(void *) PyUFunc_ReplaceLoopBySignature,
|
||||
(void *) PyUFunc_FromFuncAndDataAndSignature,
|
||||
NULL,
|
||||
(void *) PyUFunc_e_e,
|
||||
(void *) PyUFunc_e_e_As_f_f,
|
||||
(void *) PyUFunc_e_e_As_d_d,
|
||||
(void *) PyUFunc_ee_e,
|
||||
(void *) PyUFunc_ee_e_As_ff_f,
|
||||
(void *) PyUFunc_ee_e_As_dd_d,
|
||||
(void *) PyUFunc_DefaultTypeResolver,
|
||||
(void *) PyUFunc_ValidateCasting,
|
||||
(void *) PyUFunc_RegisterLoopForDescr,
|
||||
(void *) PyUFunc_FromFuncAndDataAndSignatureAndIdentity,
|
||||
(void *) PyUFunc_AddLoopFromSpec,
|
||||
(void *) PyUFunc_AddPromoter,
|
||||
(void *) PyUFunc_AddWrappingLoop,
|
||||
(void *) PyUFunc_GiveFloatingpointErrors
|
||||
};
|
@ -0,0 +1,340 @@
|
||||
|
||||
#ifdef _UMATHMODULE
|
||||
|
||||
extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
|
||||
|
||||
extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
|
||||
|
||||
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndData \
|
||||
(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int);
|
||||
NPY_NO_EXPORT int PyUFunc_RegisterLoopForType \
|
||||
(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_f_f_As_d_d \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_d_d \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_f_f \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_g_g \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_F_F_As_D_D \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_F_F \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_D_D \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_G_G \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_O_O \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_ff_f_As_dd_d \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_ff_f \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_dd_d \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_gg_g \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_FF_F_As_DD_D \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_DD_D \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_FF_F \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_GG_G \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_OO_O \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_O_O_method \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_OO_O_method \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_On_Om \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_clearfperr \
|
||||
(void);
|
||||
NPY_NO_EXPORT int PyUFunc_getfperr \
|
||||
(void);
|
||||
NPY_NO_EXPORT int PyUFunc_ReplaceLoopBySignature \
|
||||
(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *);
|
||||
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignature \
|
||||
(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *);
|
||||
NPY_NO_EXPORT void PyUFunc_e_e \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_e_e_As_f_f \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_e_e_As_d_d \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_ee_e \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_ee_e_As_ff_f \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT void PyUFunc_ee_e_As_dd_d \
|
||||
(char **, npy_intp const *, npy_intp const *, void *);
|
||||
NPY_NO_EXPORT int PyUFunc_DefaultTypeResolver \
|
||||
(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **);
|
||||
NPY_NO_EXPORT int PyUFunc_ValidateCasting \
|
||||
(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *);
|
||||
NPY_NO_EXPORT int PyUFunc_RegisterLoopForDescr \
|
||||
(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *);
|
||||
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
|
||||
(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *);
|
||||
NPY_NO_EXPORT int PyUFunc_AddLoopFromSpec \
|
||||
(PyObject *, PyArrayMethod_Spec *);
|
||||
NPY_NO_EXPORT int PyUFunc_AddPromoter \
|
||||
(PyObject *, PyObject *, PyObject *);
|
||||
NPY_NO_EXPORT int PyUFunc_AddWrappingLoop \
|
||||
(PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *);
|
||||
NPY_NO_EXPORT int PyUFunc_GiveFloatingpointErrors \
|
||||
(const char *, int);
|
||||
|
||||
#else
|
||||
|
||||
#if defined(PY_UFUNC_UNIQUE_SYMBOL)
|
||||
#define PyUFunc_API PY_UFUNC_UNIQUE_SYMBOL
|
||||
#endif
|
||||
|
||||
/* By default do not export API in an .so (was never the case on windows) */
|
||||
#ifndef NPY_API_SYMBOL_ATTRIBUTE
|
||||
#define NPY_API_SYMBOL_ATTRIBUTE NPY_VISIBILITY_HIDDEN
|
||||
#endif
|
||||
|
||||
#if defined(NO_IMPORT) || defined(NO_IMPORT_UFUNC)
|
||||
extern NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API;
|
||||
#else
|
||||
#if defined(PY_UFUNC_UNIQUE_SYMBOL)
|
||||
NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API;
|
||||
#else
|
||||
static void **PyUFunc_API=NULL;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define PyUFunc_Type (*(PyTypeObject *)PyUFunc_API[0])
|
||||
#define PyUFunc_FromFuncAndData \
|
||||
(*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int)) \
|
||||
PyUFunc_API[1])
|
||||
#define PyUFunc_RegisterLoopForType \
|
||||
(*(int (*)(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *)) \
|
||||
PyUFunc_API[2])
|
||||
#define PyUFunc_f_f_As_d_d \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[4])
|
||||
#define PyUFunc_d_d \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[5])
|
||||
#define PyUFunc_f_f \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[6])
|
||||
#define PyUFunc_g_g \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[7])
|
||||
#define PyUFunc_F_F_As_D_D \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[8])
|
||||
#define PyUFunc_F_F \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[9])
|
||||
#define PyUFunc_D_D \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[10])
|
||||
#define PyUFunc_G_G \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[11])
|
||||
#define PyUFunc_O_O \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[12])
|
||||
#define PyUFunc_ff_f_As_dd_d \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[13])
|
||||
#define PyUFunc_ff_f \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[14])
|
||||
#define PyUFunc_dd_d \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[15])
|
||||
#define PyUFunc_gg_g \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[16])
|
||||
#define PyUFunc_FF_F_As_DD_D \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[17])
|
||||
#define PyUFunc_DD_D \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[18])
|
||||
#define PyUFunc_FF_F \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[19])
|
||||
#define PyUFunc_GG_G \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[20])
|
||||
#define PyUFunc_OO_O \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[21])
|
||||
#define PyUFunc_O_O_method \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[22])
|
||||
#define PyUFunc_OO_O_method \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[23])
|
||||
#define PyUFunc_On_Om \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[24])
|
||||
#define PyUFunc_clearfperr \
|
||||
(*(void (*)(void)) \
|
||||
PyUFunc_API[27])
|
||||
#define PyUFunc_getfperr \
|
||||
(*(int (*)(void)) \
|
||||
PyUFunc_API[28])
|
||||
#define PyUFunc_ReplaceLoopBySignature \
|
||||
(*(int (*)(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *)) \
|
||||
PyUFunc_API[30])
|
||||
#define PyUFunc_FromFuncAndDataAndSignature \
|
||||
(*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *)) \
|
||||
PyUFunc_API[31])
|
||||
#define PyUFunc_e_e \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[33])
|
||||
#define PyUFunc_e_e_As_f_f \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[34])
|
||||
#define PyUFunc_e_e_As_d_d \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[35])
|
||||
#define PyUFunc_ee_e \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[36])
|
||||
#define PyUFunc_ee_e_As_ff_f \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[37])
|
||||
#define PyUFunc_ee_e_As_dd_d \
|
||||
(*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
|
||||
PyUFunc_API[38])
|
||||
#define PyUFunc_DefaultTypeResolver \
|
||||
(*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **)) \
|
||||
PyUFunc_API[39])
|
||||
#define PyUFunc_ValidateCasting \
|
||||
(*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *)) \
|
||||
PyUFunc_API[40])
|
||||
#define PyUFunc_RegisterLoopForDescr \
|
||||
(*(int (*)(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *)) \
|
||||
PyUFunc_API[41])
|
||||
|
||||
#if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION
|
||||
#define PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
|
||||
(*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *)) \
|
||||
PyUFunc_API[42])
|
||||
#endif
|
||||
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
#define PyUFunc_AddLoopFromSpec \
|
||||
(*(int (*)(PyObject *, PyArrayMethod_Spec *)) \
|
||||
PyUFunc_API[43])
|
||||
#endif
|
||||
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
#define PyUFunc_AddPromoter \
|
||||
(*(int (*)(PyObject *, PyObject *, PyObject *)) \
|
||||
PyUFunc_API[44])
|
||||
#endif
|
||||
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
#define PyUFunc_AddWrappingLoop \
|
||||
(*(int (*)(PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *)) \
|
||||
PyUFunc_API[45])
|
||||
#endif
|
||||
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
#define PyUFunc_GiveFloatingpointErrors \
|
||||
(*(int (*)(const char *, int)) \
|
||||
PyUFunc_API[46])
|
||||
#endif
|
||||
|
||||
static inline int
|
||||
_import_umath(void)
|
||||
{
|
||||
PyObject *numpy = PyImport_ImportModule("numpy._core._multiarray_umath");
|
||||
if (numpy == NULL && PyErr_ExceptionMatches(PyExc_ModuleNotFoundError)) {
|
||||
PyErr_Clear();
|
||||
numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
|
||||
}
|
||||
|
||||
if (numpy == NULL) {
|
||||
PyErr_SetString(PyExc_ImportError,
|
||||
"_multiarray_umath failed to import");
|
||||
return -1;
|
||||
}
|
||||
|
||||
PyObject *c_api = PyObject_GetAttrString(numpy, "_UFUNC_API");
|
||||
Py_DECREF(numpy);
|
||||
if (c_api == NULL) {
|
||||
PyErr_SetString(PyExc_AttributeError, "_UFUNC_API not found");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!PyCapsule_CheckExact(c_api)) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCapsule object");
|
||||
Py_DECREF(c_api);
|
||||
return -1;
|
||||
}
|
||||
PyUFunc_API = (void **)PyCapsule_GetPointer(c_api, NULL);
|
||||
Py_DECREF(c_api);
|
||||
if (PyUFunc_API == NULL) {
|
||||
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is NULL pointer");
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define import_umath() \
|
||||
do {\
|
||||
UFUNC_NOFPE\
|
||||
if (_import_umath() < 0) {\
|
||||
PyErr_Print();\
|
||||
PyErr_SetString(PyExc_ImportError,\
|
||||
"numpy._core.umath failed to import");\
|
||||
return NULL;\
|
||||
}\
|
||||
} while(0)
|
||||
|
||||
#define import_umath1(ret) \
|
||||
do {\
|
||||
UFUNC_NOFPE\
|
||||
if (_import_umath() < 0) {\
|
||||
PyErr_Print();\
|
||||
PyErr_SetString(PyExc_ImportError,\
|
||||
"numpy._core.umath failed to import");\
|
||||
return ret;\
|
||||
}\
|
||||
} while(0)
|
||||
|
||||
#define import_umath2(ret, msg) \
|
||||
do {\
|
||||
UFUNC_NOFPE\
|
||||
if (_import_umath() < 0) {\
|
||||
PyErr_Print();\
|
||||
PyErr_SetString(PyExc_ImportError, msg);\
|
||||
return ret;\
|
||||
}\
|
||||
} while(0)
|
||||
|
||||
#define import_ufunc() \
|
||||
do {\
|
||||
UFUNC_NOFPE\
|
||||
if (_import_umath() < 0) {\
|
||||
PyErr_Print();\
|
||||
PyErr_SetString(PyExc_ImportError,\
|
||||
"numpy._core.umath failed to import");\
|
||||
}\
|
||||
} while(0)
|
||||
|
||||
|
||||
static inline int
|
||||
PyUFunc_ImportUFuncAPI()
|
||||
{
|
||||
if (NPY_UNLIKELY(PyUFunc_API == NULL)) {
|
||||
import_umath1(-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
@ -0,0 +1,90 @@
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_
|
||||
#error You should not include this header directly
|
||||
#endif
|
||||
/*
|
||||
* Private API (here for inline)
|
||||
*/
|
||||
static inline int
|
||||
_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter);
|
||||
|
||||
/*
|
||||
* Update to next item of the iterator
|
||||
*
|
||||
* Note: this simply increment the coordinates vector, last dimension
|
||||
* incremented first , i.e, for dimension 3
|
||||
* ...
|
||||
* -1, -1, -1
|
||||
* -1, -1, 0
|
||||
* -1, -1, 1
|
||||
* ....
|
||||
* -1, 0, -1
|
||||
* -1, 0, 0
|
||||
* ....
|
||||
* 0, -1, -1
|
||||
* 0, -1, 0
|
||||
* ....
|
||||
*/
|
||||
#define _UPDATE_COORD_ITER(c) \
|
||||
wb = iter->coordinates[c] < iter->bounds[c][1]; \
|
||||
if (wb) { \
|
||||
iter->coordinates[c] += 1; \
|
||||
return 0; \
|
||||
} \
|
||||
else { \
|
||||
iter->coordinates[c] = iter->bounds[c][0]; \
|
||||
}
|
||||
|
||||
static inline int
|
||||
_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter)
|
||||
{
|
||||
npy_intp i, wb;
|
||||
|
||||
for (i = iter->nd - 1; i >= 0; --i) {
|
||||
_UPDATE_COORD_ITER(i)
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Version optimized for 2d arrays, manual loop unrolling
|
||||
*/
|
||||
static inline int
|
||||
_PyArrayNeighborhoodIter_IncrCoord2D(PyArrayNeighborhoodIterObject* iter)
|
||||
{
|
||||
npy_intp wb;
|
||||
|
||||
_UPDATE_COORD_ITER(1)
|
||||
_UPDATE_COORD_ITER(0)
|
||||
|
||||
return 0;
|
||||
}
|
||||
#undef _UPDATE_COORD_ITER
|
||||
|
||||
/*
|
||||
* Advance to the next neighbour
|
||||
*/
|
||||
static inline int
|
||||
PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
|
||||
{
|
||||
_PyArrayNeighborhoodIter_IncrCoord (iter);
|
||||
iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reset functions
|
||||
*/
|
||||
static inline int
|
||||
PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
|
||||
{
|
||||
npy_intp i;
|
||||
|
||||
for (i = 0; i < iter->nd; ++i) {
|
||||
iter->coordinates[i] = iter->bounds[i][0];
|
||||
}
|
||||
iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,33 @@
|
||||
/* #undef NPY_HAVE_ENDIAN_H */
|
||||
|
||||
#define NPY_SIZEOF_SHORT 2
|
||||
#define NPY_SIZEOF_INT 4
|
||||
#define NPY_SIZEOF_LONG 8
|
||||
#define NPY_SIZEOF_FLOAT 4
|
||||
#define NPY_SIZEOF_COMPLEX_FLOAT 8
|
||||
#define NPY_SIZEOF_DOUBLE 8
|
||||
#define NPY_SIZEOF_COMPLEX_DOUBLE 16
|
||||
#define NPY_SIZEOF_LONGDOUBLE 16
|
||||
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
|
||||
#define NPY_SIZEOF_PY_INTPTR_T 8
|
||||
#define NPY_SIZEOF_INTP 8
|
||||
#define NPY_SIZEOF_UINTP 8
|
||||
#define NPY_SIZEOF_WCHAR_T 4
|
||||
#define NPY_SIZEOF_OFF_T 8
|
||||
#define NPY_SIZEOF_PY_LONG_LONG 8
|
||||
#define NPY_SIZEOF_LONGLONG 8
|
||||
|
||||
/*
|
||||
* Defined to 1 or 0. Note that Pyodide hardcodes NPY_NO_SMP (and other defines
|
||||
* in this header) for better cross-compilation, so don't rename them without a
|
||||
* good reason.
|
||||
*/
|
||||
#define NPY_NO_SMP 0
|
||||
|
||||
#define NPY_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
|
||||
#define NPY_ABI_VERSION 0x02000000
|
||||
#define NPY_API_VERSION 0x00000013
|
||||
|
||||
#ifndef __STDC_FORMAT_MACROS
|
||||
#define __STDC_FORMAT_MACROS 1
|
||||
#endif
|
@ -0,0 +1,86 @@
|
||||
/*
|
||||
* Public exposure of the DType Classes. These are tricky to expose
|
||||
* via the Python API, so they are exposed through this header for now.
|
||||
*
|
||||
* These definitions are only relevant for the public API and we reserve
|
||||
* the slots 320-360 in the API table generation for this (currently).
|
||||
*
|
||||
* TODO: This file should be consolidated with the API table generation
|
||||
* (although not sure the current generation is worth preserving).
|
||||
*/
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_
|
||||
|
||||
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
|
||||
|
||||
/* All of these require NumPy 2.0 support */
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
|
||||
/*
|
||||
* The type of the DType metaclass
|
||||
*/
|
||||
#define PyArrayDTypeMeta_Type (*(PyTypeObject *)(PyArray_API + 320)[0])
|
||||
/*
|
||||
* NumPy's builtin DTypes:
|
||||
*/
|
||||
#define PyArray_BoolDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[1])
|
||||
/* Integers */
|
||||
#define PyArray_ByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[2])
|
||||
#define PyArray_UByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[3])
|
||||
#define PyArray_ShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[4])
|
||||
#define PyArray_UShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[5])
|
||||
#define PyArray_IntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[6])
|
||||
#define PyArray_UIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[7])
|
||||
#define PyArray_LongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[8])
|
||||
#define PyArray_ULongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[9])
|
||||
#define PyArray_LongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[10])
|
||||
#define PyArray_ULongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[11])
|
||||
/* Integer aliases */
|
||||
#define PyArray_Int8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[12])
|
||||
#define PyArray_UInt8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[13])
|
||||
#define PyArray_Int16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[14])
|
||||
#define PyArray_UInt16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[15])
|
||||
#define PyArray_Int32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[16])
|
||||
#define PyArray_UInt32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[17])
|
||||
#define PyArray_Int64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[18])
|
||||
#define PyArray_UInt64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[19])
|
||||
#define PyArray_IntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[20])
|
||||
#define PyArray_UIntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[21])
|
||||
/* Floats */
|
||||
#define PyArray_HalfDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[22])
|
||||
#define PyArray_FloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[23])
|
||||
#define PyArray_DoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[24])
|
||||
#define PyArray_LongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[25])
|
||||
/* Complex */
|
||||
#define PyArray_CFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[26])
|
||||
#define PyArray_CDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[27])
|
||||
#define PyArray_CLongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[28])
|
||||
/* String/Bytes */
|
||||
#define PyArray_BytesDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[29])
|
||||
#define PyArray_UnicodeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[30])
|
||||
/* Datetime/Timedelta */
|
||||
#define PyArray_DatetimeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[31])
|
||||
#define PyArray_TimedeltaDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[32])
|
||||
/* Object/Void */
|
||||
#define PyArray_ObjectDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[33])
|
||||
#define PyArray_VoidDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[34])
|
||||
/* Python types (used as markers for scalars) */
|
||||
#define PyArray_PyLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[35])
|
||||
#define PyArray_PyFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[36])
|
||||
#define PyArray_PyComplexDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[37])
|
||||
/* Default integer type */
|
||||
#define PyArray_DefaultIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[38])
|
||||
/* New non-legacy DTypes follow in the order they were added */
|
||||
#define PyArray_StringDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[39])
|
||||
|
||||
/* NOTE: offset 40 is free */
|
||||
|
||||
/* Need to start with a larger offset again for the abstract classes: */
|
||||
#define PyArray_IntAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[366])
|
||||
#define PyArray_FloatAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[367])
|
||||
#define PyArray_ComplexAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[368])
|
||||
|
||||
#endif /* NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION */
|
||||
|
||||
#endif /* NPY_INTERNAL_BUILD */
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_ */
|
@ -0,0 +1,7 @@
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_
|
||||
#define Py_ARRAYOBJECT_H
|
||||
|
||||
#include "ndarrayobject.h"
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_ */
|
@ -0,0 +1,196 @@
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_
|
||||
|
||||
#ifndef _MULTIARRAYMODULE
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_bool obval;
|
||||
} PyBoolScalarObject;
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
signed char obval;
|
||||
} PyByteScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
short obval;
|
||||
} PyShortScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
int obval;
|
||||
} PyIntScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
long obval;
|
||||
} PyLongScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_longlong obval;
|
||||
} PyLongLongScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
unsigned char obval;
|
||||
} PyUByteScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
unsigned short obval;
|
||||
} PyUShortScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
unsigned int obval;
|
||||
} PyUIntScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
unsigned long obval;
|
||||
} PyULongScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_ulonglong obval;
|
||||
} PyULongLongScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_half obval;
|
||||
} PyHalfScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
float obval;
|
||||
} PyFloatScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
double obval;
|
||||
} PyDoubleScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_longdouble obval;
|
||||
} PyLongDoubleScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_cfloat obval;
|
||||
} PyCFloatScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_cdouble obval;
|
||||
} PyCDoubleScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_clongdouble obval;
|
||||
} PyCLongDoubleScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
PyObject * obval;
|
||||
} PyObjectScalarObject;
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_datetime obval;
|
||||
PyArray_DatetimeMetaData obmeta;
|
||||
} PyDatetimeScalarObject;
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
npy_timedelta obval;
|
||||
PyArray_DatetimeMetaData obmeta;
|
||||
} PyTimedeltaScalarObject;
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_HEAD
|
||||
char obval;
|
||||
} PyScalarObject;
|
||||
|
||||
#define PyStringScalarObject PyBytesObject
|
||||
#ifndef Py_LIMITED_API
|
||||
typedef struct {
|
||||
/* note that the PyObject_HEAD macro lives right here */
|
||||
PyUnicodeObject base;
|
||||
Py_UCS4 *obval;
|
||||
#if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
|
||||
char *buffer_fmt;
|
||||
#endif
|
||||
} PyUnicodeScalarObject;
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
PyObject_VAR_HEAD
|
||||
char *obval;
|
||||
#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
|
||||
/* Internally use the subclass to allow accessing names/fields */
|
||||
_PyArray_LegacyDescr *descr;
|
||||
#else
|
||||
PyArray_Descr *descr;
|
||||
#endif
|
||||
int flags;
|
||||
PyObject *base;
|
||||
#if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION
|
||||
void *_buffer_info; /* private buffer info, tagged to allow warning */
|
||||
#endif
|
||||
} PyVoidScalarObject;
|
||||
|
||||
/* Macros
|
||||
Py<Cls><bitsize>ScalarObject
|
||||
Py<Cls><bitsize>ArrType_Type
|
||||
are defined in ndarrayobject.h
|
||||
*/
|
||||
|
||||
#define PyArrayScalar_False ((PyObject *)(&(_PyArrayScalar_BoolValues[0])))
|
||||
#define PyArrayScalar_True ((PyObject *)(&(_PyArrayScalar_BoolValues[1])))
|
||||
#define PyArrayScalar_FromLong(i) \
|
||||
((PyObject *)(&(_PyArrayScalar_BoolValues[((i)!=0)])))
|
||||
#define PyArrayScalar_RETURN_BOOL_FROM_LONG(i) \
|
||||
return Py_INCREF(PyArrayScalar_FromLong(i)), \
|
||||
PyArrayScalar_FromLong(i)
|
||||
#define PyArrayScalar_RETURN_FALSE \
|
||||
return Py_INCREF(PyArrayScalar_False), \
|
||||
PyArrayScalar_False
|
||||
#define PyArrayScalar_RETURN_TRUE \
|
||||
return Py_INCREF(PyArrayScalar_True), \
|
||||
PyArrayScalar_True
|
||||
|
||||
#define PyArrayScalar_New(cls) \
|
||||
Py##cls##ArrType_Type.tp_alloc(&Py##cls##ArrType_Type, 0)
|
||||
#ifndef Py_LIMITED_API
|
||||
/* For the limited API, use PyArray_ScalarAsCtype instead */
|
||||
#define PyArrayScalar_VAL(obj, cls) \
|
||||
((Py##cls##ScalarObject *)obj)->obval
|
||||
#define PyArrayScalar_ASSIGN(obj, cls, val) \
|
||||
PyArrayScalar_VAL(obj, cls) = val
|
||||
#endif
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_ */
|
@ -0,0 +1,479 @@
|
||||
/*
|
||||
* The public DType API
|
||||
*/
|
||||
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_
|
||||
|
||||
struct PyArrayMethodObject_tag;
|
||||
|
||||
/*
|
||||
* Largely opaque struct for DType classes (i.e. metaclass instances).
|
||||
* The internal definition is currently in `ndarraytypes.h` (export is a bit
|
||||
* more complex because `PyArray_Descr` is a DTypeMeta internally but not
|
||||
* externally).
|
||||
*/
|
||||
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
|
||||
|
||||
#ifndef Py_LIMITED_API
|
||||
|
||||
typedef struct PyArray_DTypeMeta_tag {
|
||||
PyHeapTypeObject super;
|
||||
|
||||
/*
|
||||
* Most DTypes will have a singleton default instance, for the
|
||||
* parametric legacy DTypes (bytes, string, void, datetime) this
|
||||
* may be a pointer to the *prototype* instance?
|
||||
*/
|
||||
PyArray_Descr *singleton;
|
||||
/* Copy of the legacy DTypes type number, usually invalid. */
|
||||
int type_num;
|
||||
|
||||
/* The type object of the scalar instances (may be NULL?) */
|
||||
PyTypeObject *scalar_type;
|
||||
/*
|
||||
* DType flags to signal legacy, parametric, or
|
||||
* abstract. But plenty of space for additional information/flags.
|
||||
*/
|
||||
npy_uint64 flags;
|
||||
|
||||
/*
|
||||
* Use indirection in order to allow a fixed size for this struct.
|
||||
* A stable ABI size makes creating a static DType less painful
|
||||
* while also ensuring flexibility for all opaque API (with one
|
||||
* indirection due the pointer lookup).
|
||||
*/
|
||||
void *dt_slots;
|
||||
/* Allow growing (at the moment also beyond this) */
|
||||
void *reserved[3];
|
||||
} PyArray_DTypeMeta;
|
||||
|
||||
#else
|
||||
|
||||
typedef PyTypeObject PyArray_DTypeMeta;
|
||||
|
||||
#endif /* Py_LIMITED_API */
|
||||
|
||||
#endif /* not internal build */
|
||||
|
||||
/*
|
||||
* ******************************************************
|
||||
* ArrayMethod API (Casting and UFuncs)
|
||||
* ******************************************************
|
||||
*/
|
||||
|
||||
|
||||
typedef enum {
|
||||
/* Flag for whether the GIL is required */
|
||||
NPY_METH_REQUIRES_PYAPI = 1 << 0,
|
||||
/*
|
||||
* Some functions cannot set floating point error flags, this flag
|
||||
* gives us the option (not requirement) to skip floating point error
|
||||
* setup/check. No function should set error flags and ignore them
|
||||
* since it would interfere with chaining operations (e.g. casting).
|
||||
*/
|
||||
NPY_METH_NO_FLOATINGPOINT_ERRORS = 1 << 1,
|
||||
/* Whether the method supports unaligned access (not runtime) */
|
||||
NPY_METH_SUPPORTS_UNALIGNED = 1 << 2,
|
||||
/*
|
||||
* Used for reductions to allow reordering the operation. At this point
|
||||
* assume that if set, it also applies to normal operations though!
|
||||
*/
|
||||
NPY_METH_IS_REORDERABLE = 1 << 3,
|
||||
/*
|
||||
* Private flag for now for *logic* functions. The logical functions
|
||||
* `logical_or` and `logical_and` can always cast the inputs to booleans
|
||||
* "safely" (because that is how the cast to bool is defined).
|
||||
* @seberg: I am not sure this is the best way to handle this, so its
|
||||
* private for now (also it is very limited anyway).
|
||||
* There is one "exception". NA aware dtypes cannot cast to bool
|
||||
* (hopefully), so the `??->?` loop should error even with this flag.
|
||||
* But a second NA fallback loop will be necessary.
|
||||
*/
|
||||
_NPY_METH_FORCE_CAST_INPUTS = 1 << 17,
|
||||
|
||||
/* All flags which can change at runtime */
|
||||
NPY_METH_RUNTIME_FLAGS = (
|
||||
NPY_METH_REQUIRES_PYAPI |
|
||||
NPY_METH_NO_FLOATINGPOINT_ERRORS),
|
||||
} NPY_ARRAYMETHOD_FLAGS;
|
||||
|
||||
|
||||
typedef struct PyArrayMethod_Context_tag {
|
||||
/* The caller, which is typically the original ufunc. May be NULL */
|
||||
PyObject *caller;
|
||||
/* The method "self". Currently an opaque object. */
|
||||
struct PyArrayMethodObject_tag *method;
|
||||
|
||||
/* Operand descriptors, filled in by resolve_descriptors */
|
||||
PyArray_Descr *const *descriptors;
|
||||
/* Structure may grow (this is harmless for DType authors) */
|
||||
} PyArrayMethod_Context;
|
||||
|
||||
|
||||
/*
|
||||
* The main object for creating a new ArrayMethod. We use the typical `slots`
|
||||
* mechanism used by the Python limited API (see below for the slot defs).
|
||||
*/
|
||||
typedef struct {
|
||||
const char *name;
|
||||
int nin, nout;
|
||||
NPY_CASTING casting;
|
||||
NPY_ARRAYMETHOD_FLAGS flags;
|
||||
PyArray_DTypeMeta **dtypes;
|
||||
PyType_Slot *slots;
|
||||
} PyArrayMethod_Spec;
|
||||
|
||||
|
||||
/*
|
||||
* ArrayMethod slots
|
||||
* -----------------
|
||||
*
|
||||
* SLOTS IDs For the ArrayMethod creation, once fully public, IDs are fixed
|
||||
* but can be deprecated and arbitrarily extended.
|
||||
*/
|
||||
#define _NPY_METH_resolve_descriptors_with_scalars 1
|
||||
#define NPY_METH_resolve_descriptors 2
|
||||
#define NPY_METH_get_loop 3
|
||||
#define NPY_METH_get_reduction_initial 4
|
||||
/* specific loops for constructions/default get_loop: */
|
||||
#define NPY_METH_strided_loop 5
|
||||
#define NPY_METH_contiguous_loop 6
|
||||
#define NPY_METH_unaligned_strided_loop 7
|
||||
#define NPY_METH_unaligned_contiguous_loop 8
|
||||
#define NPY_METH_contiguous_indexed_loop 9
|
||||
#define _NPY_METH_static_data 10
|
||||
|
||||
|
||||
/*
|
||||
* The resolve descriptors function, must be able to handle NULL values for
|
||||
* all output (but not input) `given_descrs` and fill `loop_descrs`.
|
||||
* Return -1 on error or 0 if the operation is not possible without an error
|
||||
* set. (This may still be in flux.)
|
||||
* Otherwise must return the "casting safety", for normal functions, this is
|
||||
* almost always "safe" (or even "equivalent"?).
|
||||
*
|
||||
* `resolve_descriptors` is optional if all output DTypes are non-parametric.
|
||||
*/
|
||||
typedef NPY_CASTING (PyArrayMethod_ResolveDescriptors)(
|
||||
/* "method" is currently opaque (necessary e.g. to wrap Python) */
|
||||
struct PyArrayMethodObject_tag *method,
|
||||
/* DTypes the method was created for */
|
||||
PyArray_DTypeMeta *const *dtypes,
|
||||
/* Input descriptors (instances). Outputs may be NULL. */
|
||||
PyArray_Descr *const *given_descrs,
|
||||
/* Exact loop descriptors to use, must not hold references on error */
|
||||
PyArray_Descr **loop_descrs,
|
||||
npy_intp *view_offset);
|
||||
|
||||
|
||||
/*
|
||||
* Rarely needed, slightly more powerful version of `resolve_descriptors`.
|
||||
* See also `PyArrayMethod_ResolveDescriptors` for details on shared arguments.
|
||||
*
|
||||
* NOTE: This function is private now as it is unclear how and what to pass
|
||||
* exactly as additional information to allow dealing with the scalars.
|
||||
* See also gh-24915.
|
||||
*/
|
||||
typedef NPY_CASTING (PyArrayMethod_ResolveDescriptorsWithScalar)(
|
||||
struct PyArrayMethodObject_tag *method,
|
||||
PyArray_DTypeMeta *const *dtypes,
|
||||
/* Unlike above, these can have any DType and we may allow NULL. */
|
||||
PyArray_Descr *const *given_descrs,
|
||||
/*
|
||||
* Input scalars or NULL. Only ever passed for python scalars.
|
||||
* WARNING: In some cases, a loop may be explicitly selected and the
|
||||
* value passed is not available (NULL) or does not have the
|
||||
* expected type.
|
||||
*/
|
||||
PyObject *const *input_scalars,
|
||||
PyArray_Descr **loop_descrs,
|
||||
npy_intp *view_offset);
|
||||
|
||||
|
||||
|
||||
typedef int (PyArrayMethod_StridedLoop)(PyArrayMethod_Context *context,
|
||||
char *const *data, const npy_intp *dimensions, const npy_intp *strides,
|
||||
NpyAuxData *transferdata);
|
||||
|
||||
|
||||
typedef int (PyArrayMethod_GetLoop)(
|
||||
PyArrayMethod_Context *context,
|
||||
int aligned, int move_references,
|
||||
const npy_intp *strides,
|
||||
PyArrayMethod_StridedLoop **out_loop,
|
||||
NpyAuxData **out_transferdata,
|
||||
NPY_ARRAYMETHOD_FLAGS *flags);
|
||||
|
||||
/**
|
||||
* Query an ArrayMethod for the initial value for use in reduction.
|
||||
*
|
||||
* @param context The arraymethod context, mainly to access the descriptors.
|
||||
* @param reduction_is_empty Whether the reduction is empty. When it is, the
|
||||
* value returned may differ. In this case it is a "default" value that
|
||||
* may differ from the "identity" value normally used. For example:
|
||||
* - `0.0` is the default for `sum([])`. But `-0.0` is the correct
|
||||
* identity otherwise as it preserves the sign for `sum([-0.0])`.
|
||||
* - We use no identity for object, but return the default of `0` and `1`
|
||||
* for the empty `sum([], dtype=object)` and `prod([], dtype=object)`.
|
||||
* This allows `np.sum(np.array(["a", "b"], dtype=object))` to work.
|
||||
* - `-inf` or `INT_MIN` for `max` is an identity, but at least `INT_MIN`
|
||||
* not a good *default* when there are no items.
|
||||
* @param initial Pointer to initial data to be filled (if possible)
|
||||
*
|
||||
* @returns -1, 0, or 1 indicating error, no initial value, and initial being
|
||||
* successfully filled. Errors must not be given where 0 is correct, NumPy
|
||||
* may call this even when not strictly necessary.
|
||||
*/
|
||||
typedef int (PyArrayMethod_GetReductionInitial)(
|
||||
PyArrayMethod_Context *context, npy_bool reduction_is_empty,
|
||||
void *initial);
|
||||
|
||||
/*
|
||||
* The following functions are only used by the wrapping array method defined
|
||||
* in umath/wrapping_array_method.c
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* The function to convert the given descriptors (passed in to
|
||||
* `resolve_descriptors`) and translates them for the wrapped loop.
|
||||
* The new descriptors MUST be viewable with the old ones, `NULL` must be
|
||||
* supported (for outputs) and should normally be forwarded.
|
||||
*
|
||||
* The function must clean up on error.
|
||||
*
|
||||
* NOTE: We currently assume that this translation gives "viewable" results.
|
||||
* I.e. there is no additional casting related to the wrapping process.
|
||||
* In principle that could be supported, but not sure it is useful.
|
||||
* This currently also means that e.g. alignment must apply identically
|
||||
* to the new dtypes.
|
||||
*
|
||||
* TODO: Due to the fact that `resolve_descriptors` is also used for `can_cast`
|
||||
* there is no way to "pass out" the result of this function. This means
|
||||
* it will be called twice for every ufunc call.
|
||||
* (I am considering including `auxdata` as an "optional" parameter to
|
||||
* `resolve_descriptors`, so that it can be filled there if not NULL.)
|
||||
*/
|
||||
typedef int (PyArrayMethod_TranslateGivenDescriptors)(int nin, int nout,
|
||||
PyArray_DTypeMeta *const wrapped_dtypes[],
|
||||
PyArray_Descr *const given_descrs[], PyArray_Descr *new_descrs[]);
|
||||
|
||||
/**
|
||||
* The function to convert the actual loop descriptors (as returned by the
|
||||
* original `resolve_descriptors` function) to the ones the output array
|
||||
* should use.
|
||||
* This function must return "viewable" types, it must not mutate them in any
|
||||
* form that would break the inner-loop logic. Does not need to support NULL.
|
||||
*
|
||||
* The function must clean up on error.
|
||||
*
|
||||
* @param nargs Number of arguments
|
||||
* @param new_dtypes The DTypes of the output (usually probably not needed)
|
||||
* @param given_descrs Original given_descrs to the resolver, necessary to
|
||||
* fetch any information related to the new dtypes from the original.
|
||||
* @param original_descrs The `loop_descrs` returned by the wrapped loop.
|
||||
* @param loop_descrs The output descriptors, compatible to `original_descrs`.
|
||||
*
|
||||
* @returns 0 on success, -1 on failure.
|
||||
*/
|
||||
typedef int (PyArrayMethod_TranslateLoopDescriptors)(int nin, int nout,
|
||||
PyArray_DTypeMeta *const new_dtypes[], PyArray_Descr *const given_descrs[],
|
||||
PyArray_Descr *original_descrs[], PyArray_Descr *loop_descrs[]);
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* A traverse loop working on a single array. This is similar to the general
|
||||
* strided-loop function. This is designed for loops that need to visit every
|
||||
* element of a single array.
|
||||
*
|
||||
* Currently this is used for array clearing, via the NPY_DT_get_clear_loop
|
||||
* API hook, and zero-filling, via the NPY_DT_get_fill_zero_loop API hook.
|
||||
* These are most useful for handling arrays storing embedded references to
|
||||
* python objects or heap-allocated data.
|
||||
*
|
||||
* The `void *traverse_context` is passed in because we may need to pass in
|
||||
* Interpreter state or similar in the future, but we don't want to pass in
|
||||
* a full context (with pointers to dtypes, method, caller which all make
|
||||
* no sense for a traverse function).
|
||||
*
|
||||
* We assume for now that this context can be just passed through in the
|
||||
* the future (for structured dtypes).
|
||||
*
|
||||
*/
|
||||
typedef int (PyArrayMethod_TraverseLoop)(
|
||||
void *traverse_context, const PyArray_Descr *descr, char *data,
|
||||
npy_intp size, npy_intp stride, NpyAuxData *auxdata);
|
||||
|
||||
|
||||
/*
|
||||
* Simplified get_loop function specific to dtype traversal
|
||||
*
|
||||
* It should set the flags needed for the traversal loop and set out_loop to the
|
||||
* loop function, which must be a valid PyArrayMethod_TraverseLoop
|
||||
* pointer. Currently this is used for zero-filling and clearing arrays storing
|
||||
* embedded references.
|
||||
*
|
||||
*/
|
||||
typedef int (PyArrayMethod_GetTraverseLoop)(
|
||||
void *traverse_context, const PyArray_Descr *descr,
|
||||
int aligned, npy_intp fixed_stride,
|
||||
PyArrayMethod_TraverseLoop **out_loop, NpyAuxData **out_auxdata,
|
||||
NPY_ARRAYMETHOD_FLAGS *flags);
|
||||
|
||||
|
||||
/*
|
||||
* Type of the C promoter function, which must be wrapped into a
|
||||
* PyCapsule with name "numpy._ufunc_promoter".
|
||||
*
|
||||
* Note that currently the output dtypes are always NULL unless they are
|
||||
* also part of the signature. This is an implementation detail and could
|
||||
* change in the future. However, in general promoters should not have a
|
||||
* need for output dtypes.
|
||||
* (There are potential use-cases, these are currently unsupported.)
|
||||
*/
|
||||
typedef int (PyArrayMethod_PromoterFunction)(PyObject *ufunc,
|
||||
PyArray_DTypeMeta *const op_dtypes[], PyArray_DTypeMeta *const signature[],
|
||||
PyArray_DTypeMeta *new_op_dtypes[]);
|
||||
|
||||
/*
|
||||
* ****************************
|
||||
* DTYPE API
|
||||
* ****************************
|
||||
*/
|
||||
|
||||
#define NPY_DT_ABSTRACT 1 << 1
|
||||
#define NPY_DT_PARAMETRIC 1 << 2
|
||||
#define NPY_DT_NUMERIC 1 << 3
|
||||
|
||||
/*
|
||||
* These correspond to slots in the NPY_DType_Slots struct and must
|
||||
* be in the same order as the members of that struct. If new slots
|
||||
* get added or old slots get removed NPY_NUM_DTYPE_SLOTS must also
|
||||
* be updated
|
||||
*/
|
||||
|
||||
#define NPY_DT_discover_descr_from_pyobject 1
|
||||
// this slot is considered private because its API hasn't been decided
|
||||
#define _NPY_DT_is_known_scalar_type 2
|
||||
#define NPY_DT_default_descr 3
|
||||
#define NPY_DT_common_dtype 4
|
||||
#define NPY_DT_common_instance 5
|
||||
#define NPY_DT_ensure_canonical 6
|
||||
#define NPY_DT_setitem 7
|
||||
#define NPY_DT_getitem 8
|
||||
#define NPY_DT_get_clear_loop 9
|
||||
#define NPY_DT_get_fill_zero_loop 10
|
||||
#define NPY_DT_finalize_descr 11
|
||||
|
||||
// These PyArray_ArrFunc slots will be deprecated and replaced eventually
|
||||
// getitem and setitem can be defined as a performance optimization;
|
||||
// by default the user dtypes call `legacy_getitem_using_DType` and
|
||||
// `legacy_setitem_using_DType`, respectively. This functionality is
|
||||
// only supported for basic NumPy DTypes.
|
||||
|
||||
|
||||
// used to separate dtype slots from arrfuncs slots
|
||||
// intended only for internal use but defined here for clarity
|
||||
#define _NPY_DT_ARRFUNCS_OFFSET (1 << 10)
|
||||
|
||||
// Cast is disabled
|
||||
// #define NPY_DT_PyArray_ArrFuncs_cast 0 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
|
||||
#define NPY_DT_PyArray_ArrFuncs_getitem 1 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_setitem 2 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
|
||||
// Copyswap is disabled
|
||||
// #define NPY_DT_PyArray_ArrFuncs_copyswapn 3 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
// #define NPY_DT_PyArray_ArrFuncs_copyswap 4 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_compare 5 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_argmax 6 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_dotfunc 7 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_scanfunc 8 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_fromstr 9 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_nonzero 10 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_fill 11 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_fillwithscalar 12 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_sort 13 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_argsort 14 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
|
||||
// Casting related slots are disabled. See
|
||||
// https://github.com/numpy/numpy/pull/23173#discussion_r1101098163
|
||||
// #define NPY_DT_PyArray_ArrFuncs_castdict 15 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
// #define NPY_DT_PyArray_ArrFuncs_scalarkind 16 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
// #define NPY_DT_PyArray_ArrFuncs_cancastscalarkindto 17 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
// #define NPY_DT_PyArray_ArrFuncs_cancastto 18 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
|
||||
// These are deprecated in NumPy 1.19, so are disabled here.
|
||||
// #define NPY_DT_PyArray_ArrFuncs_fastclip 19 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
// #define NPY_DT_PyArray_ArrFuncs_fastputmask 20 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
// #define NPY_DT_PyArray_ArrFuncs_fasttake 21 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
#define NPY_DT_PyArray_ArrFuncs_argmin 22 + _NPY_DT_ARRFUNCS_OFFSET
|
||||
|
||||
|
||||
// TODO: These slots probably still need some thought, and/or a way to "grow"?
|
||||
typedef struct {
|
||||
PyTypeObject *typeobj; /* type of python scalar or NULL */
|
||||
int flags; /* flags, including parametric and abstract */
|
||||
/* NULL terminated cast definitions. Use NULL for the newly created DType */
|
||||
PyArrayMethod_Spec **casts;
|
||||
PyType_Slot *slots;
|
||||
/* Baseclass or NULL (will always subclass `np.dtype`) */
|
||||
PyTypeObject *baseclass;
|
||||
} PyArrayDTypeMeta_Spec;
|
||||
|
||||
|
||||
typedef PyArray_Descr *(PyArrayDTypeMeta_DiscoverDescrFromPyobject)(
|
||||
PyArray_DTypeMeta *cls, PyObject *obj);
|
||||
|
||||
/*
|
||||
* Before making this public, we should decide whether it should pass
|
||||
* the type, or allow looking at the object. A possible use-case:
|
||||
* `np.array(np.array([0]), dtype=np.ndarray)`
|
||||
* Could consider arrays that are not `dtype=ndarray` "scalars".
|
||||
*/
|
||||
typedef int (PyArrayDTypeMeta_IsKnownScalarType)(
|
||||
PyArray_DTypeMeta *cls, PyTypeObject *obj);
|
||||
|
||||
typedef PyArray_Descr *(PyArrayDTypeMeta_DefaultDescriptor)(PyArray_DTypeMeta *cls);
|
||||
typedef PyArray_DTypeMeta *(PyArrayDTypeMeta_CommonDType)(
|
||||
PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtype2);
|
||||
|
||||
|
||||
/*
|
||||
* Convenience utility for getting a reference to the DType metaclass associated
|
||||
* with a dtype instance.
|
||||
*/
|
||||
#define NPY_DTYPE(descr) ((PyArray_DTypeMeta *)Py_TYPE(descr))
|
||||
|
||||
static inline PyArray_DTypeMeta *
|
||||
NPY_DT_NewRef(PyArray_DTypeMeta *o) {
|
||||
Py_INCREF((PyObject *)o);
|
||||
return o;
|
||||
}
|
||||
|
||||
|
||||
typedef PyArray_Descr *(PyArrayDTypeMeta_CommonInstance)(
|
||||
PyArray_Descr *dtype1, PyArray_Descr *dtype2);
|
||||
typedef PyArray_Descr *(PyArrayDTypeMeta_EnsureCanonical)(PyArray_Descr *dtype);
|
||||
/*
|
||||
* Returns either a new reference to *dtype* or a new descriptor instance
|
||||
* initialized with the same parameters as *dtype*. The caller cannot know
|
||||
* which choice a dtype will make. This function is called just before the
|
||||
* array buffer is created for a newly created array, it is not called for
|
||||
* views and the descriptor returned by this function is attached to the array.
|
||||
*/
|
||||
typedef PyArray_Descr *(PyArrayDTypeMeta_FinalizeDescriptor)(PyArray_Descr *dtype);
|
||||
|
||||
/*
|
||||
* TODO: These two functions are currently only used for experimental DType
|
||||
* API support. Their relation should be "reversed": NumPy should
|
||||
* always use them internally.
|
||||
* There are open points about "casting safety" though, e.g. setting
|
||||
* elements is currently always unsafe.
|
||||
*/
|
||||
typedef int(PyArrayDTypeMeta_SetItem)(PyArray_Descr *, PyObject *, char *);
|
||||
typedef PyObject *(PyArrayDTypeMeta_GetItem)(PyArray_Descr *, char *);
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_ */
|
@ -0,0 +1,70 @@
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_
|
||||
|
||||
#include <Python.h>
|
||||
#include <numpy/npy_math.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Half-precision routines
|
||||
*/
|
||||
|
||||
/* Conversions */
|
||||
float npy_half_to_float(npy_half h);
|
||||
double npy_half_to_double(npy_half h);
|
||||
npy_half npy_float_to_half(float f);
|
||||
npy_half npy_double_to_half(double d);
|
||||
/* Comparisons */
|
||||
int npy_half_eq(npy_half h1, npy_half h2);
|
||||
int npy_half_ne(npy_half h1, npy_half h2);
|
||||
int npy_half_le(npy_half h1, npy_half h2);
|
||||
int npy_half_lt(npy_half h1, npy_half h2);
|
||||
int npy_half_ge(npy_half h1, npy_half h2);
|
||||
int npy_half_gt(npy_half h1, npy_half h2);
|
||||
/* faster *_nonan variants for when you know h1 and h2 are not NaN */
|
||||
int npy_half_eq_nonan(npy_half h1, npy_half h2);
|
||||
int npy_half_lt_nonan(npy_half h1, npy_half h2);
|
||||
int npy_half_le_nonan(npy_half h1, npy_half h2);
|
||||
/* Miscellaneous functions */
|
||||
int npy_half_iszero(npy_half h);
|
||||
int npy_half_isnan(npy_half h);
|
||||
int npy_half_isinf(npy_half h);
|
||||
int npy_half_isfinite(npy_half h);
|
||||
int npy_half_signbit(npy_half h);
|
||||
npy_half npy_half_copysign(npy_half x, npy_half y);
|
||||
npy_half npy_half_spacing(npy_half h);
|
||||
npy_half npy_half_nextafter(npy_half x, npy_half y);
|
||||
npy_half npy_half_divmod(npy_half x, npy_half y, npy_half *modulus);
|
||||
|
||||
/*
|
||||
* Half-precision constants
|
||||
*/
|
||||
|
||||
#define NPY_HALF_ZERO (0x0000u)
|
||||
#define NPY_HALF_PZERO (0x0000u)
|
||||
#define NPY_HALF_NZERO (0x8000u)
|
||||
#define NPY_HALF_ONE (0x3c00u)
|
||||
#define NPY_HALF_NEGONE (0xbc00u)
|
||||
#define NPY_HALF_PINF (0x7c00u)
|
||||
#define NPY_HALF_NINF (0xfc00u)
|
||||
#define NPY_HALF_NAN (0x7e00u)
|
||||
|
||||
#define NPY_MAX_HALF (0x7bffu)
|
||||
|
||||
/*
|
||||
* Bit-level conversions
|
||||
*/
|
||||
|
||||
npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f);
|
||||
npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d);
|
||||
npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h);
|
||||
npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_ */
|
@ -0,0 +1,304 @@
|
||||
/*
|
||||
* DON'T INCLUDE THIS DIRECTLY.
|
||||
*/
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <Python.h>
|
||||
#include "ndarraytypes.h"
|
||||
#include "dtype_api.h"
|
||||
|
||||
/* Includes the "function" C-API -- these are all stored in a
|
||||
list of pointers --- one for each file
|
||||
The two lists are concatenated into one in multiarray.
|
||||
|
||||
They are available as import_array()
|
||||
*/
|
||||
|
||||
#include "__multiarray_api.h"
|
||||
|
||||
/*
|
||||
* Include any definitions which are defined differently for 1.x and 2.x
|
||||
* (Symbols only available on 2.x are not there, but rather guarded.)
|
||||
*/
|
||||
#include "npy_2_compat.h"
|
||||
|
||||
/* C-API that requires previous API to be defined */
|
||||
|
||||
#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)
|
||||
|
||||
#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type)
|
||||
#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type)
|
||||
|
||||
#define PyArray_HasArrayInterfaceType(op, type, context, out) \
|
||||
((((out)=PyArray_FromStructInterface(op)) != Py_NotImplemented) || \
|
||||
(((out)=PyArray_FromInterface(op)) != Py_NotImplemented) || \
|
||||
(((out)=PyArray_FromArrayAttr(op, type, context)) != \
|
||||
Py_NotImplemented))
|
||||
|
||||
#define PyArray_HasArrayInterface(op, out) \
|
||||
PyArray_HasArrayInterfaceType(op, NULL, NULL, out)
|
||||
|
||||
#define PyArray_IsZeroDim(op) (PyArray_Check(op) && \
|
||||
(PyArray_NDIM((PyArrayObject *)op) == 0))
|
||||
|
||||
#define PyArray_IsScalar(obj, cls) \
|
||||
(PyObject_TypeCheck(obj, &Py##cls##ArrType_Type))
|
||||
|
||||
#define PyArray_CheckScalar(m) (PyArray_IsScalar(m, Generic) || \
|
||||
PyArray_IsZeroDim(m))
|
||||
#define PyArray_IsPythonNumber(obj) \
|
||||
(PyFloat_Check(obj) || PyComplex_Check(obj) || \
|
||||
PyLong_Check(obj) || PyBool_Check(obj))
|
||||
#define PyArray_IsIntegerScalar(obj) (PyLong_Check(obj) \
|
||||
|| PyArray_IsScalar((obj), Integer))
|
||||
#define PyArray_IsPythonScalar(obj) \
|
||||
(PyArray_IsPythonNumber(obj) || PyBytes_Check(obj) || \
|
||||
PyUnicode_Check(obj))
|
||||
|
||||
#define PyArray_IsAnyScalar(obj) \
|
||||
(PyArray_IsScalar(obj, Generic) || PyArray_IsPythonScalar(obj))
|
||||
|
||||
#define PyArray_CheckAnyScalar(obj) (PyArray_IsPythonScalar(obj) || \
|
||||
PyArray_CheckScalar(obj))
|
||||
|
||||
|
||||
#define PyArray_GETCONTIGUOUS(m) (PyArray_ISCONTIGUOUS(m) ? \
|
||||
Py_INCREF(m), (m) : \
|
||||
(PyArrayObject *)(PyArray_Copy(m)))
|
||||
|
||||
#define PyArray_SAMESHAPE(a1,a2) ((PyArray_NDIM(a1) == PyArray_NDIM(a2)) && \
|
||||
PyArray_CompareLists(PyArray_DIMS(a1), \
|
||||
PyArray_DIMS(a2), \
|
||||
PyArray_NDIM(a1)))
|
||||
|
||||
#define PyArray_SIZE(m) PyArray_MultiplyList(PyArray_DIMS(m), PyArray_NDIM(m))
|
||||
#define PyArray_NBYTES(m) (PyArray_ITEMSIZE(m) * PyArray_SIZE(m))
|
||||
#define PyArray_FROM_O(m) PyArray_FromAny(m, NULL, 0, 0, 0, NULL)
|
||||
|
||||
#define PyArray_FROM_OF(m,flags) PyArray_CheckFromAny(m, NULL, 0, 0, flags, \
|
||||
NULL)
|
||||
|
||||
#define PyArray_FROM_OT(m,type) PyArray_FromAny(m, \
|
||||
PyArray_DescrFromType(type), 0, 0, 0, NULL)
|
||||
|
||||
#define PyArray_FROM_OTF(m, type, flags) \
|
||||
PyArray_FromAny(m, PyArray_DescrFromType(type), 0, 0, \
|
||||
(((flags) & NPY_ARRAY_ENSURECOPY) ? \
|
||||
((flags) | NPY_ARRAY_DEFAULT) : (flags)), NULL)
|
||||
|
||||
#define PyArray_FROMANY(m, type, min, max, flags) \
|
||||
PyArray_FromAny(m, PyArray_DescrFromType(type), min, max, \
|
||||
(((flags) & NPY_ARRAY_ENSURECOPY) ? \
|
||||
(flags) | NPY_ARRAY_DEFAULT : (flags)), NULL)
|
||||
|
||||
#define PyArray_ZEROS(m, dims, type, is_f_order) \
|
||||
PyArray_Zeros(m, dims, PyArray_DescrFromType(type), is_f_order)
|
||||
|
||||
#define PyArray_EMPTY(m, dims, type, is_f_order) \
|
||||
PyArray_Empty(m, dims, PyArray_DescrFromType(type), is_f_order)
|
||||
|
||||
#define PyArray_FILLWBYTE(obj, val) memset(PyArray_DATA(obj), val, \
|
||||
PyArray_NBYTES(obj))
|
||||
|
||||
#define PyArray_ContiguousFromAny(op, type, min_depth, max_depth) \
|
||||
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
|
||||
max_depth, NPY_ARRAY_DEFAULT, NULL)
|
||||
|
||||
#define PyArray_EquivArrTypes(a1, a2) \
|
||||
PyArray_EquivTypes(PyArray_DESCR(a1), PyArray_DESCR(a2))
|
||||
|
||||
#define PyArray_EquivByteorders(b1, b2) \
|
||||
(((b1) == (b2)) || (PyArray_ISNBO(b1) == PyArray_ISNBO(b2)))
|
||||
|
||||
#define PyArray_SimpleNew(nd, dims, typenum) \
|
||||
PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, NULL, 0, 0, NULL)
|
||||
|
||||
#define PyArray_SimpleNewFromData(nd, dims, typenum, data) \
|
||||
PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, \
|
||||
data, 0, NPY_ARRAY_CARRAY, NULL)
|
||||
|
||||
#define PyArray_SimpleNewFromDescr(nd, dims, descr) \
|
||||
PyArray_NewFromDescr(&PyArray_Type, descr, nd, dims, \
|
||||
NULL, NULL, 0, NULL)
|
||||
|
||||
#define PyArray_ToScalar(data, arr) \
|
||||
PyArray_Scalar(data, PyArray_DESCR(arr), (PyObject *)arr)
|
||||
|
||||
|
||||
/* These might be faster without the dereferencing of obj
|
||||
going on inside -- of course an optimizing compiler should
|
||||
inline the constants inside a for loop making it a moot point
|
||||
*/
|
||||
|
||||
#define PyArray_GETPTR1(obj, i) ((void *)(PyArray_BYTES(obj) + \
|
||||
(i)*PyArray_STRIDES(obj)[0]))
|
||||
|
||||
#define PyArray_GETPTR2(obj, i, j) ((void *)(PyArray_BYTES(obj) + \
|
||||
(i)*PyArray_STRIDES(obj)[0] + \
|
||||
(j)*PyArray_STRIDES(obj)[1]))
|
||||
|
||||
#define PyArray_GETPTR3(obj, i, j, k) ((void *)(PyArray_BYTES(obj) + \
|
||||
(i)*PyArray_STRIDES(obj)[0] + \
|
||||
(j)*PyArray_STRIDES(obj)[1] + \
|
||||
(k)*PyArray_STRIDES(obj)[2]))
|
||||
|
||||
#define PyArray_GETPTR4(obj, i, j, k, l) ((void *)(PyArray_BYTES(obj) + \
|
||||
(i)*PyArray_STRIDES(obj)[0] + \
|
||||
(j)*PyArray_STRIDES(obj)[1] + \
|
||||
(k)*PyArray_STRIDES(obj)[2] + \
|
||||
(l)*PyArray_STRIDES(obj)[3]))
|
||||
|
||||
static inline void
|
||||
PyArray_DiscardWritebackIfCopy(PyArrayObject *arr)
|
||||
{
|
||||
PyArrayObject_fields *fa = (PyArrayObject_fields *)arr;
|
||||
if (fa && fa->base) {
|
||||
if (fa->flags & NPY_ARRAY_WRITEBACKIFCOPY) {
|
||||
PyArray_ENABLEFLAGS((PyArrayObject*)fa->base, NPY_ARRAY_WRITEABLE);
|
||||
Py_DECREF(fa->base);
|
||||
fa->base = NULL;
|
||||
PyArray_CLEARFLAGS(arr, NPY_ARRAY_WRITEBACKIFCOPY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define PyArray_DESCR_REPLACE(descr) do { \
|
||||
PyArray_Descr *_new_; \
|
||||
_new_ = PyArray_DescrNew(descr); \
|
||||
Py_XDECREF(descr); \
|
||||
descr = _new_; \
|
||||
} while(0)
|
||||
|
||||
/* Copy should always return contiguous array */
|
||||
#define PyArray_Copy(obj) PyArray_NewCopy(obj, NPY_CORDER)
|
||||
|
||||
#define PyArray_FromObject(op, type, min_depth, max_depth) \
|
||||
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
|
||||
max_depth, NPY_ARRAY_BEHAVED | \
|
||||
NPY_ARRAY_ENSUREARRAY, NULL)
|
||||
|
||||
#define PyArray_ContiguousFromObject(op, type, min_depth, max_depth) \
|
||||
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
|
||||
max_depth, NPY_ARRAY_DEFAULT | \
|
||||
NPY_ARRAY_ENSUREARRAY, NULL)
|
||||
|
||||
#define PyArray_CopyFromObject(op, type, min_depth, max_depth) \
|
||||
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
|
||||
max_depth, NPY_ARRAY_ENSURECOPY | \
|
||||
NPY_ARRAY_DEFAULT | \
|
||||
NPY_ARRAY_ENSUREARRAY, NULL)
|
||||
|
||||
#define PyArray_Cast(mp, type_num) \
|
||||
PyArray_CastToType(mp, PyArray_DescrFromType(type_num), 0)
|
||||
|
||||
#define PyArray_Take(ap, items, axis) \
|
||||
PyArray_TakeFrom(ap, items, axis, NULL, NPY_RAISE)
|
||||
|
||||
#define PyArray_Put(ap, items, values) \
|
||||
PyArray_PutTo(ap, items, values, NPY_RAISE)
|
||||
|
||||
|
||||
/*
|
||||
Check to see if this key in the dictionary is the "title"
|
||||
entry of the tuple (i.e. a duplicate dictionary entry in the fields
|
||||
dict).
|
||||
*/
|
||||
|
||||
static inline int
|
||||
NPY_TITLE_KEY_check(PyObject *key, PyObject *value)
|
||||
{
|
||||
PyObject *title;
|
||||
if (PyTuple_Size(value) != 3) {
|
||||
return 0;
|
||||
}
|
||||
title = PyTuple_GetItem(value, 2);
|
||||
if (key == title) {
|
||||
return 1;
|
||||
}
|
||||
#ifdef PYPY_VERSION
|
||||
/*
|
||||
* On PyPy, dictionary keys do not always preserve object identity.
|
||||
* Fall back to comparison by value.
|
||||
*/
|
||||
if (PyUnicode_Check(title) && PyUnicode_Check(key)) {
|
||||
return PyUnicode_Compare(title, key) == 0 ? 1 : 0;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Macro, for backward compat with "if NPY_TITLE_KEY(key, value) { ..." */
|
||||
#define NPY_TITLE_KEY(key, value) (NPY_TITLE_KEY_check((key), (value)))
|
||||
|
||||
#define DEPRECATE(msg) PyErr_WarnEx(PyExc_DeprecationWarning,msg,1)
|
||||
#define DEPRECATE_FUTUREWARNING(msg) PyErr_WarnEx(PyExc_FutureWarning,msg,1)
|
||||
|
||||
|
||||
/*
|
||||
* These macros and functions unfortunately require runtime version checks
|
||||
* that are only defined in `npy_2_compat.h`. For that reasons they cannot be
|
||||
* part of `ndarraytypes.h` which tries to be self contained.
|
||||
*/
|
||||
|
||||
static inline npy_intp
|
||||
PyArray_ITEMSIZE(const PyArrayObject *arr)
|
||||
{
|
||||
return PyDataType_ELSIZE(((PyArrayObject_fields *)arr)->descr);
|
||||
}
|
||||
|
||||
#define PyDataType_HASFIELDS(obj) (PyDataType_ISLEGACY((PyArray_Descr*)(obj)) && PyDataType_NAMES((PyArray_Descr*)(obj)) != NULL)
|
||||
#define PyDataType_HASSUBARRAY(dtype) (PyDataType_ISLEGACY(dtype) && PyDataType_SUBARRAY(dtype) != NULL)
|
||||
#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \
|
||||
!PyDataType_HASFIELDS(dtype))
|
||||
|
||||
#define PyDataType_FLAGCHK(dtype, flag) \
|
||||
((PyDataType_FLAGS(dtype) & (flag)) == (flag))
|
||||
|
||||
#define PyDataType_REFCHK(dtype) \
|
||||
PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT)
|
||||
|
||||
#define NPY_BEGIN_THREADS_DESCR(dtype) \
|
||||
do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
|
||||
NPY_BEGIN_THREADS;} while (0);
|
||||
|
||||
#define NPY_END_THREADS_DESCR(dtype) \
|
||||
do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
|
||||
NPY_END_THREADS; } while (0);
|
||||
|
||||
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
|
||||
/* The internal copy of this is now defined in `dtypemeta.h` */
|
||||
/*
|
||||
* `PyArray_Scalar` is the same as this function but converts will convert
|
||||
* most NumPy types to Python scalars.
|
||||
*/
|
||||
static inline PyObject *
|
||||
PyArray_GETITEM(const PyArrayObject *arr, const char *itemptr)
|
||||
{
|
||||
return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->getitem(
|
||||
(void *)itemptr, (PyArrayObject *)arr);
|
||||
}
|
||||
|
||||
/*
|
||||
* SETITEM should only be used if it is known that the value is a scalar
|
||||
* and of a type understood by the arrays dtype.
|
||||
* Use `PyArray_Pack` if the value may be of a different dtype.
|
||||
*/
|
||||
static inline int
|
||||
PyArray_SETITEM(PyArrayObject *arr, char *itemptr, PyObject *v)
|
||||
{
|
||||
return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->setitem(v, itemptr, arr);
|
||||
}
|
||||
#endif /* not internal */
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_ */
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,112 @@
|
||||
#ifndef NPY_DEPRECATED_INCLUDES
|
||||
#error "Should never include npy_*_*_deprecated_api directly."
|
||||
#endif
|
||||
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_
|
||||
|
||||
/* Emit a warning if the user did not specifically request the old API */
|
||||
#ifndef NPY_NO_DEPRECATED_API
|
||||
#if defined(_WIN32)
|
||||
#define _WARN___STR2__(x) #x
|
||||
#define _WARN___STR1__(x) _WARN___STR2__(x)
|
||||
#define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
|
||||
#pragma message(_WARN___LOC__"Using deprecated NumPy API, disable it with " \
|
||||
"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION")
|
||||
#else
|
||||
#warning "Using deprecated NumPy API, disable it with " \
|
||||
"#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This header exists to collect all dangerous/deprecated NumPy API
|
||||
* as of NumPy 1.7.
|
||||
*
|
||||
* This is an attempt to remove bad API, the proliferation of macros,
|
||||
* and namespace pollution currently produced by the NumPy headers.
|
||||
*/
|
||||
|
||||
/* These array flags are deprecated as of NumPy 1.7 */
|
||||
#define NPY_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
|
||||
#define NPY_FORTRAN NPY_ARRAY_F_CONTIGUOUS
|
||||
|
||||
/*
|
||||
* The consistent NPY_ARRAY_* names which don't pollute the NPY_*
|
||||
* namespace were added in NumPy 1.7.
|
||||
*
|
||||
* These versions of the carray flags are deprecated, but
|
||||
* probably should only be removed after two releases instead of one.
|
||||
*/
|
||||
#define NPY_C_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
|
||||
#define NPY_F_CONTIGUOUS NPY_ARRAY_F_CONTIGUOUS
|
||||
#define NPY_OWNDATA NPY_ARRAY_OWNDATA
|
||||
#define NPY_FORCECAST NPY_ARRAY_FORCECAST
|
||||
#define NPY_ENSURECOPY NPY_ARRAY_ENSURECOPY
|
||||
#define NPY_ENSUREARRAY NPY_ARRAY_ENSUREARRAY
|
||||
#define NPY_ELEMENTSTRIDES NPY_ARRAY_ELEMENTSTRIDES
|
||||
#define NPY_ALIGNED NPY_ARRAY_ALIGNED
|
||||
#define NPY_NOTSWAPPED NPY_ARRAY_NOTSWAPPED
|
||||
#define NPY_WRITEABLE NPY_ARRAY_WRITEABLE
|
||||
#define NPY_BEHAVED NPY_ARRAY_BEHAVED
|
||||
#define NPY_BEHAVED_NS NPY_ARRAY_BEHAVED_NS
|
||||
#define NPY_CARRAY NPY_ARRAY_CARRAY
|
||||
#define NPY_CARRAY_RO NPY_ARRAY_CARRAY_RO
|
||||
#define NPY_FARRAY NPY_ARRAY_FARRAY
|
||||
#define NPY_FARRAY_RO NPY_ARRAY_FARRAY_RO
|
||||
#define NPY_DEFAULT NPY_ARRAY_DEFAULT
|
||||
#define NPY_IN_ARRAY NPY_ARRAY_IN_ARRAY
|
||||
#define NPY_OUT_ARRAY NPY_ARRAY_OUT_ARRAY
|
||||
#define NPY_INOUT_ARRAY NPY_ARRAY_INOUT_ARRAY
|
||||
#define NPY_IN_FARRAY NPY_ARRAY_IN_FARRAY
|
||||
#define NPY_OUT_FARRAY NPY_ARRAY_OUT_FARRAY
|
||||
#define NPY_INOUT_FARRAY NPY_ARRAY_INOUT_FARRAY
|
||||
#define NPY_UPDATE_ALL NPY_ARRAY_UPDATE_ALL
|
||||
|
||||
/* This way of accessing the default type is deprecated as of NumPy 1.7 */
|
||||
#define PyArray_DEFAULT NPY_DEFAULT_TYPE
|
||||
|
||||
/*
|
||||
* Deprecated as of NumPy 1.7, this kind of shortcut doesn't
|
||||
* belong in the public API.
|
||||
*/
|
||||
#define NPY_AO PyArrayObject
|
||||
|
||||
/*
|
||||
* Deprecated as of NumPy 1.7, an all-lowercase macro doesn't
|
||||
* belong in the public API.
|
||||
*/
|
||||
#define fortran fortran_
|
||||
|
||||
/*
|
||||
* Deprecated as of NumPy 1.7, as it is a namespace-polluting
|
||||
* macro.
|
||||
*/
|
||||
#define FORTRAN_IF PyArray_FORTRAN_IF
|
||||
|
||||
/* Deprecated as of NumPy 1.7, datetime64 uses c_metadata instead */
|
||||
#define NPY_METADATA_DTSTR "__timeunit__"
|
||||
|
||||
/*
|
||||
* Deprecated as of NumPy 1.7.
|
||||
* The reasoning:
|
||||
* - These are for datetime, but there's no datetime "namespace".
|
||||
* - They just turn NPY_STR_<x> into "<x>", which is just
|
||||
* making something simple be indirected.
|
||||
*/
|
||||
#define NPY_STR_Y "Y"
|
||||
#define NPY_STR_M "M"
|
||||
#define NPY_STR_W "W"
|
||||
#define NPY_STR_D "D"
|
||||
#define NPY_STR_h "h"
|
||||
#define NPY_STR_m "m"
|
||||
#define NPY_STR_s "s"
|
||||
#define NPY_STR_ms "ms"
|
||||
#define NPY_STR_us "us"
|
||||
#define NPY_STR_ns "ns"
|
||||
#define NPY_STR_ps "ps"
|
||||
#define NPY_STR_fs "fs"
|
||||
#define NPY_STR_as "as"
|
||||
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_ */
|
@ -0,0 +1,249 @@
|
||||
/*
|
||||
* This header file defines relevant features which:
|
||||
* - Require runtime inspection depending on the NumPy version.
|
||||
* - May be needed when compiling with an older version of NumPy to allow
|
||||
* a smooth transition.
|
||||
*
|
||||
* As such, it is shipped with NumPy 2.0, but designed to be vendored in full
|
||||
* or parts by downstream projects.
|
||||
*
|
||||
* It must be included after any other includes. `import_array()` must have
|
||||
* been called in the scope or version dependency will misbehave, even when
|
||||
* only `PyUFunc_` API is used.
|
||||
*
|
||||
* If required complicated defs (with inline functions) should be written as:
|
||||
*
|
||||
* #if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
* Simple definition when NumPy 2.0 API is guaranteed.
|
||||
* #else
|
||||
* static inline definition of a 1.x compatibility shim
|
||||
* #if NPY_ABI_VERSION < 0x02000000
|
||||
* Make 1.x compatibility shim the public API (1.x only branch)
|
||||
* #else
|
||||
* Runtime dispatched version (1.x or 2.x)
|
||||
* #endif
|
||||
* #endif
|
||||
*
|
||||
* An internal build always passes NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
*/
|
||||
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_
|
||||
|
||||
/*
|
||||
* New macros for accessing real and complex part of a complex number can be
|
||||
* found in "npy_2_complexcompat.h".
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This header is meant to be included by downstream directly for 1.x compat.
|
||||
* In that case we need to ensure that users first included the full headers
|
||||
* and not just `ndarraytypes.h`.
|
||||
*/
|
||||
|
||||
#ifndef NPY_FEATURE_VERSION
|
||||
#error "The NumPy 2 compat header requires `import_array()` for which " \
|
||||
"the `ndarraytypes.h` header include is not sufficient. Please " \
|
||||
"include it after `numpy/ndarrayobject.h` or similar.\n" \
|
||||
"To simplify inclusion, you may use `PyArray_ImportNumPy()` " \
|
||||
"which is defined in the compat header and is lightweight (can be)."
|
||||
#endif
|
||||
|
||||
#if NPY_ABI_VERSION < 0x02000000
|
||||
/*
|
||||
* Define 2.0 feature version as it is needed below to decide whether we
|
||||
* compile for both 1.x and 2.x (defining it guarantees 1.x only).
|
||||
*/
|
||||
#define NPY_2_0_API_VERSION 0x00000012
|
||||
/*
|
||||
* If we are compiling with NumPy 1.x, PyArray_RUNTIME_VERSION so we
|
||||
* pretend the `PyArray_RUNTIME_VERSION` is `NPY_FEATURE_VERSION`.
|
||||
* This allows downstream to use `PyArray_RUNTIME_VERSION` if they need to.
|
||||
*/
|
||||
#define PyArray_RUNTIME_VERSION NPY_FEATURE_VERSION
|
||||
/* Compiling on NumPy 1.x where these are the same: */
|
||||
#define PyArray_DescrProto PyArray_Descr
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Define a better way to call `_import_array()` to simplify backporting as
|
||||
* we now require imports more often (necessary to make ABI flexible).
|
||||
*/
|
||||
#ifdef import_array1
|
||||
|
||||
static inline int
|
||||
PyArray_ImportNumPyAPI(void)
|
||||
{
|
||||
if (NPY_UNLIKELY(PyArray_API == NULL)) {
|
||||
import_array1(-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* import_array1 */
|
||||
|
||||
|
||||
/*
|
||||
* NPY_DEFAULT_INT
|
||||
*
|
||||
* The default integer has changed, `NPY_DEFAULT_INT` is available at runtime
|
||||
* for use as type number, e.g. `PyArray_DescrFromType(NPY_DEFAULT_INT)`.
|
||||
*
|
||||
* NPY_RAVEL_AXIS
|
||||
*
|
||||
* This was introduced in NumPy 2.0 to allow indicating that an axis should be
|
||||
* raveled in an operation. Before NumPy 2.0, NPY_MAXDIMS was used for this purpose.
|
||||
*
|
||||
* NPY_MAXDIMS
|
||||
*
|
||||
* A constant indicating the maximum number dimensions allowed when creating
|
||||
* an ndarray.
|
||||
*
|
||||
* NPY_NTYPES_LEGACY
|
||||
*
|
||||
* The number of built-in NumPy dtypes.
|
||||
*/
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
#define NPY_DEFAULT_INT NPY_INTP
|
||||
#define NPY_RAVEL_AXIS NPY_MIN_INT
|
||||
#define NPY_MAXARGS 64
|
||||
|
||||
#elif NPY_ABI_VERSION < 0x02000000
|
||||
#define NPY_DEFAULT_INT NPY_LONG
|
||||
#define NPY_RAVEL_AXIS 32
|
||||
#define NPY_MAXARGS 32
|
||||
|
||||
/* Aliases of 2.x names to 1.x only equivalent names */
|
||||
#define NPY_NTYPES NPY_NTYPES_LEGACY
|
||||
#define PyArray_DescrProto PyArray_Descr
|
||||
#define _PyArray_LegacyDescr PyArray_Descr
|
||||
/* NumPy 2 definition always works, but add it for 1.x only */
|
||||
#define PyDataType_ISLEGACY(dtype) (1)
|
||||
#else
|
||||
#define NPY_DEFAULT_INT \
|
||||
(PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_INTP : NPY_LONG)
|
||||
#define NPY_RAVEL_AXIS \
|
||||
(PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_MIN_INT : 32)
|
||||
#define NPY_MAXARGS \
|
||||
(PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? 64 : 32)
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* Access inline functions for descriptor fields. Except for the first
|
||||
* few fields, these needed to be moved (elsize, alignment) for
|
||||
* additional space. Or they are descriptor specific and are not generally
|
||||
* available anymore (metadata, c_metadata, subarray, names, fields).
|
||||
*
|
||||
* Most of these are defined via the `DESCR_ACCESSOR` macro helper.
|
||||
*/
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION || NPY_ABI_VERSION < 0x02000000
|
||||
/* Compiling for 1.x or 2.x only, direct field access is OK: */
|
||||
|
||||
static inline void
|
||||
PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size)
|
||||
{
|
||||
dtype->elsize = size;
|
||||
}
|
||||
|
||||
static inline npy_uint64
|
||||
PyDataType_FLAGS(const PyArray_Descr *dtype)
|
||||
{
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
return dtype->flags;
|
||||
#else
|
||||
return (unsigned char)dtype->flags; /* Need unsigned cast on 1.x */
|
||||
#endif
|
||||
}
|
||||
|
||||
#define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \
|
||||
static inline type \
|
||||
PyDataType_##FIELD(const PyArray_Descr *dtype) { \
|
||||
if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \
|
||||
return (type)0; \
|
||||
} \
|
||||
return ((_PyArray_LegacyDescr *)dtype)->field; \
|
||||
}
|
||||
#else /* compiling for both 1.x and 2.x */
|
||||
|
||||
static inline void
|
||||
PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size)
|
||||
{
|
||||
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
|
||||
((_PyArray_DescrNumPy2 *)dtype)->elsize = size;
|
||||
}
|
||||
else {
|
||||
((PyArray_DescrProto *)dtype)->elsize = (int)size;
|
||||
}
|
||||
}
|
||||
|
||||
static inline npy_uint64
|
||||
PyDataType_FLAGS(const PyArray_Descr *dtype)
|
||||
{
|
||||
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
|
||||
return ((_PyArray_DescrNumPy2 *)dtype)->flags;
|
||||
}
|
||||
else {
|
||||
return (unsigned char)((PyArray_DescrProto *)dtype)->flags;
|
||||
}
|
||||
}
|
||||
|
||||
/* Cast to LegacyDescr always fine but needed when `legacy_only` */
|
||||
#define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \
|
||||
static inline type \
|
||||
PyDataType_##FIELD(const PyArray_Descr *dtype) { \
|
||||
if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \
|
||||
return (type)0; \
|
||||
} \
|
||||
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { \
|
||||
return ((_PyArray_LegacyDescr *)dtype)->field; \
|
||||
} \
|
||||
else { \
|
||||
return ((PyArray_DescrProto *)dtype)->field; \
|
||||
} \
|
||||
}
|
||||
#endif
|
||||
|
||||
DESCR_ACCESSOR(ELSIZE, elsize, npy_intp, 0)
|
||||
DESCR_ACCESSOR(ALIGNMENT, alignment, npy_intp, 0)
|
||||
DESCR_ACCESSOR(METADATA, metadata, PyObject *, 1)
|
||||
DESCR_ACCESSOR(SUBARRAY, subarray, PyArray_ArrayDescr *, 1)
|
||||
DESCR_ACCESSOR(NAMES, names, PyObject *, 1)
|
||||
DESCR_ACCESSOR(FIELDS, fields, PyObject *, 1)
|
||||
DESCR_ACCESSOR(C_METADATA, c_metadata, NpyAuxData *, 1)
|
||||
|
||||
#undef DESCR_ACCESSOR
|
||||
|
||||
|
||||
#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD)
|
||||
#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION
|
||||
static inline PyArray_ArrFuncs *
|
||||
PyDataType_GetArrFuncs(const PyArray_Descr *descr)
|
||||
{
|
||||
return _PyDataType_GetArrFuncs(descr);
|
||||
}
|
||||
#elif NPY_ABI_VERSION < 0x02000000
|
||||
static inline PyArray_ArrFuncs *
|
||||
PyDataType_GetArrFuncs(const PyArray_Descr *descr)
|
||||
{
|
||||
return descr->f;
|
||||
}
|
||||
#else
|
||||
static inline PyArray_ArrFuncs *
|
||||
PyDataType_GetArrFuncs(const PyArray_Descr *descr)
|
||||
{
|
||||
if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) {
|
||||
return _PyDataType_GetArrFuncs(descr);
|
||||
}
|
||||
else {
|
||||
return ((PyArray_DescrProto *)descr)->f;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* not internal build */
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_ */
|
@ -0,0 +1,28 @@
|
||||
/* This header is designed to be copy-pasted into downstream packages, since it provides
|
||||
a compatibility layer between the old C struct complex types and the new native C99
|
||||
complex types. The new macros are in numpy/npy_math.h, which is why it is included here. */
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_
|
||||
|
||||
#include <numpy/npy_math.h>
|
||||
|
||||
#ifndef NPY_CSETREALF
|
||||
#define NPY_CSETREALF(c, r) (c)->real = (r)
|
||||
#endif
|
||||
#ifndef NPY_CSETIMAGF
|
||||
#define NPY_CSETIMAGF(c, i) (c)->imag = (i)
|
||||
#endif
|
||||
#ifndef NPY_CSETREAL
|
||||
#define NPY_CSETREAL(c, r) (c)->real = (r)
|
||||
#endif
|
||||
#ifndef NPY_CSETIMAG
|
||||
#define NPY_CSETIMAG(c, i) (c)->imag = (i)
|
||||
#endif
|
||||
#ifndef NPY_CSETREALL
|
||||
#define NPY_CSETREALL(c, r) (c)->real = (r)
|
||||
#endif
|
||||
#ifndef NPY_CSETIMAGL
|
||||
#define NPY_CSETIMAGL(c, i) (c)->imag = (i)
|
||||
#endif
|
||||
|
||||
#endif
|
@ -0,0 +1,374 @@
|
||||
/*
|
||||
* This is a convenience header file providing compatibility utilities
|
||||
* for supporting different minor versions of Python 3.
|
||||
* It was originally used to support the transition from Python 2,
|
||||
* hence the "3k" naming.
|
||||
*
|
||||
* If you want to use this for your own projects, it's recommended to make a
|
||||
* copy of it. We don't provide backwards compatibility guarantees.
|
||||
*/
|
||||
|
||||
#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_
|
||||
#define NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_
|
||||
|
||||
#include <Python.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "npy_common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Python13 removes _PyLong_AsInt */
|
||||
static inline int
|
||||
Npy__PyLong_AsInt(PyObject *obj)
|
||||
{
|
||||
int overflow;
|
||||
long result = PyLong_AsLongAndOverflow(obj, &overflow);
|
||||
|
||||
/* INT_MAX and INT_MIN are defined in Python.h */
|
||||
if (overflow || result > INT_MAX || result < INT_MIN) {
|
||||
/* XXX: could be cute and give a different
|
||||
message for overflow == -1 */
|
||||
PyErr_SetString(PyExc_OverflowError,
|
||||
"Python int too large to convert to C int");
|
||||
return -1;
|
||||
}
|
||||
return (int)result;
|
||||
}
|
||||
|
||||
#if defined _MSC_VER && _MSC_VER >= 1900
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/*
|
||||
* Macros to protect CRT calls against instant termination when passed an
|
||||
* invalid parameter (https://bugs.python.org/issue23524).
|
||||
*/
|
||||
extern _invalid_parameter_handler _Py_silent_invalid_parameter_handler;
|
||||
#define NPY_BEGIN_SUPPRESS_IPH { _invalid_parameter_handler _Py_old_handler = \
|
||||
_set_thread_local_invalid_parameter_handler(_Py_silent_invalid_parameter_handler);
|
||||
#define NPY_END_SUPPRESS_IPH _set_thread_local_invalid_parameter_handler(_Py_old_handler); }
|
||||
|
||||
#else
|
||||
|
||||
#define NPY_BEGIN_SUPPRESS_IPH
|
||||
#define NPY_END_SUPPRESS_IPH
|
||||
|
||||
#endif /* _MSC_VER >= 1900 */
|
||||
|
||||
/*
|
||||
* PyFile_* compatibility
|
||||
*/
|
||||
|
||||
/*
|
||||
* Get a FILE* handle to the file represented by the Python object
|
||||
*/
|
||||
static inline FILE*
|
||||
npy_PyFile_Dup2(PyObject *file, char *mode, npy_off_t *orig_pos)
|
||||
{
|
||||
int fd, fd2, unbuf;
|
||||
Py_ssize_t fd2_tmp;
|
||||
PyObject *ret, *os, *io, *io_raw;
|
||||
npy_off_t pos;
|
||||
FILE *handle;
|
||||
|
||||
/* Flush first to ensure things end up in the file in the correct order */
|
||||
ret = PyObject_CallMethod(file, "flush", "");
|
||||
if (ret == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
Py_DECREF(ret);
|
||||
fd = PyObject_AsFileDescriptor(file);
|
||||
if (fd == -1) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* The handle needs to be dup'd because we have to call fclose
|
||||
* at the end
|
||||
*/
|
||||
os = PyImport_ImportModule("os");
|
||||
if (os == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
ret = PyObject_CallMethod(os, "dup", "i", fd);
|
||||
Py_DECREF(os);
|
||||
if (ret == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
fd2_tmp = PyNumber_AsSsize_t(ret, PyExc_IOError);
|
||||
Py_DECREF(ret);
|
||||
if (fd2_tmp == -1 && PyErr_Occurred()) {
|
||||
return NULL;
|
||||
}
|
||||
if (fd2_tmp < INT_MIN || fd2_tmp > INT_MAX) {
|
||||
PyErr_SetString(PyExc_IOError,
|
||||
"Getting an 'int' from os.dup() failed");
|
||||
return NULL;
|
||||
}
|
||||
fd2 = (int)fd2_tmp;
|
||||
|
||||
/* Convert to FILE* handle */
|
||||
#ifdef _WIN32
|
||||
NPY_BEGIN_SUPPRESS_IPH
|
||||
handle = _fdopen(fd2, mode);
|
||||
NPY_END_SUPPRESS_IPH
|
||||
#else
|
||||
handle = fdopen(fd2, mode);
|
||||
#endif
|
||||
if (handle == NULL) {
|
||||
PyErr_SetString(PyExc_IOError,
|
||||
"Getting a FILE* from a Python file object via "
|
||||
"_fdopen failed. If you built NumPy, you probably "
|
||||
"linked with the wrong debug/release runtime");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Record the original raw file handle position */
|
||||
*orig_pos = npy_ftell(handle);
|
||||
if (*orig_pos == -1) {
|
||||
/* The io module is needed to determine if buffering is used */
|
||||
io = PyImport_ImportModule("io");
|
||||
if (io == NULL) {
|
||||
fclose(handle);
|
||||
return NULL;
|
||||
}
|
||||
/* File object instances of RawIOBase are unbuffered */
|
||||
io_raw = PyObject_GetAttrString(io, "RawIOBase");
|
||||
Py_DECREF(io);
|
||||
if (io_raw == NULL) {
|
||||
fclose(handle);
|
||||
return NULL;
|
||||
}
|
||||
unbuf = PyObject_IsInstance(file, io_raw);
|
||||
Py_DECREF(io_raw);
|
||||
if (unbuf == 1) {
|
||||
/* Succeed if the IO is unbuffered */
|
||||
return handle;
|
||||
}
|
||||
else {
|
||||
PyErr_SetString(PyExc_IOError, "obtaining file position failed");
|
||||
fclose(handle);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Seek raw handle to the Python-side position */
|
||||
ret = PyObject_CallMethod(file, "tell", "");
|
||||
if (ret == NULL) {
|
||||
fclose(handle);
|
||||
return NULL;
|
||||
}
|
||||
pos = PyLong_AsLongLong(ret);
|
||||
Py_DECREF(ret);
|
||||
if (PyErr_Occurred()) {
|
||||
fclose(handle);
|
||||
return NULL;
|
||||
}
|
||||
if (npy_fseek(handle, pos, SEEK_SET) == -1) {
|
||||
PyErr_SetString(PyExc_IOError, "seeking file failed");
|
||||
fclose(handle);
|
||||
return NULL;
|
||||
}
|
||||
return handle;
|
||||
}
|
||||
|
||||
/*
|
||||
* Close the dup-ed file handle, and seek the Python one to the current position
|
||||
*/
|
||||
static inline int
|
||||
npy_PyFile_DupClose2(PyObject *file, FILE* handle, npy_off_t orig_pos)
|
||||
{
|
||||
int fd, unbuf;
|
||||
PyObject *ret, *io, *io_raw;
|
||||
npy_off_t position;
|
||||
|
||||
position = npy_ftell(handle);
|
||||
|
||||
/* Close the FILE* handle */
|
||||
fclose(handle);
|
||||
|
||||
/*
|
||||
* Restore original file handle position, in order to not confuse
|
||||
* Python-side data structures
|
||||
*/
|
||||
fd = PyObject_AsFileDescriptor(file);
|
||||
if (fd == -1) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (npy_lseek(fd, orig_pos, SEEK_SET) == -1) {
|
||||
|
||||
/* The io module is needed to determine if buffering is used */
|
||||
io = PyImport_ImportModule("io");
|
||||
if (io == NULL) {
|
||||
return -1;
|
||||
}
|
||||
/* File object instances of RawIOBase are unbuffered */
|
||||
io_raw = PyObject_GetAttrString(io, "RawIOBase");
|
||||
Py_DECREF(io);
|
||||
if (io_raw == NULL) {
|
||||
return -1;
|
||||
}
|
||||
unbuf = PyObject_IsInstance(file, io_raw);
|
||||
Py_DECREF(io_raw);
|
||||
if (unbuf == 1) {
|
||||
/* Succeed if the IO is unbuffered */
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
PyErr_SetString(PyExc_IOError, "seeking file failed");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (position == -1) {
|
||||
PyErr_SetString(PyExc_IOError, "obtaining file position failed");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Seek Python-side handle to the FILE* handle position */
|
||||
ret = PyObject_CallMethod(file, "seek", NPY_OFF_T_PYFMT "i", position, 0);
|
||||
if (ret == NULL) {
|
||||
return -1;
|
||||
}
|
||||
Py_DECREF(ret);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline PyObject*
|
||||
npy_PyFile_OpenFile(PyObject *filename, const char *mode)
|
||||
{
|
||||
PyObject *open;
|
||||
open = PyDict_GetItemString(PyEval_GetBuiltins(), "open");
|
||||
if (open == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
return PyObject_CallFunction(open, "Os", filename, mode);
|
||||
}
|
||||
|
||||
static inline int
|
||||
npy_PyFile_CloseFile(PyObject *file)
|
||||
{
|
||||
PyObject *ret;
|
||||
|
||||
ret = PyObject_CallMethod(file, "close", NULL);
|
||||
if (ret == NULL) {
|
||||
return -1;
|
||||
}
|
||||
Py_DECREF(ret);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This is a copy of _PyErr_ChainExceptions, which
|
||||
* is no longer exported from Python3.12
|
||||
*/
|
||||
static inline void
|
||||
npy_PyErr_ChainExceptions(PyObject *exc, PyObject *val, PyObject *tb)
|
||||
{
|
||||
if (exc == NULL)
|
||||
return;
|
||||
|
||||
if (PyErr_Occurred()) {
|
||||
PyObject *exc2, *val2, *tb2;
|
||||
PyErr_Fetch(&exc2, &val2, &tb2);
|
||||
PyErr_NormalizeException(&exc, &val, &tb);
|
||||
if (tb != NULL) {
|
||||
PyException_SetTraceback(val, tb);
|
||||
Py_DECREF(tb);
|
||||
}
|
||||
Py_DECREF(exc);
|
||||
PyErr_NormalizeException(&exc2, &val2, &tb2);
|
||||
PyException_SetContext(val2, val);
|
||||
PyErr_Restore(exc2, val2, tb2);
|
||||
}
|
||||
else {
|
||||
PyErr_Restore(exc, val, tb);
|
||||
}
|
||||
}
|
||||
|
||||
/* This is a copy of _PyErr_ChainExceptions, with:
|
||||
* __cause__ used instead of __context__
|
||||
*/
|
||||
static inline void
|
||||
npy_PyErr_ChainExceptionsCause(PyObject *exc, PyObject *val, PyObject *tb)
|
||||
{
|
||||
if (exc == NULL)
|
||||
return;
|
||||
|
||||
if (PyErr_Occurred()) {
|
||||
PyObject *exc2, *val2, *tb2;
|
||||
PyErr_Fetch(&exc2, &val2, &tb2);
|
||||
PyErr_NormalizeException(&exc, &val, &tb);
|
||||
if (tb != NULL) {
|
||||
PyException_SetTraceback(val, tb);
|
||||
Py_DECREF(tb);
|
||||
}
|
||||
Py_DECREF(exc);
|
||||
PyErr_NormalizeException(&exc2, &val2, &tb2);
|
||||
PyException_SetCause(val2, val);
|
||||
PyErr_Restore(exc2, val2, tb2);
|
||||
}
|
||||
else {
|
||||
PyErr_Restore(exc, val, tb);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* PyCObject functions adapted to PyCapsules.
|
||||
*
|
||||
* The main job here is to get rid of the improved error handling
|
||||
* of PyCapsules. It's a shame...
|
||||
*/
|
||||
static inline PyObject *
|
||||
NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
|
||||
{
|
||||
PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
|
||||
if (ret == NULL) {
|
||||
PyErr_Clear();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline PyObject *
|
||||
NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context, void (*dtor)(PyObject *))
|
||||
{
|
||||
PyObject *ret = NpyCapsule_FromVoidPtr(ptr, dtor);
|
||||
if (ret != NULL && PyCapsule_SetContext(ret, context) != 0) {
|
||||
PyErr_Clear();
|
||||
Py_DECREF(ret);
|
||||
ret = NULL;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void *
|
||||
NpyCapsule_AsVoidPtr(PyObject *obj)
|
||||
{
|
||||
void *ret = PyCapsule_GetPointer(obj, NULL);
|
||||
if (ret == NULL) {
|
||||
PyErr_Clear();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void *
|
||||
NpyCapsule_GetDesc(PyObject *obj)
|
||||
{
|
||||
return PyCapsule_GetContext(obj);
|
||||
}
|
||||
|
||||
static inline int
|
||||
NpyCapsule_Check(PyObject *ptr)
|
||||
{
|
||||
return PyCapsule_CheckExact(ptr);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_ */
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user